{ "cells": [ { "cell_type": "markdown", "id": "1cab74ff", "metadata": {}, "source": [ "# Visualization, Fitting, and File Format\n", "\n", "This is a warm-up notebook to demonstrate some python APIs we will use frequently during our workshop.\n", "\n", "\n", "\n", "\n", "With knowledge about Python basics and numpy array, you can massage and play with data. What comes next immediately includes how to _visualize_ data, _fit_ a function (=test against a model), explore more with an _interactive (dynamic)_ visualization, and a _file format_ for more flexible/efficient storage beyond numpy file.\n", "\n", "We cover additional libraries briefly to address those basic needs.\n", "\n", "* [`matplotlib` for static plots and figures](#mpl)\n", "* [`scipy` for fitting a function](#scipy)\n", "* [`plotly` for an interactive (dynamic) plotting](#plotly)\n", "* [`hdf5`: an alternative data file format](#hdf5)\n", "\n", "This notebook is based on [tutorial](https://github.com/marcodeltutto/Python-Tutorial-SBN-Workshop) by Marco Del Tutto for an introductory workshop." ] }, { "cell_type": "code", "execution_count": 1, "id": "436bd943", "metadata": {}, "outputs": [], "source": [ "from __future__ import print_function\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "id": "95e557f2", "metadata": {}, "source": [ "\n", "## Matplotlib for static visualization\n", "`matplotlib` is one of the most used scientific python packages for data visualization. You can create a scatter plot, histogram, errorbar, surface, ... a lot! We will try visualizing an image file first using one of the most familiar figures in the United States.\n", "\n", "\n", "\n", "\n", "We will use a `Homer.png` image file." ] }, { "cell_type": "code", "execution_count": 2, "id": "fe984244", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Data shape: (500, 300, 4)\n", "Data type: \n" ] } ], "source": [ "data=plt.imread('data/Homer.png')\n", "print('Data shape:',data.shape)\n", "print('Data type:',type(data))" ] }, { "cell_type": "markdown", "id": "17756da0", "metadata": {}, "source": [ "So this image has 4 [CMYK channels](https://en.wikipedia.org/wiki/Channel_(digital_image)#CMYK). Let's visualize the image using `matplotlib.pyplot.imshow`" ] }, { "cell_type": "code", "execution_count": 3, "id": "4ff509a3", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAKoAAAD8CAYAAADnoT9oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABdq0lEQVR4nO29d5xcdb3///x8zpm6M9s3m82mFxJIaEnovQoCglhBFBULWK7eq171lp9f9etXvdeGXQSsiIoIFnrvvQZCQnrfzfYy/ZzP+/fHOWdmtiUbSMiGzCuPyc6c+pmZ17w/7/Z5v5WIUEEFEx16bw+gggrGgwpRK9gnUCFqBfsEKkStYJ9AhagV7BOoELWCfQJ7hKhKqbOUUiuVUquVUl/aE/eoYP+C2t1+VKWUBbwKnAFsBp4CLhKR5bv1RhXsV9gTEvVIYLWIrBWRPPBH4Pw9cJ8K9iPYe+CarcCmstebgaN2dEJjY6PMnDlzDwylgn0NzzzzTKeINA3fvieIOi4opT4GfAxg+vTpPP3003trKOOGiKCU2tvDeFNDKbVhtO17YurfAkwrez3V3zYEInKViCwVkaVNTSN+QBMOIoLruriui+M4DA4O0t/fTyqVwnVdRIRK3sSew56QqE8B85RSs/AI+l7g4j1wnzcUIkJ3dzcPP/wwa9asoa6ujtbWVlavXk0ul+PEE0/k8MMPx7btitTdA9jtRBURRyn1KeAOwAKuFZGXd/d93ggEEtJxHJ5/8UV+/etfcfFFF3HuuecSCoWKxw0ODnL//fdz5ZVX8pGPXEZ1dTVK6QphdyeCKWtvPpYsWSITDcYYKRQK0tnZKXfeeae85eyz5M777pGe3h5xXFeMMSOOX716lXznO/8jqdSguKZ0jDFmxPEVjA7gaRmFI3vNmJqoEBGMMXT3dPOHP1zPspeW0dbWxpf/+ysYp8DVV1/DYCbF+9//XmZPnweAEYdcNofWmr7+fv54/XUcffwx2KEwkVCU+rp6IpEItmXjCVmFUqpinO0CKkQdBVu3buUHV/6Ai9//Puoa6pg+cw4nHu152E467jg2bNzKt775DU448TjSgylWrbiXwZ6VTK5OkaQPSzssu8FmIG3RlQqRM61IfBZzF53AsSecwdTWmdi2VSHpLqBC1GHI5/P8+Mc/5pOfuILp02dy419u5F3vfDcAgjCYzvDKS8+T6lvOssdu4uSjc5z5zhyN1S5aGbQIGDCOws2Ckxbyqa0MDj7Dmq1/5w/fbSY25T2c/64PM2PmTLTWaF1JudgZKkQtg4iwbNkyjjrySGbNmkPBKRAOR7Asm1Q6zR2338YD9/yEww54ma9/KkVzg4utXH86N0OuZSHYVRBpUMQdqMoY6iflOXTWFtZt/zHX/eCvzDv637jgnR8gGokAVCTsDlAhahlcY7jl1lv43Gf/FYBCPk88nuDpZ5/hxj//kCXzl/EfH15HfSIDWtBKgQj4eqcM8aMqlPJ2SQgiIQgnDJF6xZyqLB+qX8u9y/6bn/xwAx+/4oskElV4TpIKRkOFqGVwXIeGhgaqkkkQIT3Qy223/A3MfXzqA21MjqzGJucf7ZNSlZ4HEjEgrFKeugAKBJQWQtUuNRGNHRHeckgv9634Jb/8kcPH//W/iUerKlJ1DFSUozIMpAaprasDYLC/l+//8EqM6eTCM7bRGl2GrXMoDUqrIYTyeFl6rZQi2K1QKDzSeucIKuwSnyJEJhlOWdBPrO833PyX32GM+4a9130NFaKWwdYKlCKfy/G973+bgxZt5ugjkix7ZiMKt4yKpSl+6HS/cyjfNaW1EGuGcJ3h3EP72fDUT9iw7tVKGHYMVIhahngsztq1a/j5L37CpKmv8rYzFe86YwPPvyJkC6WPqtwRDQyTrkP3jQ2FDgmxSUK4qsDZCzfx5+uuJJfLVMg6CipELUM4FMG4LstX3MI7396EPfAwi6Z3c8VFWSK22fkFdgFKgRLBjgnRepjckKExexsvLntpt97nzYIKUcuQz+fZuGE9mBzS+wJWvg2lXRqSWZQuSTlPBy09yjHW9hEQUGhEQaQWdNRw3IJu7vnbz3DcQkWqDkOFqD5EhHvvu5sjj8nS2BjhwXs3IpSMIvYIbxQKjQ4bojWK+liemvy9rFu/ek/cbJ9Ghag+cvksd9z1B845dyoff79hcoOLYKGNYrgzf/dBAINSinBSsC3D0jm93HLj7ysSdRgqRMWTpmvWPs2MGQ6NtXkaIqs48uBubPKIAtljH5P4biuwoqCTiik1ebatu4uB1MAeuue+iQpRfTz+xEscvrQWXejFcrr8YJPgST1ht7vhFQy5qIZQLYQth1nJbbz66isVqVqGClF9bFi/khnTk7j57SCuR1JfQX0jYkVKgR0HKwyHzR7kup9+iQfuu5dCLrfzk/cD7PdEDaRWfUOcRJVgOV3ehyLlESX2DFslkNfefyosRFphbmuay098kvv/9EHuvfdOTEWyVogaJDBHQjbacnGcNHpPTPXDIIAoT3D7mYGI0VgJqGpR1CULXHpCL/fe9E22pzr3ezWgkpSCR9ZcLo9bsDz2BCjLjBqJoZlSQ5JPVElKiq+MKmX8Dap4toiis9fi8RdCrN4SIZuLoMjSUuNwYI1iRm2BKtbT3dFLc1XjHnnv+woqRPWRGoR02qImnMQoUKJQYzhPhyXz+c80iMIVyBcUubwmbBvCtovWHuGV9x8ikMnZ3PJgNQ+9eBDzFpzD4pMXE4/FGRgYYOWKl/n5ww8Ry71AIdRIa13zfp9VVSGqj9lzF9LW9jjNc5Jo0WgMfjbpyIMF8KNKiC8ZB2wefjbKUy/GycpktKkjFM5izDoWH5DmmMV5WhtyaK3o6LH57d+nUT/9E3z1/15EQ339kGjWGaeeSurSy7j33vu47ve/p31TG9U1yf2arBWi+pgxbyErl9/OofPrEV+WqrGmfeVN4UqEgmvzwFNV3PLwgcxbeD7v/uDJTGltIRaN4DgunZ2dPPzQ/Xz7mhs5/tBlnHysw29uambJif/LqaeeSTgc9gmoirmt2rJIJpOce+45zJo1kyt/9gO+8v99lUmTJ36hjj2FClHxdNQD58zllpscClKPbcWx3bEc7p7WaYC8Y3HTPQ2s63w3//rlTzN96jQsy3MTKD9HtbGhiXlz53POeRfwh99dwxe+/QeOO+mjnH7GW7CtUFFKBsKy3GbSWrNo0SLed8klXHP1NXzx8/+Oju6f9u/++a5HQaIqSjJ5AFvbNRKetIPQvif9jChufaSGtuxlfPbzX2XWjJl+lRQLhcbLsFYopbFtm5bmKXzik5/nyGM+SsiOo5VVRtKhUrtQKJBOpzHGC68uWbIERwp0dXXtt9Z/hag+tLY46aSzePTxXohOx5SZUuLb9CJgBFxRvLIlxmPLTuCDH/o0VVVVo16zXO9UShGLxfjIRz7KmjVr2bChVAusnHzGGK677jrOO+887rnnHkSEUCjEoYceyvLV+2+J2QpRfSgUCw44iGUvOGRlOqJjvntJfIMpOAoc1+KWOxs45/yPUV9Xjx6jfE+QQF1O1mQyyamnnsqTTz456jiMMTz11FO8vHw5T/kVDpVS1NTUMDg4uN8aVBWi+lBKUVub5Lhjz+fhpwuY6HSUKN/vGTw8X2n3oM369nksWXLEqGvyR5uey6XrwoUL2bRpE4VCYcg5IoJlWXzq05/if7/zv1xyySXFgEShUMCy9t9VqhWi+vCIZHPW2W/jofv7yVhzcVWI0sTvwSC0d2iqaqaTqEoOuYaIsGbNGv7617+ybdu2MQkbr6qif6Afx3FG3X/gggO55H2XMGP69OJ1t2zZwvz58ys6agUeqmJx5s47hudfSeKGm8rM8ECqalIDFo31k0ZMw47j8KMf/YjPfOYzXHvttSOuHZDM8Y0lkaL2i+s6DAwO0NbWxoZNGxkY6C8ePzAwwMaNG5kyZcp+O/VX3FPDoJTmwvM/yP985yMc9qnZ2GxFjGZ7v0VjtcHShilT8rTdtwbXdbEsTeBr1VpzwAEHMGPmDBYsWDDkuiVJKPT09mLbIdq3t9HZ1cWK5a+wbu3zpAZWgmlnYDBNJHIg73jPZ1m69Aj+8Y9bOP744wiHw2/shzGBUCHqKGhqmsSMGSfz/IrHOWZ2hMygxZe/meQtp+Z45+n9NCQN0dBmOrs6aJncUpRylmXxkY98hHe9+93U1daWpJ9P0kAPffrJx9i68Z/87Pv/pCY5wIKZg7zzhByT6hyqk4IR2LhlE1f/cQO33nYqzz9+D9/76fX7rTSFytQ/Js495+3ccucgeaYAkHE0tz8Y4slXqqiKCEcctIaHH7wHYwxStlQlHA7T1NiIbXsyoEQuQTB0dGznicev578v38xXPr6Sz71/K+edNMAB03LUJRy0GGzlMrs1y/mnrWfd87/j8tM3ctdtf95v9VOoEHVUiAgtkyfT1HQUL7xaA0rRkCzwwfdk+dWfbDZ2RjjlqAGefezHvPTSy4gZanCVr0T19FAQ41UC/NXVV3LSkueYOTlDNCzYGj+vwE+7ChJiFCyc5xKPGWZOyrJ55X1DvAT7GypEHQYRobe3l2uuvZaTTjqT2++1yJoqjKVZPC/DGSfCL66PElKG9523it9f+wUee/wRnEK+JPGGFKHwCgO3tbfxkx98k5bq6zn7uEG0Gpr0UvS1EqgJUChYFEQIaUVUD5LL5fZbqVrRUUeBbds88tjjbN3WQVtvC2u3doJksLTLeScPsGp9gpvuTfCeswf56IVP8pu/XMETT76Ht571LlpbpxAORfDCrIaBwUGefPxh7r7zak48/GnOOiZFxPJIKuKTVcAECYMiiEA+p7n9TmH1eptf3BEnPOkgIuHIXv1c9iZ2SlSl1LXAucB2EVnkb6sH/gTMBNYD7xaRHuWJhSuBtwJp4IMi8uyeGfqeQyKR4PDDDuctbzmTr33tJe68H0RsBCEaKvDhd2e48uooW44IM6slxRcuXc9zr36Pf1z/e3ozszG6CddRWHae7MB6Fs7awmcu6qOlKUtIyktVevJU44dmHXByNm2bQ9z9uM0DzzdywdIYGzvTbNu4hbVr1jFv/tz90vG/016oSqkTgUHgt2VE/R+gW0S+5TflrRORLyql3gp8Go+oRwFXisgOu/YBLF26VCZSQzQR4RdX/YIL3/UOjOPyycsvJj+4kt98t5NkGARD52CYqrBLPOIAyjOnRJErKHr7Ie8oohGoSXp6qKWNF05FENfCdQXHgfSgIpOyaO/UrN2sWbYqysaOJLOmzeKUo2ZimRxbN25m/aYuVvc284Wv/4gF8z3X15vRC6CUekZElg7fvlOJKiIPKqVmDtt8PnCy//w3wP3AF/3tv/W7WzyulKpVSrWIyLbXMfa9gkMOPoTMQJrp06fz3vd9gkfv+BcilkK0gxJoSpZWhyoMlldMingYYk0gor0pvKDoGtRs2BJl3SYY7Nds2hYi1RemKhmmu9cClSAZT9DUVMvCg2Kc2ZwgGfPyVBVh4vPnEquKYq9t57v/51N84es/Y86s2UXPwv6A1/pOm8vI1wY0+89H64PaCowg6vAWkxMJSilaW1tZuXIl06dP55RTT+WlJ1swqhsjXq6pVgJKguqniATTuEKMor03xMNPRXlqWZxMpoGm+kaaklGaGpNMbw5ja0Uspr2iPpYmattDCv+Wy8pQKMS0GTOwLBvX3cSV3/xP/t/3f05Ndf2bUqqOhtf9kxQRUUrtsikqIlcBV4E39b/ecexuNDQ0sH17OwB11bUU9NHccGc7bn6A+bOFIxZmCVllpX6UQhnoz9nc8WCc+x5tZPbUOZy6pIHGuhghrb1S6kMQvG3tXyLQWINFgKWPxbI0k1tbyGVSdCxbxR9+/3s+9rFPYof2D6n6Wt9lezClK6VagO3+9nH1Qd0XUFVVxXvfexEAmze30T/YjonMo7bR4ZVN3cybtYGmRA5RXsa/iGJ7X4RfXF+HMvO46K0zqa4KoUQhypO0lKX8edrR0Oz+kiQNlqWUlw4WbCvElBnTmN+d4oHbf8f5F7ydKVOm7RdS9bUS9e/ApcC3/L9/K9v+KaXUH/GMqb59UT8Fb/q3bZtcPsuPf/TvXP6+zcypX4lFDk/q5fxcVW/l6db2KD+/vpH5sxazcE49IWUVaVYsulJGqNdCLoUQi0RpbW1mZtt6bv3H3/nwRy/Hst78UnWnDn+l1PXAY8B8pdRmpdRleAQ9Qym1Cjjdfw1wK7AWWA38EvjEHhn1G4gNmzczrWkNteG13PqA8NAzFplcqUy6CHQNRLjqz3UccsCRHDpnEiGt/dr9u0/SBZJWKU1dYyOtDSGefORusrn9o5bqeKz+i8bYddooxwrwydc7qImE/t4BkrFNvLq8wG23R5k/W9PamGPmjH4sFI5obr6tmsaahcyfXlsWcdpTUESjYeoaa8iv20BnVyfTp07dg/ebGKiEUHeClpZm+gYjLD00z1knwkELCsyYnvac9MDGthivrm3mmEVTfReVLpVJYWhmP4y/xv/I40pFhbXSNE9qYkaDy/9+/Yts3779TS9VK0TdCRoaG+hJH0HHYIhTTxhgwQEpLIzvStI8+Wycgw+YQzSsiw3Q9iSUf5PaujqOPHQ6NYXl/M+3vloh6v6OiB3mvR/4L669cR4rN0JtUuhJhensCeE6Nq+srWLGlCD31KepGmkslS/0G1eN/2GQsn8A2tI0tUxmWnMVfd1tFFzzpibrm99cfJ1QSjF/7kF87NM38Nebfsv1dz5Ob/tzXHZBngMX5ckWEsTCfv2/8lUrlNxPuwVDOKgwCOmcyzNrc5xz8SWe++tNjApRd4JACk6b2sqnPvk5Un0prvz2ZSyYci/pQaFru+NXpjYYI2TyQlXEQrwiq/5VxiJROZlLxwq+vzWon1q+7l+EwZzLqxu6eWWj5twP/DdnnvoW3uwNqitE3QmKU7S2sbVNsi5CXctiugoPUxXJYYWCCJLh8Ze2kykoTlncjPYLAXsBphLRAuJ7fyn7WzzC/99bEYBYGGUYSDlsaU+xemuWnNXAkUvfyn9f/naSyWQxm+rN7PivEHWcKBWR0Cw96hRWrPgFJy1xqau3MKJwTJgnX9yOZWs0DjNbkzRUx4hHbDSeMyBAiZRejoBrBGMENKTTLrmC0NmTomMgx5a2PrZ3DrK1M8Nhi0/nik9+iinTpxCyQmhtjxjfmxUVou4ilFLMmjefJ+5NED4mRVh30Z/K0VQX5pADJjNnTh3bt/fxzEsd9KYLFPIOVVVh4mFP8tqWjdYaYwTHKYC2yDuKbdu7qUrEcfJ5LKWpTkSpqQ5zwMw65jQpXlo+wHFHLWTW7NmoN/s8PwoqRH0NqK6uZSA7D2QbCw/M8ur6bibXxTh+ySRCWjGjoZHFC5rIOw75vEPOha7eLL29aYwJWvZoLB2jrraKutoY2rQQCoUJ2RZgCNmWn0Pgsn5NGsfYTG72alyVlwnaX1Ah6mtA2A6hQs0MDBqOPCTDD67ayFGLphAPKSRYOq0U8ZBNzM9uaqqOwrRahvMrMKcUIUprqGx/QaDLli3tPL+yE6t+IYuPOX+/lKZQ8aPuMpRSWFoz/4AjSOU10xryzJjRw7I1nTiqLDVveBJK2Us1bDvBWSrokuJ5S7u6unjoqQ0k5pzL/3ztG4Sjo1cN3B9QIeprgFKKqtoW2jqqsEKGt50xwLPLl7G9N81wn/vwBr/llf1G3w4g5PN5NqzfzKZeiw9edjnx1jlv7JucYKgQ9TWicVI9mXwYpYS5LSnedUEPdz30Mt2DWYyYES6pnSGQpAbPV9q+dSvrtgwy88DjqG9s3O900uGoEPU1wrajdPUWPF+/Fo47uJ/TT1vHX25/mrXr2ygUHIzsPKwZ7FfFsj/Q39/Lug1tvLQ1zGWXf4aQZb2pw6PjQcWYeo1QkWo6O/0KJ4ClhVOXpghbW/n9n7s5oGUqSxZNp66hmlAo7BFNDV8NJcW2VqIUjusy0N3F8hUbuP/5Pg4+4Z3MnOmtJytfGbA/StcKUXcBgVQrOA4mn0OCOv1eFgqWNpx0+CCtkwpc/acN/PaW7Sye28Tc6U3UN9YTiUWwLRuFRvxlZkYE18mTGhikra2dVWu7eGZVL4sPFNavfpJ77r2HGdNnMmX6DBLRqJdKuB+iQtRxIqj6/MCDD/Hok4/T09PDjKQpduYrWvtamDs1y1f+JceTL6b4x90pnry9nebaKK2TapjcmCAS9pKrFZpszqG9a5At7Vm29gyQbMxyxXscDmzI8s0/r+bZZStob+tg4403MmfOXM6/8EKqQqG9+EnsHVSIOk6ICMteWMa3v/MdDj1iCXMPWkC+Lclgro94SPlOfOMvIBWiYc1JizMcc0iBDe0Znn8lxIpV7Ty9PsL27V6oNBLTNDZZNNQ6HHp8gUsXGGZPyRLOKgY3Gg6bmcVNRnnXe9+Dm8vysY9djojLxe+5aL+b/itEHScKhRz/vOsOPv/f/0kul2fj6tV09J/G136xjIZkF63NgzTXDDJruksiCvG4i21pIlHD3GlZ5kzNYk5TOG6GfE7jGhdLK8JhhW0bLAu0GESBUQodFo6Yn+enj9/FhRe+g66t7dQ2NfLs889zykmn0DJ58n5F1gpRxwERoW17B8bSzJx/AFppTjjmaKr0pWSyGbZu3crmzRvZtHEdTz20noH+LYTsLvKZHpqasqT6t1OfNEydnMO2HTAusXCYQxcakqECQVmEgHg6LNhJxbT6LE3Oszxw/0MM9PWy9LgTmD5rBr/53fV8/nOfwdajd2N5M6JC1HHinnvu44ijjkYrGxAKBQcrEaUmHKamuoYF8xeUlZ2EdCZNOpMmny/Q29dHNpulkM2wbsN6Hn7kUTZv3cT8Fx1OOPhZTl7STyxc8MOvXgWWcC0UuoULj+zmZzf8DKpn8cErLqe5tZX7M3fw9AsvcPiiRUR8ffXNTtgKUXcCES9KtGrtGo447dRiLD/lFki4LnHLLq7ZLydLIpEgkagCvPJAQWvKo48+lo7OHo4740wWHX44jz9wKz++/kdcdN5mWuuznq4rGjsq2DXCTDfN4U0v8tsnenn2iSc458J3cOzJJ/Nf//EfHH744Rw4fz6nnXwyU1qmEAp5XVwoi369WVBx+I8DXV1dRGIxQuEIgXVfEOjLpHHEjFltWvmN0nTgwkKRSqdZuWoV8xcexJTGBi59z4c4/qyf8v1fL+L51VWI8cv7WEK8CawI1CQU7734vWzasJEXnnmWmQfMYfaCBZx67jlMmjOb62++ma9/81vcedfd9Hb374VPaM+jIlF3AhGhp6+P5tapaCtU5riHVKGAlU5TH49j67LGEqMs7Av+rlixgmR9LdV1NUQsi0goxPHHHU9V1Q/5xU++xPknvchpR/Rh26BjhnCzZl1fnKPPO5qj4nF+9curmTp9KouXLGXVilc564K3ccBBBzHY389Lzz3Hd376IxbMnsXpp57OpOamYsO2fV26ViTqGAhWjRpj2LBhA01NjQym+smk0+SzOZyC50PtK+RoTw2QdgqYoF5/2Zr88tCn67rc9+ADHLpkqZeu59cBUEpz+GGH8+X/vIrbnjydWx6tJe9YIJCPRklH5tE6fQYtU6dyymmn8ZPvfp+2bdt4+aWXwDWEtEWypoajTzqJiz/6EWqnT+cXv/41v/jl1WzZvNFriLGPh2ArEnUYAnL29PSwYuVKXnzxBR599DEampq47867SCYSRKNRco5Dw6QmDj7sMFpnTifrFKgKR6gOR4lYNnoUAdbb28crq17l1AsuIAgSeLXQPD/szFnT+c//+g7f/95XGEzfyoWndLKpzSI5eTHhSBSUZunRR/P4w48w0N/Puee/jWQ0SkM8TsbJ05/LkQUOWLSQuQfMZ/WKV/jBz3/JsUcs5S2nn048Hh+hS+8r2GnF6TcCE6XitIjQ3d3NDTfcwKpVq1i8eDGHHXYYTU1N1NRUF4/L5wt0dnawdt06nnr2WTq6u1lyzDEcsnQpkUgY7QqFVIr0wADJeJy62lpqqpPcfc89PPHiMi768GVoDZMTcRKhKArl50159fu7e3q59uoried/SYEokw/9AcefdBKuCDnXsG3DRn577dV8+nOfY07LFJLhCKIExwiDuRx9uRwF412rkMvw2IMPsmn1aj5y6aW0traiJ7Bba6yK0xWi+jDG8MILL3DVVVdxzjnncPLJJxOPx8f8Qr2qPZ703da2jZv/djObtm9n3vx5PPP436lSq6iv6QZJsK2jkYbmo1m7oYP3fezjzJ4/H4UwpSZJ3Ar5RC37HkRIZzJcc/XPePLZx/jyV77N3OkzKLiG9lQKVwz//MuNJEJhLn3/+wjbQUjVU0cyBYeeTIqBfJ5MKs2GdWt45J77Wf788/zgyu8zb/ZcYGLqrRWi7gAiwrJly/jVr37FFVdcwZw5c8ZV0aTcSOof6OcLn/80LXUPcfG5nUyud4jbBgMMZEK8vDrKVTfUctJ5X+PEt7yFkK1prU4StWzK60qVXzuby9I/OEh1dTURO4QgbE9n6M/nSPf184vvfo8vf+HzIyp2FwoFXnrlFf5y8x/p3HgPi+Zu56VXCqzeMoO58w7hq//nc0xunrtPEbWiowKpVIprfnUtn7ziE8ydW/oCx/NFBgbT7bf8k1m193PFJV0kIg6iBC0aFCRjDtOasxx3xCC//sU32d7RxkknnULLwgMxWqOV9p0FQ+8XjUSJRqLefRCUQDIcJpXPEq+uYsmxR/G3f/yDT1x+OZalMcbQ29fH9X/4HS89czVnHbeZo87JUp8QUmdr/nFPjt/e3MnLK89lcvNsYN/prrLfE9UYw5//8heOOfEEZs2atUskDZDJZHj20Zu4/LxBEpEC+CR1lZBOh7jhrhCr1tssnJ/jyx/ZSM/AN/jrNb/m8Vnv4iOXfZLa2rohVadLf8vVAcjl8mzZvJmX162ho7eLcCjEI488woUXXEBLy2Q2bNzIz378DWY138rX/6Wf6nje6zWAJhkv8O6zB1g0I88frvsqESvJ8cedOCGl6mjY74maTmd49sUX+dcvfh5eo88xlcmQy3USEQfjKLA1OC59/WF+fkOMpknClz82SCLmgi8Zzz85w013/5wffL+bL/z7V6mqSlD0BPihVPGDCf39gzz0wD08/tgfiaoXmN46SDyUpbMzTMhovv61z3LCyW/jsYdv4vwTHuH4Q/uxbBftl21HDAJYtmHRogyfSS7nT3/5CJvW/Qfvvvj9WNqa8ITd74n6yooVzJk/33f/vIYLKEUkHqNpxlE88+JKjsgViEQNhYLFDfclqK0TLjk3QyTs+NEpAaWJ2oaTj+nnhd/ezK23HsOF73g7tuX9UILWlK7j8swLz3Hbzd9n3uSH+PgFfTRVFwhpF6M1xigK51ms3noXN939MJLTzGzNYCtTKtFaVmQQAa0Nk6YXuPRt27jp7v/g2l+28cHLPk/Itic0WfdbYyrQLX/6i6uZcdB8Djn0YKZU12Cr8btugs9usJBn1YZ1/PnXPyOz7TFMdiMRO0Z/YZCvfy5FTbVB40lH42g2bIxw44NhtrRb2JahN93KEcdcykXveT91dXUopchkMtx0059Z+9IPuOita5nWnMfSwaLB4QyEgqt4enmMf94b5pxTHI5clMbWrv/TCDoFlgqv4cJAm8Vdj9bQlfgXPvTxTxCL1O11sr5mY0opNQ34LV4vKQGuEpEr3wxtJkWEtevWsPik43FFMK+xUmTUsmmZ3MIHPv1lBgZSdGzbyj23/oOTWn9NbbJQvKSTUjzzVBU3P6E54xSXyy7MUFPlMpBZw20Pfosrv7+WL/3nN+nr6+faX15JQ/Q6/uV9PVRF8ngMC9SC4RUAIWQJRy3K0DLJ8Lubk/QPGk4/KotlGRSCChZnBcWGbaGq2XD6kn7ueeZKfvOLLB/5xFewJ6hkHU8I1QE+JyIHAUcDn1RKHQR8CbhHROYB9/ivAc4G5vmPjwE/2+2j3k0QcRGlsMMhXARXzM5P8s5kSA8opWiIx6mxNcuffYI7r/8Rz913EzPr/W7QIrg5xZqVcW55OsQnP5Dn1CNSNFTnsC2HumSWt5/ej5W/m9tuu4NvfP3TLJhyLR84r5OqSKlD4I5+REp5TdpmNGe54r0DPLs8xAPPVeGIR2wz4mSFbUHVFJeTD+4j0nYVv//9NbiuM87P4I3FTokqItsCiSgiA8AreN34zsdrL4n/9wL/ebHNpIg8DtT6vagmGIR8Pkt6MO2VbRSF4zhDYvU7OLW4bD84dtOGjfz0u/9Fz4ov8uFj7uKMQ3tYvwaybZpct6JvA9z6gM1bzzC0tmRLydKAGAiHXJrqe/jpD/+N80+8j3NO6CdiO34KofFrsO4YQQv1huosl56f5e77NKu3JBFje/Uvy7gqeJusCCRa4IwlfbQ/923uu+c+jBnvD/aNwy4ZU35P1MOBJ9gNbSb3LhSWZaOVwi04iAgZt0CVRHxX0Q4c/fhld8TgOi6PPvoot/zta7zjlBc4dO4g6W3COUeE+fWdYaI6ysxJefrSYdoHXRbNy6ExgPZDnLB6VZQHlsdYs7nA9/4zz0EzUt76q+JIx+HPDVpTikKMocEqcNZBIa6/UXP0kgg1ccWxh6fQeijhlQI7KSQb4MIjurjqT//FwgUH0jJ9CjBxQq3jzp5SSiWAG4HPisiQpEcRGToXju96H1NKPa2Uerqjo2NXTt0tUEoRCkWJRMIY1yBKkXdcitmlY3w/pWiUoVDI87e//5VH7/4sn3rPsyyeP4hlG6L10NKU59LTs7y0Ea65L8kv747S121B2vFEqBicFLSvivDbv8bQ2vCFy3IcOCNV5lbahffjt6Q0COkuTWarYUq1w4oVIVatDLFgVh7KSOrlegsog7Jcog1QV5Ph7INXcc3V36FQ6HttH+wewrgkqlIqhEfS60Tkr/7m19VmciL0QlVKEY2E6Onuoq55EnljyDqutxx5FMMq+D2KgOu4/PH637P51W9z+bu3URN3vCkaIRyHxBSLaWGXj092cd0sbf0Rrvm7Td+2EBEtuI5m24YQf7onytIDHc47L0U4GvSo2rXffaCGuEaR3a7Id7ikcxH+9FCUc0/I845z08ST7hi/PS+p24oYInVwYEuGh1fcxJPPXshxR5246x/qHsJ4Ovcp4BrgFRH5XtmuoM0kjGwz+QHl4WgmeJvJJYcfStu2rSjAFUgXciOOKddZRQTHdfnHP//G+uXf5vJ3t1Edc8A3V7xiFEKoxiU5y1A3V2iYb5i3KM+SBSFuuDPCXXdH+cs/ovzsnxEOm+Ny+tIMobCLUuJP+TLc+zRyTAGRA0kqQrZNUWgX8o7FP5+IM3ua4YK3ZIknCmNeq3gbJYRrIBR1OPvQPv76mx/hOBNntcB4pv7jgPcDpyqlnvcfb+VN0GZSKcXcefNYtWIlQR/zVD5P1nG9A4ZoNIE0FR559GEev/cbXP6eDmpi+aFGSiDelGBZghUy2CEhmjRcePYAh88vsH6rpiomXP6WLMcsHCTe7IJVJkPHqRYa/yGuItemyXWCazRPrY6RcYQzT0iTrHVQ2pfSO2jGpgArDFYCZtTnCKUfZ+PGLeNq3vZGYDwtJh9m7I9un28zOW3qdDauW4dbyGOFIjgi9GUzhKsSWGq4sS1s3LyJG373f/nU+zbRkMj4taOGrpkSKSVEQ2l1SlWTw9HHORw+X1B5C4m6xJs0oZgpXWK8tovfzMIYQ65Lk+kwKKPZ2h/h2VfCXPK2DLUtDli+kcXQcY64HF7hjFBcY7TDUQdkuOPW27n8kwuKy1n2Jvb+CPYiRITq6moaamtp27rNl5mKVD7PQC7rSZPgWCCVyXLNVd/nrBNeZE7LIKI9g0QNI8Dw9EBvehWUhmidUD0bEvMMNTMVoWoXpf07j4OkJQkniBHyPRaZdoN2FTnX5tanIpy8xKV5SgErYigtKxy68HAE/GUxVkwQJcxpybJy2YPe8poJIFH3a6IGrc5PO+1Unn/u2eL0bxT0ZDOkC06JqGK49947MambOGnJIFoLOqg8pUas5xt2I/yIkHe8tsAKG5RlipHNXfYCCTgDFpk2g3Y9cj21JkJVyLBwVopINd7qVyX+tLAzson3o7MADY0JyA5sIZ2eGHrqfk1U8Mh6wnHH8crzL5LLpIsx8QJCR2qQVD6HEaG7s5dbb7yKS84dIB5yijrBLkkbVSL1UOm2E8spuE+pvgVuWpPeJojj1QHozUa4f1mI0w7LE60WrIg7lJo7/SGo0vWVwpYsk5PbaO9+412Ho2G/JypAdSLJAbNmseLll30DSoPxyZpO05PJcO/9dzOz6nmmJXIYBX5rvjcExZqoChQaHE1qO5icQYvgaovbnolx+CyXpro8oRpAqV11cnkP0d5fJUghhSXbJoTTv0JUQGvNO9/xdh68+24K+SyeLe1JOUeErV1d3H3bdZx5SBany0WcIF/0tWUG7ipUmVEmBnKd4AwYlHga6MaOKC+vsznuoBxW1BCKSVHNGBsy5OGni2MKxnv7KOyQjajJFR11IiCYfqe2TmXGlCkse+Z5XwwZ3zulWPXKciaHXmZKdRo3IxS6vRgQSnZBYr1O+JxyUpDpNmjjuRLyxubGRxUnHeZQE81ix5UfgfJCsOVkHVFroChyfXNPwBkAZQQXiwKTqaudGP0D9nuiBrAsi4ve/S7uv+N2sunBovPeiPDCkw9x1Nx+bO16i+66HEzaT/QIVpDudsZKMfkl4JNbUGTaBZ2neN9nN0bp7LU49gBPv7ZjoLRfKHhHeTWiAI2gEVGIKEwBCgPe9oIToSvTQCKW3N1v7DWhQtQyNDdPxlZw+z//gRgXULj5LCtefJrqeMFTCESQnCa13UEcjyy+WbVHxqSCZGcD2Q6Fm/LuKEpIFWz+9qjivKOFRMhFabDDANrTZXcoCMsiW74AzveD5BSioL3PpXbyPLSeGAsAK0T1IcCmzZuxwmHWvrqKl59/ASN5Otq201+I8ugr9TjGQny/ZKEfsp0grmY8AnWXIzxlklSMkO3VZHtcEIWgMaK594UYiajNkjkZ70gN2i5F0HZ+C88lJQhOWpHtBIwLAsu31rD0+LeiRyv5shdQIaoP17j89eabOfuC83n3Je/nHzf/na0bNrG9vZ0TTzuNruQZvLy1CvD9p0aR6TTkexTKVeO2qsZPVm8KNmIoDFpk2l0sp7Rna0+M+56zeM8JGSI6DxiUBrE8Q0+pkT+eoUEIr4eAQXAzitQ2g2S9M3JuiBfW1XDicSdMiKgUVIgKeORZv2E9qcEUhy06hKkzZ3DeOy7g97/5DS899xzaCnH2uz7Kn5+ZwfZUHCPeV6wcyLQZcn024mpfn5TXp7MGXiLlGWwmbZPZZtA5z47XImQLYX59T4zDFyhmNRZKLYAACp6+Kd4bY8hAyrwUBsE4Qq4HBjYKkvJcw0YpVrfHqJ7xFmpra17jm9j92O9XoQbdTv50/R952znn0JBI4mZSLDz4EDSKq3/6MyZPmUzYUqzvm8zV93bxiTNd6iI5r4mZA+ltBcRYhOsVShs/A2qoiB1uOZdL1iH7ypZDuWlFaquLyRosFC4KF819r9SQqXsLK3s38vT6Zzl8VoYQBgqG/g0uVkxjxxRWXLD8XsAqEEmubzSloTAgSEZQxovzozSD+Qi3PD+FT371s1jWxKHHxBnJXsT27dvJpDPMXzAfWysaY3GM63LQIYfw//2/b/DU44/R19fHl772DR699y6ue/BHfOCkbqrDfkpgXpFuczB5m2gTeI2iPSIqYdT46FDiylA9VxSFlCa11YUMaFFFZ9Py9jiPbFvKh7/4HxTyOW669se8tOnvnLe4n8aqHMoFyQvZPi9IoLUBDcrydAHjev5fcUGL9nVUTxXIOCFueLiW497+X0yd0uKN6w3xFO8c++1yafBzSx2Ha6+9lkUHH8wxRx1VbDOeKhToTA2SE69ghPcpafK5PHfddD09z/yI95+ynfpwDhDEX9ekk5pYkyJUZbykFUbWlRo2CoLwpfHHlO/WZLYL5KS43Fmh2NIT44d3z+OCT1/J/IWLUEAmk+Xx++/muduvYUnrck5ckKW+KgdK/LaV/g8GhSlTA4L+WIFXoSMV5k+P1dJ6xBe55IMfJhYau0DcnkSl9tQoUEoxODjI8uXLef/7318kKUDcDtFQlaBzcIBCmVQJh0Oc/c6LeLi2iZ/e9T9cdOQ6ZjdkEeUp/GZAGEyDXa2I1nspfGIBRX8BQ+gSSCwx4GY0mW6XQp9BuSUqCYrOTIyf39/M0vP+hQMOOqh4fiwW46Szz+WQpUfy4F238e27b2Z+zQqOnJ1i2qQciTD4wtTXZVVReueNYkt3mCdereLJjdNpOeBk3ve+DxALxSaEk78c+71Evffee2lra+Piiy8GysOV3pSYKeTpSmfIli0jFqUQAyteXMbt132Lk6Y+x/HzB4hZDiYo+iCgbLBiCiuhsKu8FZ9KC2jlHWBAjMLJQKFPyPcrtGtQxtNxjfIW620biPDze5o44JQvceb5F2LbIU+Cozz2qcD6Mgz29bPipRd58Yl76dv6HFVspimZZmqDQ11NAdfVbN0WoiMVZmtqMvFJhzJ/ySksWryYO/56Exe+7TwOWXjwXiNqpezkMATT/le/+lU+/vGPM3Xq1FENHgEcY0jlc+RdB9uySeVzZBwXsOnr6eSff/49qZXXcd7hbcyfkvVK6ohBBy4mJYj28lFtWxUlt3E9yxuX4ronFYg75emlr7Yl+OkdzRx5/r9y5gUXegUiRs22CrK5/KUpxiWTyZJNDbJxw0bcXBpl8oiyEMumoamZSc2TicSqCIe8ibWno52b/nA9//Xvn6eqKlmZ+icKtmzZQjgcZtKkSaPuD76okNbURmPFRhMx26YjNUjONdTW1XPRR65gxUsncsONv6H6hQd4y6FdzGnOEbEFJYagEo92BMkLBlMkm0aKCoBgIdqgRJPK29z1QoxbX57DWy/9PMefcupOrHA/rUQB4i0FTySqSFRV0djc7AcKAv+UKv4giuoAUNvUxIJDDuHhBx/izLPOBCZO1ZT9lqgiwuOPP86RRx6JbY/9MQRLSsrbj8fsEE1VSbpSKTLGRdsWBx16KHPmf5Nlzz3LDXf8FZ54kKNmd3Ho7ByNsTxhS3kuIM/BiSle30urEyU4YkhlbF5YF+W2FxtRradzxVcvY9qsOX5X6aFWuPdKykc67GlZIEKVFqSU7xvmRGPxUUfx+6uv5tgTTqA6Wc1EwX5LVMdxWL58OZ/+9KfHFX1RqtyJDlHbZlIyQW86w0A+j4siGouy9JhjOHTJYrZu3sxTjzzIfQ89QrywmtbqTqY1pmlOFoiFDPG4wXUsBtKaNIq1W2029dbQnprCpLnHctYVZzN/4YGEw5GS12CEliZELY3WFql8fpj02zVJGPwQI/EYRx57DA88+BDnvvWtFYm6tzEwMIBSiurq8UuNQLoCIEJIWzTEq4jYNn2ZDFnxDJxwJMqM2XOYPms2zrsvoaujg80bN9DZvpnn1rxKNGQRTjkYo0hnNcnaOqYdM5dTp06juaXF0w+19lxMxdv53s6iniDYylAfrcK2LBCXtBNk9ftT+y6QVZVJ7AMWLuSP1/6Ks8480+8GuPexXxJVRNiwYQPz5s0jHA4DIyNHO4NSnuVuaUVNNEo0FKI3k2GgkPdtIY3WCh21mDy1lclTWynliIpv9JQWS42Y2ItLVIaKUc+nKmgF9bEY8ZCNQtNYlaA3kyGVz3v+0jL9M1gFO4535UnVWIwZc+ey/JUVHHLwogkhVfe7WL+I4LouDz/8MAcffPCQ7a8HEcuiqSpBSyJJwrKwED9VUMrWR1koZYGyUNoqkdRfSBX8ZcQUrkr6pQJbKRpjVVRHYsUlKhFtMSkeZ2qyhtZkkrpoxDfU/FWyu5i9ddiSxdxx910TpmDafilRg258U6ZMeV3XGSJpxJNyVaEQUdsi67j0Z7NknIJfzlIjSg0JqZafP2bsv3QESglRy6I+Fic+Sh1TrTVhBWAR1hZZ1yVdcNgVFSAYR019PVnjki8UiFl7Pyd1v5OoSilc18WyLGpqdmN2UNl6eUtpqkI2kxJVtCSS1EUihLXnkJcgC9rLXyIomKb8sXlGW+ATLSWlaqWojUSYnEhQFbJLZStHrGb1oLWmOhrDgjK/wNiEDQgaXEdbFpOmtLBp29bd9xm9DuyXErW7u5tp06Z5dVH3ADz1VWEpRSykiYVC1LiGrOuQzufJugUKJlgXIGUGUun8wOWplRC3bKpjUeJ2qEwrGJ105ZVaoraFZWkcd2Q212jnlb0CgWkzZtDd2YnMnDWGlH/jsN8RVUTYtm0bTU1NxW2780sotf8Zes+QpbGtEFWhEK4YCq4h77rkXBfXGFzj4vqRMK0UlrYIa+2rEjaWHqku7GgMIoKtNBHLJu/mxmtNle4hQl19A889/BhHLT1ilz6DPYH9jqgAvb29zJw5842TEkU7SPlS0iKkLeJlrp+gM3WQMaK0HqGXvZbRBp1WXguSyWryfpHjikTdC+js7KS2tnbE9qF62u7DEN1wjEvr8gMCYu+GcXjBjNfm/Ecr8k4W17h7fUnKfkdUESEcjdDQ0DAhJEWAPTWOckf+eFB+pCk4DAwM8Do9d7sF+6XVP236dG74yw1s3bp1ZFGGNxMEdsoy8TP+JfAyeL7X3p5u/vy73zOlqcGLfO1l7JdEXXrYYs454yw+8elPcdPNNzHQPzCCqG8WArtmR+MvdzN4S14c12XZM8/y35/7HIcfdCAfuvRDe36Q48B+N/UDoGDu/HlUN8/kqoeW8c/7HuP97ziPI5YuoSoe39uj231Q4Lju0G1D4qmCUZZXVMMtsLW9nZv/fCOPvNLPYF+IY48+mnA48oYPezTsl0RVShGKhDjl6CU8YM+GRB3f/sffmX3b3bz99BM5+sgjiCeSfn1RNUKqThS9dmcQvCZvgh4Sgg3IKqJQpkBn+zbuvusB7npsJc7MU6g+9UiqH/shtbW1E+a97pdEBVDK4owTj+LW395N81kfZs6Fn2Fw+0a+//BdNN16DycfvoiTTzye6a1TseyhOtpEJ24wPiOCG8Tq/TzYIE3bLeRZv3YtD9z3II+/sp1M87EkT3kXkXg9bvc6lsypJxwJ7623MALj6YUaBR4EIv7xfxGRryilZgF/BBqAZ4D3i0heKRXB6526BOgC3iMi6/fQ+F8zlFK0Tp/DDOvvpAe6sKqbSUyeS+KsORT62/n7y49z43evYn5thFOPWcrSww+jtq6eUDhclE4TjaDD4boGx7jeskJ/6U1fTzfPPPEMjz31PGv649izTyJ60mIidhWIVxSusPk5Tn/rYqwJUncKxrFmym/fUyUig36/qYeBzwD/BvxVRP6olPo58IKI/Ewp9QngEBG5XCn1XuDtIvKeHd1jby7ue/LJZ/jfB19l0gnvJMhUCowMp5AlvX0Dfcsfx2xeyUGTazjykIUsPGgBU1tbicfjaMvaqeNnTxB6Z9+biDCQy7Cuo5O2tjZWLV/JMy8sZ8XWHKbxMOJzj8WubsWyQsWEcEFBoR/1+P/yp2/8C7WTW97wH+NrXjPldzkZ9F+G/IcApwIX+9t/A/wfvAa95/vPAf4C/FgppWSCms+HHLKA2r/fhjvQga6eDMYPQSrBCsdITp1PcsoBiJujo3ML169eRubBP1Lj9HPQrKksPnA+8+bNpampmepkNcrLdy4mqYznbe+MDOMhpQDGuAwODNDW3s7Kla/yxPPLeG71FroKCXTL4URbP0B8YSuWHfWiZH5OrPJ1VoOQ2/wsl5xwENWNDeP/EN8AjLdzn4U3vc8FfgKsAXpFJFhDHPQ7hbJeqCLiKKX68NSDzmHX/Bhe92mmT5/++t7F60AkWsWn3/N2/s9t9zHlxHciyvsdlqJJ2qs0ojTxlrnEJs9B8TaczAArtm/kmVfX4Nx/M0kzSH1Y0VJXQ0tjA9OmtlJXW0tTUxP1DfVY2iIUDqPLUvy01uMis4hgjCke5zgOjuPQ29dHW1sbbW3b2LipjeeWv8qW/jyd+Rim/gBizacRPWYGNbF6lNIoEW+Nlii/YIZ/fW9EkO0isfl+3v7pz6Ct0IRSbcZFVBFxgcOUUrXATcCC13vjidJiEhEWLTyQA2+7h23b1xCdPB8tgpS7mAW8jCLxl0Bb2LFaamfUUjv9YMDg5HNks/2sSXXz1Ma16GfbSLU/SdgUyPZ0EFEus6a1IrkMUsjT0NhAy+TJhG0bjYAxGDHFzH5t2SitcYFsLse6devIZPPEktW0d/WyrbMLx24graoJ1U1H1c4mNPtEVLyB2lActO1dp7ie0LtuaSWq5WduKYxyUQIDr9zOf5xzEA31dbuUxPJGYJesfhHpVUrdBxyD197c9qVqeb/ToBfqZqWUDdTgGVUTEoFk+5cPvpdP/eC3RN7aCuGEt4+h0k78KVIp5WuygU/Swo7GsKNRVG0z8SkH+mmkBjEuplBAiyGfy5BN9eGaPANasS6fw01nMZksJp/GcQveeOwQVjSOjsaxYzF0wsapW4LSIbLxJFWROHNF0dYO4UwUhe3nFmoUhmLJySBJW8rfb/ADDOoOeqky2W3PcFh0I6ee+a9oPXGWSQcYj9XfBBR8ksaAM4BvA/cB78Sz/C9laC/US4HH/P33TlT9NIBSikmNjVx87CKue/o2mo99h78OPljYrIqJzQFk6LfvE8Nb/OHpqR6BlRXC0lFQgo4nSdROIoioK19KF803v26AQnnVWPw7gS8ES+xDRNC2gw6+Qr/wRPkqq9J4yxNepbjJa+xicAc76HnoGv7j5/9JIpHYHR/pbsd4QqgtwH1KqReBp4C7ROSfwBeBf1NKrcbTQa/xj78GaPC3/xvwpd0/7D0ApTj71GM5sLCNgfUv+gXFxLOMiuvwyrveqbKH/6zoNCgnSPEQn5peAV1VTv7gRKUJlqyMvIN/Rf/aImDcocnOqmwQJR27fIlL2Ra/iJrkemh74Oeo1HYSiZph73HiYDxW/4vA4aNsXwscOcr2LPCu3TK6NxBKKaLxaj73oYv55Ld/jls7CWpbhvySRyn1UH4F/381bEvZ4rgib0dewePG8O2lXKZAzfAWQhtcIziFgJD+NC4y/IJDx1ImWAXBuDk6HvsD4ZoWalqmsa29i/r6uglJ1P0uKWUsBJKktmES/3XpO+m85zqcXM+ox8qQZ8XUoyEzK5RLUFXat0MlSEY8H5EY47eMzGUF1ymX2GNd2MtvFSWBduD9Zxy6nvgdbr6fxqMuIquSbNi2cUeD26uoEHU4lOLARQv52ClLWH3jVZh8ulytG0mH4QQMSFvcWbzwOAewUzaDQGrAi+EHZdiHT9lFggtD1AABxEnR8cSvyQ520XzyJyCcINw4DVNUKyaeSVEh6jAEX/aC+XMYeOVpute+hNHG90EGnaTLJGj5ucOuNYTDI3TcXR4ZgXspm3VJDwLoMh13dAhe8kkwVsfpo+ux3+Hkc0w55Qp0uBotgo4k6GjrnBBJ0qNhv01K2RGUUsQSmtaDF1M3exE66A8KOxV2Qy/Erp8zJnxpaKC3U3DdkO8+8/YFXC2v7+ppHAZLBFdBIbWNzgd/SaRhDpMWX4hlxxFlELFQOk5Pb69/rYknvypEHQO1NZOprapC294CPPGDA8CIJSzDn0tR6sJwOTuWMjDW9hLxPKoO9DmkU+W+AO9exfqqZZGvoNivMS6ZLS+w/em/0HjwmVTNOh7La08BYqEF7HiCgm9sTaQlOgEqRB0DlhayXduoMgal/YQNH+VkCFCqcgplVguehBrW6bl8dzmKFjnlT4pIDbp0dwJio7xWJsULDfWSSjHt1M330PP833C6t9Jy/IeINM4FsX33m4tCI0rQOsTaDV24bgHbmjjpfQEqRB0DStk0NzbgiDOKA31HJs9YLGR89tQwdSGQlKkBQ1c7uI5dLFAR/AiG3Nmf8o2TJrXuSfpW3k10xmImnfZOLDtOqXQwIFbJUSvQ3dWHmYDSFCpEHROuUyBqaboH+4nU7Vrj2jItYeSXLuWydzRClDu/BFeE/m5DX7fGNdrXRcuOGaI6C+JkSG97iYHlt2PFamg8/jJCtdM9gpqhv4JiAEAUOhTFjdSM6uOdCKgQdQxYoSiWGPIDPURq/cSwHX6HQ3uejCmVhkUNhtCyqNN6z9MZQ2+HIZuy8Sx8U3YM4LcMwjiY7CD96x9hcO1TWIl6ahe/m1jjbCCEEuP1pCi2m9Zlz71AglhhdLgKt+BAaGKskypHhahjQCvNvLmz2CYFPJ1v6JQ+tkTcAYpS1ju3RJXSdY3rkkkLA/3CYEqBY/kRJVOMKIkyKNfByXSRaV/J4IZnKAx0EJt8EE3Hfohw3VS0KsvOF4USQ7JWcF0hPRABgnpUnvg3SpFzDErrijG1L0EpmNbaQHZtLzHEW+i3A2KOxwOlggszlJyln4AwOGDobFMYEypKPWdwK85AOzpeT26gjcy2lTg96zGFLOH66dQecCKRpgNQoWQp37VIQu9nFk+61E/S5LOQSTkMTfvzfjTe0up9NNa/P0NJgVT3APUq+FLLIa9Pmxvmj1KiEAXhsELpUvFdSxT9G56g87E/E5tzJFasmujkuUQOPIVIohmlLASLYklAv4R60UWmhHjC0DTZxrYUKirYIYdC3ibIQwh8salUmkKhQCQSmXBkrRB1B4jYUcTt81L2xvW9vZaQafnhilBYoy0HY/Ca/CjBuJCYfyxNJ11RkpQwxOFfjOGXTedol6qE0NhsYYcUXlsfsG3I58WX2No/TUinBunv65uQqX4Vou4AkYhFKKo9nXBEwt0YKBpLYzlKg6dD4+8BtAatTPFog2AlmzGZrmJ6IOjiOqmRjjIviqYth2Sdob4hjNZeJr94ohs7LKh0yZoLfK4mFMOR9M7f417AxIuVTSDU1rYgmdz4XDbDY/9SltQ0jjyTkqUF4Yjly0aPlFa8inBAS/Eko5c3EPQHCCr2eeO0w3kaJwsNTSG0VvgZ0r4EVYRsTzUoeRC8hx2JEotOzDS/ikTdARob6ujduI5pxmBGrHHfGfNUUYsdGtcaeRl/1i9KSK1LslcByrKRfKbY8rSUoaXw1nb5Elgbqqod6hoswhHtE1SVcdiLZmlr5GgUCiscxTXuiH0TARWi7gBaC4VUf2nDkOD8sC97xHc/xKvKjohdHgBQKIz48XafYZYdwjjlTYM9Ea3EQmFAu0Sihpp6TTxho7W3iqB8TOXjsEMarUGMHrpHW7gyMQr3DkeFqDuAUgolzjAtsrh3hBeAUV6rEWQZcZniPgX+MhS/OIB4yc5aRzDG8XypZVM12iESc0nWaKqSFpblbw+k7rDRir9Paym79fDl2hOLoAEqRN0BStluI8JIRQwLNO3K1Qnm8pLsLSe3Z5WLxyzy+QyBSmnbDtE4VFUpYgkbW6vSL2JUI640RqG0aHB4ozRPO5iYZkuFqDuAVhFv+h2VhaM1ClMjXhWllYJiNklZ9LIcpeQX74RgebarwLYN1bUOkZgmFrewbYVWw30Go49h+K209ny14kqg6nr7HRdjCqO92b2OClHHgFIKxzFY2i6F1ocdI8O2DSeFjHqsGnE8lM3UZfdSUnLcx2IWTc02onXJNpLAMxC8GPmLGh70BbAsfyXXkCotgsnniYQmnrMfKkTdIYw43kRpBPQw2SVFugQbRpW85SunS9b/jokgJrDoPSjfma8DySeUJWjvGpTyvAolL0PwPhycfB/5XMXq3+egcMsSSBTl5pOU/R/ItRG0Uf6egKQ7UmgDrUCC6Vx7ElKVEmKCNf1F19Ww/NgR1xsFIv41y7OnxICGfCaNHZ44pSbLUSHqGAjcQ1IUlMMkqCr34g9XAkbBiN2BMTPUmimqsuUbRQhHImVjkDJpOPSaxbGroV6JchvLI74pG1eQI6uxfHVgok3/FaLuAJbtLckIliSPxsUhMm6s7zaQrOWQIX+GHq58/6bypbgIdiRcNMbKwwfluq2SEoVLO4eXxAiMQD9HVTyCglBbW02sKj7hSAoVoo4JpRTa0hjjeiQY5vZR5db8CIykn5RtLhKhqHQG2/2p36ghwlqcHNouW8c02j2LP6RATQgOHalvDClJ5f/RRpGIJ7Ata0JK1InpNJsgKBRyXnqx7CDaX25DybDHcJQXf1JlUrg0o4NQ/HEEPlZxC1h+dxI13Fs24oXyLDgp006GjUf51y4N29tp+aUuJxpJoSJRdwKrbE2SL7JUoL96W0sMgzIzxz+pfNL12DKyPtTI+Fah4Hj3Dra5ObQdNDRXQ/4WC7P5JxeFanCxIVeGoHaVDGGvp16ElDOqi2sioCJRdwDbChGEp4LwY4DRjZlyDNdJ1TC/Z9mFgod/i6CRidKeWMxn0rjiWewyPMdg6IDKXpcbesN/DL7uGgh1sVBulnymd0hOwURCRaKOARHBdbOIVoguyU8oJ5sq80eOYErZ8+D44bUBA8k4VLIOnXoV7mAPTqRQPC+IJg3HUK/ucC+Ff25wawX4tQFEKcTJYlI9hMo6Xk8kVCTqDpAvCFY4jmB867ts52hT5PAYQBESmNc79WIZURTT8wLJJwXP1t+FWTkoSTWypmtg2PmLBcs8DDU1CQzuhCySVpGoO0B3Vxe106ej/MTjUkIojBWJKoeCobH+8h2ABAnN+BJQDK4jGBPoo55ctLSBsuolQ3ykwzhVut/YKoK3vl9BsaCwwmBI1iSxtDUhjamKRN0BMrl+Qslqr7Yo+NzZcRL0mFFN/9wdH68QMaVCEb5eq+0QybrGXaq0NzRmVaav+taW9lcFeA4AwcllmNpYi9YTU3ZViDoGBBjM5nFcrw7p7ruwlB6Yog+p5BXwnKnBoj0BtLgkaut38TbDfVOlhzGeNFfBshYRnHyamGW8H8oEnPrH/Q0opSyl1HNKqX/6r2cppZ5QSq1WSv1JKRX2t0f816v9/TP30Nj3KBSQy7kUHOOHNYfKqLHOGeYt2uk91DBSuK5HTy++4LmSUr3tXgMLBd5XNt6pWYY990urG/FV1FJJdcElGo9OyGkfdk2ifgZ4pez1t4Hvi8hcoAe4zN9+GdDjb/++f9w+CTEGrQP3FCULZfSji5Ko9L8Es/dI0g5ntX+E63iWuCrbnhnsxjUlzWEot3cQYRjNfhNwXcGYwFgziNJYhRRNkxoJ0v8mGsZFVKXUVOAc4Gr/tcJrMfkX/5DfABf4z8/3X+PvP01NxHc+DhiBcKzKzwv1J+JygpU9SiQqI025F0uV7w+2B6Z5YIkzbDGrty8UshEd9glUMrJ8j9OOdePhCMZaFhnQQK5nO4lE1Tgv8sZjvBL1B8C/U8poaGCcLSaBPv/4fQoiwvaOLuJ19aVWPjuAGvIkYK/GW4tfmq6VViNFXJm333VU0bOgEJQBbYRYdV3xeKV2hZnD3hdlIVQpRarcVB+2UTs7fa9hp0RVSp0LbBeRZ3bnjZVSH1NKPa2Uerqjo2N3Xno3QbFmzXpCoSiBblecGEazUXwlMpC8XhRp2DRdjHeO5lD1zizkvQV8RZvLZHEyPUSra4Y59Ie5vgKXVcmBOkJNkUBkF326vl9VQTgCNcmJVyElwHgk6nHA25RS6/G69J0KXInfYtI/ZrQWk+yoxaSIXCUiS0VkaVNT0+t6E3sCIobBwRSOW0q189YxF49gNKlW7BelxKshNSJvtey54Eu2ckOtfBWAQrmGbKofE454K1RVUC/AVxlegxAsLzwReM1Muou5c2b7+/dBq19EviwiU0VkJvBevJaR76PUYhJGbzEJ+0iLydFgjItYggpVDZVM5ZVzhxgrQzTLskSpcpKW9jP0aEBhjPKm/uLxBqU04VDIP9tz0hct/yDqFKRUjSWsh9yuPF8g+OEJ2Z5tRKPRYZGsiYPX4yB8c7WYHAZjDOmCEEpWF1XIHZKgvCka+DwrW34yygWEIIfJ9xO44OR9U8knn1vIEq9OeIsMffJ6j3IpL8Ufzk7VaRFcx18X5SnAaAzJWHSXPp83GrvaXfp+4H7/+ZuqxeRwKO3S0dlBUzyB981r74uFEnFHI4TgJ0APlaCleNbwk/z1+55nv8yU9zTjQm4QOwx6tJJCwy41XIcderdSFMq4/jjFUzRMPkuIHNHoxCVrJTI1BsS45LIpULr0pQfGka+HlurpSzEBxDuujB5D0umHWFZl273nxi014vVscVCSo+A43vIUGZYTVXxRJqWHt6Qc7b0VnfwetJPFyg2QyWR29rHsNVSIOgaM0ahIPV6W/ejicywzaWeQsv+LfVIB1zW4bmDk+EV2cxkSDc3gx+Cl7MydK6SjH1LWoRXR3o9yzswpxGKxcb6DNx4TMwNhAiCTLVAIRYoFH0Yn4XAzqmSF76CyzohzileS0k/C8zUI+b42kslar3DqqGeWNu3IAzCkT4DxCwArz22QS/XRnIhhWxNzqTRUJOqYGMgMYrTX0ymQgDu1iP3pf9hsXKJImRAsF3SBBpHPG98iD/RPhTiDFMqLXYwlRNWwv2NARCjkIUiaViKIyVKTiI7wu04kVIg6BtxCjoLrL9oo1z1HadZbRHFeDtg4vOJfOUrTr/8S45b0VcEjUSE3SP3klpJvteh3VaVrFAMJJbfV8DGV89h1pezegjvYycJFc8f/4ewFVIg6CkSEvq5edFWtF3FChk7lXsiI4T6hId2nR71w2WPEPuUnipQ581Fke7YSr6n2Il0jnKWqeNfhbojR3aqeS8JTK4J0LE2hewuTa1p2+XN6I1Eh6hjoHUzjpvrID3Qi4vlzFCV/fyksNAZpZPh+GNvZ6b0uFIZXCDSELI2Eqr0y6CPOH/5DYQhlR95JYVyDa7xVqKIMiCFkuVTXJhjzBzYBUCHqGMhmM/RtW88L136DVX//KQObXsbk+otWUvlULKhibX2vy4gicMx7e8vWXMlwKedBRDCOLh0LaMmR7+8kUt2ILvrGyv4GGFO1LD8er4OfAddxEQxOro/UpifJrH2Uqrrkji6011Gx+och8EG+/OpaDnjbh6mafhBdLz3Mmtuvw3UdaqfNpW7BEpKt87AiSW9JR9HqViCGUrbUcJ/mkCKRlJPNiFBwDK6yUE6GfP9WUuufItW+Eic3gOPWo61QmZQuWfKBWjLCfaqCcXlZWOIWcAZ6GVi/gv7VL5DvWAfRKurDYOuJLbMqRB2GoGZof18/seYGIokmphx9AS1HnkO2Zxudr77A5kfuJjv4R6KJJPFJM0hOmUVV/WQitfXoSBylQ4i20H6Ts3KXU0BeAyjXBeWQ7e8h3ddN70trGdiyjvxAD6FwFDuRxFKKNbf8BiMQrW8klKglWjeJcLKOaE09IspbWlJ8B+KnEip0IcdA51bcVC/dW9YiA724jpAzDcRaF1F/2AWoeA0NL/6QRDI5IWP8ASpEHQMOGsIxRAWtcsJEG2cwtXEG0449l0ImRa5/O+mOLQxs3UDHyqfAdXALBVCKaHUNqDBK29h2GEtbGLeAcfO4poARh3T7dixLIXYYN5zAZSo180/Hrm3BitWS274SO7eVRZd+kUI2j5sZID/YTbqznf6t60i1ryXb3U22r4d8agDX/zlY4ShVNTXE6upwXSHR2MqMI88kWj8ZFa1j61YLt2ChxEblOolK3tNYJmDNqQAVoo4CYwzr29tJHFNd8vQoVWb5a+x4ErsqSWLyHJoOVuAWEOMixsUUcliWws3lyKdSiJtHjAtKo8MRwlUJrFAY4yhUKISyQvT0CD1dNkIpwCDZfuJNLWg7Rri6BqobiTfPomYOxfCtcV1fZfXVDN9boJVCW1YxcBCoGvm0gON1TRElGJNjausMNBNzmXSAClFHgeM4tG/vpkqFhzZkUEP1Tc8+8vVOK4TSXpURK+wt6dBRRah2dAXSM7uU14rH+AnTYhWDBQrB6d9KJFmFUiGKk3sQUPD9tbpMt/Qkoq9mBAED/25B4kuhIMWgggC5ng6qqxhynYmIiT26vQARIZPJoOMJb427KkmjIZElFSSiSMkTUO5rVyBayrxUami0qsz0NyLk866fZO0voVYGNzNIQ/M0ypf5D0XZgMoqDqoh//mBAdFoIJv3l0O7edyBzaS3PsvRCxbtng9vD6IiUUdBOp0mZwxB1TstPgPH62YMop0yfHOJrIJPPAHXVbgu5PO9yGAn2Z7tmEKannXPsPCkyyhG/sWTg0XXGKXkwTJ2lmV4SUmNEEGcPIOb19Dz0jJ6X72HgQ3PUx8Vohf/BOMaLHvixvorRB0FL7/8Mhuevp+8+xVmn/MBklMXom3bp4siqAStpBRilbLn5YKv3BovufNLy1vEzTKwYRVb7rqD3hUPkutcj2T7wXWINk4l3fs2Yq0ZxPZyRVWRheKHaEt5AcVW6D5JRQzi5sh2bKFr5dNsfuJu2pY/TaGvE8Ez+joGNJdedimnH382n/23zzF73nQsmwmnr6qJsEpk6dKl8vTTT+/tYQDgFBw+98UvcM9Tj6Mti1yqQM2iY5lx3PnUzV2EjlaXvKG+gVWe8zS8U4nC96+WGTSIwcn00fHSo6x74G90v/A42cEOjFalK/gaRThRzwFv+xDz3/phrERDUVoG9x1eCt0YB8kNMNC2nq4Vz9D24qNk29aRT3WRHuil4BRKvx5VkvpKIBGr4kMf+ChXXH45jU31e2VZilLqGRFZOmJ7hahDkU6lOO2csylEbFTIBiNkUmly6TyR+haaFh1L4/wjSbTOxK6qwwpFUHYIT08sRa2U8moAagGjPGe7mxmgb9t6tj9/P+3PP0yuYwOZvm6cQg6jgqolQZzfUzm0gNI2TYecyMwTzqGqaSqh6gZiiXq0VuTTA2QHunFSvfRvWUf/xpWk29bhDHZj2YpQNIwVDqFQFPI5Bnu6GejuppDPeRIdyn5woEVxwNz5fPMb3+Koo44kHAq9oWStEHWc6Ojo4NgzTqGutaWUAypgjGDcAtlUmkLORQhT1dBCqK6ZmtaZSCRB9aRWotV16EgIURqTz5PpbCPTs5W+TatJbV2PO9iJZQuReBXa1jiFHAOd3Qz09OAUcoFgxncpeMUvFCgDSlnE6xpJNDQSicZAQTaTwrguIVuDBjsUwrYt0Lq4fj/oDeB1eXFxcjn6Ojvp7+nGdV2QUklLJR5ZqxPVfP5zX+DDH/wQ4XD4DSPrWESt6KjDsOrVVZ4uObytjqWwrBCJcI2npxrBKfTgbu+kbfOzWGi2ZHPkcjkAtNLEquJoW6NsC8u2iEfCqEiyZPiIEI5EaZgyhWRDPf0dHQx09+Aax+Opwu8kjb9ky5BLD1DfWE845HkV7FDMH6IqjjVoTVlmXxWDrkopQrEYDVOnUlVbS8+2NrKDA36RDe+eLkJPqo+v/b+vU3AKXP7RjxN6gyXrcFSIWgYRYdv2dqLx2FCiUpaEQqB3gh22USpEKB5FBCI1CYriq3ii8iVWmcFVpuMGFwxHYzS0thKvrqarrZ18OlXWK8C33LVgshnaN22kefYMwrHYqOQZlVBD3QMopYgmkjTPitDX0UFvZyeuU/CXX3tH5gp5vvPd77LowIWcfPLJY1/7DUDFj1oGMYZXXlleNH52hMDQKC6S832lqmxf+evyc8a+piZWXc2UmTOoaWhEKQtEez5Q8RYZGm3IZ1N0btyMk8+/rsw8BehQiNrJzTS1tmKHwpRX+EMZUtlBvvjlL9Le3v7ab7QbUCFqGZTSrF+/IXg1znNUudt96L5dHwCg0ZEI9a0tNEyZjLIDj4HHSAOgIT04QPfWNr9v6muE8qS71jbJ+jqap00lFAoXRx4EKtZtXM8f/ni9p8/uJVSIWg7f2g6FQqPkzO1ZBMuc/TgSygpR2zSJppapqJDlrfkvGyPKMNDVSaq/l5FFrnblxvj6sEW0ppbGKa1YVkkfFT8b66a/3UTaV0f2BipEHQ6lvDX0ewnlXU6V1iQb66lrbkZpXZSAJfkt9LZ3IK7rOf9fC4mCkDCg0SRqaqhpbPCyxkQVCTJn7jxisb3XfrJC1OEQoVDIv+GLMkYjgKf7amobGknWNwzZHvQVyKfT5FLp3ZOipwDLoraxkXg8gRawlMWpJ5/Ot7/xLWx779neFau/DMYYpra2YpY9t0vnlQV6Rt8fBAJ2QqTh+4uvtKa+eRK5dIpcOoU//3sy1RgyqTTR6uQujXnMcYtXPihRlaS+qoZPXX4FF7/3or2eWF2RqGVQSnHQgQcOcdHsVLKWkqf20KC8EKwVClM/qRmtbFTgtvKdE4V8gTE7+u340sU8VjFCIZsj3dNPUkJcfull3HXbHXzsox+jKpHY67H/ikQtg1KKlsZmL9nEMbCjbCIRnIKDbVvFaip7clwA8eok8eokg729aAERRSyZoLphaMeU0WtflR/g6cLGNRSyOQqZHMlIjIWz5/Cec8/hpFNPJVFTU8xR3dskhQpRh0ApxVEnHMtXP/9lvvfTnzCYyhBJxoeU9Qmim+n+QTo3bCbZVE9Nc1OpTunuQpBvXZTpgihFIllNqneQcDRC9aQmYrXV2Jb3NRoTBBb89yN+ZEvAdR2M62LyDk6+QEhZzJw2nZPOOI4lhx3KwYceTE1tDdYEbYNeIeowhCybt19wAUcfexy//t1vufXO2xkspIlUxdBaeyVJjaF7eztOPkPP1m2EwiES9XUjrjVe3XRU+KFQMYJxHArpLHEd4tzjTmVKQzNrtm2ivbuLbR3bsbVFrpDHcQwGg1YarRQh28Z1HOpqapk+tYXaZBXTWiaxaOHhzJo7n6ZJTUQjkZG3nmAkhUpSypgQERzXZe2GDdx081+546676OjvwY5FwDFsXr0aZbz6TfGaGhqnTUVHI0MilUWiBktCfNXX85cOCcITNEBDQBwXJ5fHyeUJWzYHzZrDJe+7hCVLF1NfV49WCmMMTr7gNRRWkM1myWSyFBwH27IIh0OEQt7DtiwwBlGCZdloy0ZPQDJCJXvqNUNEKBQKDAwO8uKyZdz/0ANs2bKF3q4uEok4LS1TWXzYUq686mekpACWxrItv4UjQFk3aD+KJcbgugbxWujhFBzcvIOTy5OIRJk3ezaLDlzIsccczcEHH0xdbQ22bY+QdLsyRQfHigiuEWxrYtrRFaK+ThQ/J98QERFfFfAIsGbdOu64+246OjvZsmUzGIWyFZ2dnWxr247jFhBjiEaiTJ7SQlU8RjabJVGVYNFhh2MJLDnqSA6YNo2a6mpsy9ojC+4KIhQKLrHQxFx1Wknze50ofqnF6NDQ7XNmzeITH/lIEJH0pKa4FBwHcT2SW9rCiMERg6UUrmuwLYtoJIpS3krQPUGekjQFC7BCE3dt1FioEHU3oWj1i3j6n9ZYYhG2h7YvD7BTF9LuHhv4C2EnnhQdDypE3c0oJ92OU/r2TcLsLUxMjbqCCoZhQhhTSqkBYOXeHscuoBHo3NuDGCf2pbECzBCREa0cJ8rUv3I0S2+iQin19L4y3n1prDtCZeqvYJ9AhagV7BOYKES9am8PYBexL413XxrrmJgQxlQFFewME0WiVlDBDrHXiaqUOksptVIptVoptddbpiulrlVKbVdKvVS2rV4pdZdSapX/t87frpRSP/TH/qJSavFeGO80pdR9SqnlSqmXlVKfmehjfk0IlunujQde6HkNMBsIAy8AB+3lMZ0ILAZeKtv2P8CX/OdfAr7tP38rcBtebtTRwBN7YbwtwGL/eRJ4FThoIo/5Nb3PvUyKY4A7yl5/GfjyXv9QYOYwoq4EWsqIsdJ//gvgotGO24tj/xtwxr405vE89vbU3wpsKnu92d820dAsItv8521As/98Qo1fKTUTOBx4gn1kzOPF3ibqPgfxxNCEc5UopRLAjcBnRaS/fN9EHfOuYG8TdQswrez1VH/bREO7UqoFwP+73d8+IcavvLYpNwLXichf/c0Tesy7ir1N1KeAeUqpWUqpMPBe4O97eUyj4e/Apf7zS/H0wGD7B3xL+migr2y6fUOgvHzBa4BXROR7Zbsm7JhfE/a2koxnhb6KZ/3/5wQYz/XANqCAp79dBjQA9wCrgLuBev9YBfzEH/syYOleGO/xeNP6i8Dz/uOtE3nMr+VRiUxVsE9gb0/9FVQwLlSIWsE+gQpRK9gnUCFqBfsEKkStYJ9AhagV7BOoELWCfQIVolawT+D/B+bkQCLzwLgkAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "filenames": { "image/png": "/sdf/home/l/ldomine/lartpc_mlreco3d_tutorials/book/_build/jupyter_execute/Prerequisites/Python-04-ScientificPython_5_0.png" }, "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.imshow(data)\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "552cb593", "metadata": {}, "source": [ "Next, make a canvas with (1,N) sub-plots, where we will draw a gray-scale image for each image channel by slicing one by one." ] }, { "cell_type": "code", "execution_count": 4, "id": "11f8a69d", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6UAAAFmCAYAAACVwjx1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9d5iU5fm/fU6vO9t7Y9ldlt6r9KZiA1E0Yu9+1V9ijImJMZoYjBoTUzQauxIFbCgKihQVEASp0oRdWGB7n9npfd4/eJ/H2WVRysIW7vM49mB35pmZe4f9zHVf130VRSQSiSAQCAQCgUAgEAgEAkEHoOzoBQgEAoFAIBAIBAKB4NxFOKUCgUAgEAgEAoFAIOgwhFMqEAgEAoFAIBAIBIIOQzilAoFAIBAIBAKBQCDoMIRTKhAIBAKBQCAQCASCDkM4pQKBQCAQCAQCgUAg6DDOiFO6fPlyioqKKCgo4MknnzwTLyEQCE4DoVGBoHMjNCoQdG6ERgWC9kXR3nNKQ6EQvXr1YuXKlWRlZTFixAgWLlxI37592/NlBALBKSI0KhB0boRGBYLOjdCoQND+tPtJ6bfffktBQQE9e/ZEq9Xys5/9jCVLlrT3ywgEglNEaFQg6NwIjQoEnRuhUYGg/VG39xNWVlaSnZ0t/5yVlcWmTZt+9DFJSUn06NGjvZciEHQpDh8+TENDwxl/HaFRgeDUEBoVCDo3nVmjCoXiTC9LIOgSHC9Jt92d0hPlpZde4qWXXgLAZDKxZcuWjlqKQNApGD58eEcvoQVCowJBS4RGBYLOTWfWqEAg+HHaPX03MzOT8vJy+eeKigoyMzOPue6OO+5gy5YtbNmyheTk5PZeRpdg7dq1NDU1EQwGO3opgnMIodETR2hU0BEIjZ44QqOCjuBUNHouo1KpxEmx4Cdp95PSESNGUFJSwqFDh8jMzGTRokUsWLCgvV+my+P1elm8eDExMTGkpqaiVqtJSEggEonQ0NAgfx8MBtHr9VitVuLj4wFQqzvsgFvQDRAaPTGERgUdhdDoiSE0KugohEZPDIVCgVqtRqVSoVKpCIfDKJVKkpOTUavVBINBlEolfr+f2tpaAAKBQAevWtBRtPunslqt5rnnnuOCCy4gFApxyy230K9fv/Z+mS6PSqXiwQcfxOVyEQ6HKS0tZfXq1Rw8eBCn0wmA0WgkOzubPn36kJSUhF6vJxKJYDabUSrFiFnBqSE0emIIjQo6CqHRE0NoVNBRCI2eGAqFQtZaZmYm1157LT169OCKK65oob99+/axcOFC/ve//9HU1ITL5SIUCnXgygUdQbuPhDkVhg8ffs6kNvj9fpRKJU6nk5qaGg4fPsz7779PY2MjhYWFFBYW0qtXL1QqFYcOHWLPnj0UFxeTk5PD1VdfTa9evQiFQsTFxQFHPxiFYe0edGYddOa1tTeSRj0eD7W1tRw8eJD333+fhoYGodFznM6sg868tvamLY2+9957wo4KOrUOzqX0VYVCQSQSQafTMXjwYJ544gl69OhBjx49qKuro76+nmXLlqHX65k8eTLJyckkJCRQVlbG1q1buf/++2lubsbj8Ry3KY6g69LpGh2da4TDYfx+P1VVVahUKhwOBx988AGrVq3i/PPP55577qGgoACz2Sx/cI0dOxa/309xcTErVqzgz3/+M7Nnz2bChAn4/X5UKhUJCQnodLoO/u0Egq5PtEbVajWBQICFCxeyatUqpk+fzt133y00KhB0IG1pdMGCBaxcufKE7OjKlStbaLShoQGVSkWPHj2ERgWCdkChUKBSqTCbzQSDQebOnctvfvMb8vPz8fl8PP744yxbtoyNGze2eNzw4cOZOXMmV155JT/72c9ITExk3rx5bN26lWAwiM/n66DfSHA2EU7pGaaxsZGEhAQqKirQarXExsZSXV3N888/T0VFBY8++ig9e/YkMzMTjUbTIpKmUCjQarUkJSVx++23M3z4cF588UXcbjezZs1Co9HQ1NREWlraORWBEwjak+Np9L///S8VFRXMmzePnJwc0tLSTkmjfr8fnU5HJBIROhUIToEfs6OVlZX8+c9/Jjc3l4yMjONqNDExkVtvvZVhw4bx4osv4nK5mDBhAsnJybhcLuGUCgSngVQfqtPpMJvNxMXFMXHiRObNm0d8fDzvvPMOzzzzDFu2bCEcDh/z+C1btvDdd9/x8ssv88orrzB69GieeeYZ7r33XsrKynA6ndjt9g74zQRnE5GvcoZJSEgAkBsvLF26lKeeeorPP/+c9PR0tm7dysGDB2lsbKShoaGFWKXj7fT0dGJiYhg8eDAPPPAA69atY82aNcDRgnCXy3XMUbjH4zlLv6FA0LVprdFly5bx17/+leXLl5ORkcGOHTsoLS2lqakJp9PZQmsnolGVSgUcm7olNCoQnBg/ZkczMjLYvn07Bw4ckDUaDoeJRCLyF0BGRgYWi4U+ffrwwAMPsGbNGvbs2UMkEsFutxMMBoUdFQhOEalhUe/evXnyySd57LHH+P3vf09ycjLBYBCPx8ONN97Ib37zG7KystoM0AYCAcrKypgzZw6PPfYY/fv354knnsBgMKBUKtFqtcc8RrKvgu6BOCk9A4RCIaqrq3G5XCiVSmpra1m8eDHFxcVUVlaiVqu55557iImJYefOnWzevBm3282oUaOYOnUqffv2lTsEKhQKnE4ner0eh8OBwWBg6tSpzJ8/n5ycHEwmE/X19YTDYQwGAwkJCYTDYTm1SaPRYLPZCIVCpKWloVarsdls6PV69Hp9B79TAkHHEK1RlUpFXV0d77//PiUlJVRXV6NWq7nvvvuIjY1l+/btfP3117hcLkaPHs1FF11Er169MJlMwFGNut1udDqdrNFp06bxv//9j+zsbBITE+WUpkgkIm+wFQoFoVAIrVaLzWbD7/cLjQoE/z+tNVpTU8PixYspKSmR03d/+ctfyhrduHEjDoeDMWPGMGrUKPr27Ut6ejoATU1NhMNhYmNjaW5uxmg0cv755/O///2PzMxMzGYzVqtVPulJSkqSA8Rmsxmj0UhjYyOhUIjU1FTZrgqNCs5llEolRqMRgLS0NH73u98xe/ZsuVYbjp6AOp1OioqKKCgoID4+nnvuuYe//OUvLF68WO64CxATE0NmZiZ5eXnU1tYSCAQYO3Ys99xzD4cOHcLv99PU1IRSqSQcDrN582bsdjuBQIBQKCQHo/x+v6hD7aKIRkdnAIfDQVNTE6FQiM2bN/PGG28wYMAAJk2axPPPP8/555/PpZdeSmJiotz0aO3atXz88cfU1dVx/fXXM3nyZADq6+vZs2cPu3btwmazUVNTg8/nw+VykZeXh9lsJhQK4XA4iEQipKamEhsby/Dhw+X7pc2wxWIhLi6OhoYGjEaj/GEi6Bx0Zh105rWdCtEa3bp1K6+//jqDBg1i0qRJ/Oc//+H8889n7ty5WCwWQqEQdrudNWvW8PHHH1NbW8uNN97IyJEjZQdy37597N69m6amJioqKvB4PLjdbjIyMuRNq8/nQ61Wk5qaSmJiIkOHDiU/Px+tVktMTAwej4eYmBih0U5MZ9ZBZ17bqRCt0S1bthxjRy+44AJuvfVWtFotoVCI5uZm1q5dy0cffURdXR1z587lvPPOw2AwsGvXLsrKyigpKcHlcnHkyBGsVivV1dUkJSVhMpnk0RUWi4WsrCySk5MZNGgQPXr0IBgMys6pyWQiLi6OxsZGodFOSGfWQXcr39BoNMTFxZGbm8uf/vQnLrroIurq6qisrGTIkCF89913XHXVVZSXl2MwGBg6dCj3338/kydPRq/X89FHH/GLX/yCfv36MXfuXIxGI3379qWoqOgn36vGxka2bt2K1+slHA7z97//ncOHD8vNkaS5xVLDJUHnQjQ6Oovo9Xq0Wi2rVq1i/vz53HzzzQwePJht27ahVCqZMmUKmZmZciqC0WhkxowZDB48mA8//JC///3vrF69msrKSiKRCJmZmSQnJzN27Fh5k2uxWDAajSiVSgKBAM3NzTQ3N+Pz+dizZw/Lli2jubmZmJgYJk2aRN++fVEoFJhMJvR6vTCkgnMaSaOrV69m/vz53HrrrYwYMYItW7agVquZOXMmFosFtVqNWq0mMTGRCy64gIEDB/LRRx/x9NNPM3LkSI4cOYLP5yMpKYmYmBiKiooYOHAgcPSERafTEQ6H5TR7p9NJIBCgtLSUbdu2EQgESE1NZerUqfTp04dAIIDRaBQaFZzztLajt9xyC4MHD2br1q1oNBpmz56NVqtFqVSiVCpJTExk5syZjBs3jjfffJN///vfrFu3joqKCg4dOoTT6cTtdqPRaAgGg/Kmtba2FqVSKW9epa68gUAAlUpFamoqAwYM4JJLLmHw4MHyOBmhUcG5TjgcpmfPnvz1r39l7Nix7N69m3vvvZdZs2bRo0cPnn32WUpLS+X03VWrVrFhwwaGDh3Kl19+ycyZM5k2bRpqtfqkMw4SExM5//zz5Z/PP/98mpqaeOSRR1ixYgXV1dXyGgVdB+GUngE8Hg+HDx9m4cKFzJ07l0mTJqHVatm5cyeDBg0iJydHHiIspS7Y7Xa+/vpr1qxZIxeK33LLLRQWFpKdnU1sbKz8/NERpHA4TCgUIj09nWAwSCgUYuTIkfh8PmpqatizZw9ff/01n3zyCcOHD+fyyy8HwO12Ew6HSUtLO7tvjkDQCZA0umDBAq655hpZozt27GDw4MGkp6fLKUKRSASPx0NpaSlbtmxh7dq1wNH0Qsn4JicnYzQa5WZG0nw1SZ8+nw+v14vP58PtdlNQUEAwGKShoYGamho++eQT3nvvPUaPHs2VV14pr7OpqYmcnJwOeY8Ego4k2o7+7Gc/Y8yYMcTExLBr1y4GDRpEamoqcFSHVquV2NhYiouL2bp1K+vWraOhoYFPPvmEQCAgO6GRSOSYunBAHgcjbWDr6+tlR9XhcHDkyBHWr19P7969mT59OrNnz8ZgMAg7KjinUalUXHfddYwfP57vvvuO66+/Hq/Xy6WXXkppaSlvv/22bAtjYmKIj49n5MiR3HXXXahUKnmGaXsgZS384x//kO30iy++KNtvh8PRLq8jOLMIp/QMoFAoWLhwIf369WPatGmkpqZis9koKytj9uzZqNVqwuEwXq+X2tpavvjiC5YvX05sbCxXXnklY8aMITMzE51O96NF3JFIBKVSiVr9w39jKBQiEAigVqvp2bMnubm5TJs2jX379vHxxx/zu9/9jiuvvJLRo0fLzm0oFMLv92MwGM74eyMQdAaiNTpq1CiSk5Ox2WwcPnxYdgoljRYXF7Nu3To+/fRTDAYDU6ZMYciQIaSnp6NQKOQvQHZKJU1Km1/pREWqd5GMpMFgIDU1lf79+1NRUcHWrVv59ttvufLKKxk7dqwcPRYaFZxrRGt0zJgxZGdn09zcLDdCkU42JTu6aNEi3n33XUpKSvD7/bITKtWXSQGm1q8h3Rd9m3S7ZGPdbjfBYBCHw8HOnTtZsWKFnF1hsVgAoVHBuUffvn2ZMWMG5eXl3HXXXezevZvevXuTn5/P9u3bCYfDKJVK0tPTuf3227n22mvJzc1tsWdtb2JjY5k6dSqTJ09m8ODBvPfee6xZs0Z2SqVgs6BzIpzSdiYYDLJjxw6OHDnCn//8Z1JTU1EqlVRWVqJUKsnOzqaxsRGXy8XKlStZsWIFCQkJ3HvvvQwYMIDk5GS0Wm2Lze7xcq/byrlXq9WoVCq5zkZKQRo4cCC5ubls27aNJUuWcPjwYS655BJsNhtGo1F0MBOcM7TWaF5eHgqFgvr6elQqFbm5ubjdbmpra1m1ahXLli3DbDZz3XXXUVBQQGJiIvDDhrb1+IloWv+sVCrR6/XodDosFgs+nw+bzUZzc7M80qK0tJR33nmH0tJSrrnmGqFRwTlHWxqV7KhKpaJnz56Ew2FKSkpYu3Yt7733HocOHcLr9eJyueTT0egNaOvAkfS99K/0fesgk+SYhkIhXC4XoVCIbdu2UV5eztVXX80111yDWq0WGhWcU6hUKqZPn07Pnj157rnn2L59O4B88rllyxZSU1MZO3Ysv/vd7+jXr99Z1YdSqeTyyy9nzJgx/PznP2f58uVtZkkIOhfCKW1n6uvr2bZtG0VFReTk5KDRaPB4PFitVmw2G1qtlu+++4433ngDo9HInXfeyejRo4mNjUWhUBAOh48RbmsDejyiN8kqlQqlUolGo5Fb3lssFiZPnkyvXr14/vnn+e9//8vtt9+OwWAgIyPjjL0nAkFnwmq1sn37dnr16kVaWhp6vR6v10tjYyM2mw2DwcDGjRt59dVX0Wg0XHvttfTv31+efyjpsfW/cHyNtnZcFQoFSqUSlUqF0WgkPj6e+vp67HY7RUVFJCcn8/nnn1NXV8ddd90lz2aUHGKBoDvT2NjItm3bZI3qdDrsdrscwNFqtXzxxRf897//pbKyErfbjc1mO2aOYbQew+FwC/1G09bt0m1S+qFarSYSieByuYCjjcteeeUVampquPfeewH45ptvuOqqq1qU2wgE3ZHU1FQeeeQRrFYrf/3rX/H7/XIaPMCBAwd4//33GTFiRIc2eEpLS+PVV1/lkUce4e2336ahoaHD1iL4aYRT2o74/X58Ph/ffPONnKYr1bLExsbi9XpZtGgRJSUlXH755UydOpW4uDj5ZBRoIWr4aUf0eNe23gTHxsbi8/nweDzk5ORwzz338Nprr/Haa69xyy23YLVa0Wq1ItIr6PZoNBo2btzIrFmzUKvVeL1euYbM4/Ewf/58iouLueSSSxg5cqTcrKitE9HT7ewnPY/BYJAd5MbGRmJjY7nssstYsWIFL774IpdddhkDBgw45mRWIOhuSFrbuHEjM2fORK1W09zczJYtW9Dr9fh8PubPn8/GjRuJiYkB4NChQ3g8HpRKpXy6eao6aUvPUgMktVqNQqEgEAjg9XrRarV89tlnRCIRLrnkEgoLC9HpdKf1+wsEnR2lUklMTAxKpZLXX38dm80mZwFJ42AeeuihThOciYmJ4bHHHqO+vp7Nmzdz8OBBOdgk6Fwof/oSwYmi1WrRarVoNBr69OmDyWTC6XTKtShHjhyhvLycefPmMXv2bDlVt7Uj+lMcL9obTXQqkoRer8dgMBAOh8nMzOSuu+7C6XQyf/58fD6fyLMXnBNI83ulecCNjY1ybdrhw4epqKjgscce4/zzz0er1crpeyfDiWg0+lop5T4pKYmMjAy5acMFF1zA4cOHWbFiBeFwWGhU0O2RHEuNRkP//v2Jj4+nrq6OvLw8/H4/Bw8eZPXq1WRnZ3P48GG+++47/H7/Tz7vyZ6QSkgObjgcxufzEQqF5CYtzc3NWK1WlixZwpo1aygoKBCBXUG3JxwOEx8fj1KpZPXq1TidTkwmEwkJCdxxxx0AncYhlYiJieG///0vkydPFoHdToxwStsRj8eD3W5v0eREqo35+9//jt/vZ/To0eTm5qLVauWoa+uv9iL6NEc60dHpdBgMBiKRCCkpKdx5551UVFSwbNkyjhw5QmlpqdxKWyDojni9XlQqFT6fj6+//loe0fLPf/4Tn88np9O73W4AuQvnmdSodDqkUqmIjY2VRz8ZDAYuuOACdu/ezTvvvMOhQ4fYv38/gUCg3dYgEHQmgsEgLpcLtVqNz+djy5Ytcifef/3rXwQCAeLi4tixYwfFxcWEQiFCoVCbmQxt1YyeLK2fNxQKtUgF9vv9+P1+3n33XT766CPefvttampqKCsrO413QSDovCiVSm699dYWWQEJCQn8/ve/Z9asWR23sJ/AbDYzb948CgoKTjrQLDg7iP+VdkSv18spu3q9Hr/fT0lJCc888ww9e/bk8ssvZ8uWLXLzITg2XRd+MKDHM6InamBbP49kRLVardwNNCcnh5tvvpk1a9ZQWVkpzzEVCLojkUiEQCBAKBQiKSmJrKwsiouL+cc//kGvXr2YOXMmX3/9NTabDWipz7YaoLSXRqNRKBTExMSQkpKCRqMhPj6eadOm8dlnn1FVVSU3cREIuiPSuLRAIEBSUhKFhYW43W6eeeYZnE4nubm57N+/n9raWkKh0FlLaY+uBZcCztL3LpdLrjHt2bMn+/fvF2m8gm5LOBzGZDLJutPpdDzwwAPcddddaDSaDl7dj5OUlMQvfvELzGazODHthAintB3x+/3yaYfH46GkpIQnn3ySYcOG8etf/5qZM2dSX1/Pli1bjpuG19YGtb2Fo1Ao0Gg0ci3rgAEDmD59OgsXLsTtduPz+QDkCLRA0F2IRCJyl8zm5mbq6up4/vnnGTJkCL/61a+4/PLLqa6uZs+ePS0e0/rrTKNSqYiLiyM5ORmVSkV6ejp9+/Zl/vz5GI1GtFotIDQq6H5IKbJSLemBAwf485//TCAQYODAgSQmJuJ2u2UHMZofazR2pjag0ixip9NJVVUVL7zwQos+EU6nE6fTeUZeWyDoCNRqNYsXL8bv96PX63nssce48847O3pZJ8wVV1zBlClTxAFMJ0Q4pe2I5GharVZ27tzJ008/TUpKCrfffjvx8fEMHDiQoUOHsmLFCrxeb4vHnq3NbnS0V6/Xy2lI06dPR6FQ8M033+D3+3nttddoaGgQNWyCboXkwNlsNnbu3MkLL7xAWloa9957LzqdjvT0dAYNGsTatWvl+YY/xZna8EqpvGazGaVSyaBBg3A6nWzZsoWKigqef/55oVFBt0KaGRoIBGSN/utf/8JmszF48GDq6ur45ptvAOQZiG09x4kEkU4n0CTZUOnzRKlUymm8UiOVmpoannvuOQ4fPizS7QXdinA4zPfff08oFGL69On86le/6vQnpNEkJyfzhz/8geTkZJHG28kQ/xvtiE6nIysri/POO49XXnmF+vp67r77buLi4uQOvHfddRezZ88+RsA/tqk9E86qZFSlNF6j0Sh3+7Tb7YwfPx6dTndGhxwLBGcblUpFQkIC5513Hq+99hp1dXX8v//3/zAYDNhsNlQqFddddx0XXnjhMTXfx+NMBJSk59NqtSQkJKDRaNDr9YwcOZIPP/wQh8PBuHHj5Np0gaA7oFAo0Ov1FBYWMmbMGF599VV2797N8OHDqa+vZ8OGDVitVvx+f4dvgqMdWqkRksvlwuFwsGDBAoLBIBdccAEZGRmdrumLQHA6hMNhKisrCYVC3HbbbV2yudeQIUM4//zziY+PlzOPBB2PcErbEYVCgVqtpqCggIaGBi6//HJ69eoFIBvQzMxMhg0b1sKg/lQ093ivdSqnM9HPJzU+0mg0hMNh+vfvT1JSEps2bSI+Ph6LxXLSzy8QdGYkjRYWFlJfX8+VV15Jjx49sNlscvp9bGwsffr0aWFoO2rgtlKpxGw2y/Uv6enpwNHB5D179hSbXUG3Q9Jojx49qKmpoXfv3qjVavbs2UNNTQ1wtFSmvr6+zdrqE20e2F7Ny1qPoHE6nezatYtdu3aRmZkpj8gQCLoTHo+Hzz//vMODQ6eKQqHgzjvvRK1Wn1D3bsHZQTil7YRkmFwuFytXriQYDFJcXIzT6USlUskpApFIpMOjSq0btkinpRqNhosvvpiNGzfS2NgoDwkXCLoLkUgEp9PJ8uXLCQaD7N27l6amphZ/6+2lz/ZK61Wr1cTHx6PRaFCr1Zx33nmsXr2aurq6dlilQNB5kNJ33W43X331FV6vl9raWkpLS9m7d6/c+TYYDHaKJiVKpVJO45UaNElpvO+88w61tbXU19d39DIFgnZn0qRJXHDBBR29jNNi2LBhXHPNNSLbqBMhnNJ2xOFwsH79eqqqqrjvvvvYtGkTGzduPG7O+umk/bXHYyWjrlKp5ILvnj17YjQa2bx5M263G6vV2mGnRAJBe+N2u/n666+prq7mgQceYP369axfv75FbVg0Ha1RQO6YbTKZUCqVpKamEggEWLNmjVwTLhB0ByKRCFarlTVr1rB9+3bGjx/PoUOH2Lt3r5zJ0FobHUX0qChp7dLnh8PhYO/evXzzzTfs2LGDTZs2ddg6BYL2Jj4+nv/7v//DbDZ39FJOC4VCQWFhIcnJyV32xLe7IZzSdsLlcmG1Wnn77be55JJLuOqqq7j00kt59913sdvtLeaadSaiW3qrVCpiYmKYPHkya9askefBdbY1CwSngtPpxOVy8dZbb3HppZdy9dVXc+WVV/LOO++0GO/QmYIw0bWl0WmAUjOmuro60ehI0G1wu93U1dWxaNEi0tPTycnJobCwEIfDQWJiYgvHr7NpNRgMyusJhUJ4PB7ef/99+vXrx7Bhwzp4dQJB+6BSqZg6dSqXXXZZRy+lXbj99tuZMGGCaEbWSRBOaTuh0WjYvn07zc3NTJkyBZPJxNy5c7n++uvlU0kpstqZDKnkKKvValQqFZFIhPz8fBwOB+Xl5fJ4GIGgq6PRaNi6dSsul4sLLrhATlefNWuW7Nh1NgcvuuZNr9fLsw/T0tKoqamhoqKiU32eCASng1Kp5Pvvv2f//v306NGDQCBAXV2d/DcuOaRSY6GORHKKpYCzZN/hqFPqdrvZvn075eXlQqOCboNKpeKGG27oNocVGo2Gm2++WfRQ6SQIp7Sd8Pv9fPXVV4wcOZK0tDS5YcrkyZOJi4uTjWlnSreLPrmVUgRDoRCJiYn07duXFStWiBmIgm5DOBxmxYoVjBgxgpSUFAKBACqVinHjxmEymTqtNiWiT0tjYmLIyclhxYoVHb45Fwjag8bGRnbv3s3atWvJyspCq9VSV1fHoUOHsFqtNDY2yn/rnSHrqPVJreSgKpVKwuGwXBu7bNky3G53B65UIGg/zGYz48aN6+hltCv5+fnk5eV19DIECKe0XbDZbFitVg4fPsx5552HXq8nFArJjUk66xykaKMqpUUplUq0Wi1Dhw5l9+7dIsor6BbYbDYaGxs5cuQIEydOlOcKwg+byc5KtP7MZjN6vZ5IJEJBQQHfffed3JFUIOjKHD58mAMHDrBz505SUlIAqKysJBAIEAqFZJ12hnrSH0NyTEOhEIFAgG3btmG1Wjt6WQLBaaNSqXjwwQe7Xdf3goICpkyZ0mk/U84lOqe31MXQ6XQcOHAAlUpFXl6e7OxFpxp1tvqX1iiVSjmFF6BPnz74/X4OHDiAy+Xq1GsXCH4KnU5HSUkJGo1G1qjb7ZZ1qVKpOsXpy48hZTNI3bLT09NpaGhgz549+Hw+oVFBl6Z///5kZmbi8XiwWCyEw2GOHDmC3++X672jmwp1tr/31plHwWAQlUpFSUkJO3bswOFwtHCqBYKuhjSWrLMetJwOJpOJ+Pj4jl7GOY/og9xObNq0CYvFQkpKity2PppoY9UZkQylTqfD4/Gg1Wrp27cvn3/+OcnJyWRkZGAymUhMTOzglQoEJ08kEmHjxo3Ex8fLGo0eK9FVNooqlQqTyYTNZkOr1ZKTk8PHH39MQkICMTExqFQqeTayQNCVkEpgNBoNJpOJ2tpanE5np0qr/ymiT3EVCgVutxuDwcCKFSvIzMzEYrGgVCopKirq4JUKBCePSqXqtl1qH3jgAQYNGsSf/vQn9uzZ02X2BN2N7hfuOItEp75arVZycnLQaDRy04PW13VmpNNc6aRUrVYze/ZsEhMTefTRR1m0aBHV1dUdvEqB4OSI7obZ2NhIdna2PE+ws3bE/jGkDtlSw6PzzjuPUCjEgw8+yIcffkhxcXEHr1AgODkkjXq9XioqKjAajYRCIZqbm+VTUui8Ad1ootcYiUTwer24XC7ef/99fv7zn/Phhx9SUlLSgSsUCE6dYDAol710N2JjY7nyyit5++23ycrK6ujlnLMIp/Q0qK6uxmazEQwG0el0FBQUyA5pe9eSRnfhjD51PVVD3dbjpPUaDAZ0Oh25ubncfvvt/L//9//YsGEDGzZswGq1Ul1dLdpnC7oEkkYjkQhGo5H8/HwAAoGAnALYXkGj1vpsz+eUCIfD6HQ6cnJyiIuLIykpiSlTpnDRRRfx5ZdfUl1djcPh6BKBMIEAftCoTqcjOTmZ2NhYgsEgbrcbp9PZoqttZyZ6/ncoFJK72jc3N+NwOCgpKeHFF1+kuroau92Ow+EQdlTQJVCpVKhUKnQ6nTzTvrsyYMAA3nrrLQoKCrplmnJnR7zjp0F6ejpms5kjR46gVquxWCxEIhG5Y+3ZNqRtOa7Hu6719dLPkkNtNpvRaDRoNBqGDh3K9ddfz2effcaePXuoqKgQXXkFXQJJo4cPH5ZPGaVN45l03I6nv5PVaOsmTNLtBoOB1NRUjEYjSqWSnJwcpk2bxocffkhpaWmX2MQLBNDSjkob32AwiM/nIxgMdvTyfpLWeo6ufVUoFKhUKkKhED6fD5/Px5tvvsmBAwdobm4WXXkFXQKpJM1sNne7JketUSgUTJgwgdGjR6PVajt6Oeccwik9DaRIaH5+PuFwWB6eLaUGStecqdduzYme/EjNFiQHOhAI4Pf7cblcOJ1O/H6/3D0YQK/Xy6Nu9u3bx8GDB3E4HGfk9xII2hNJowUFBYTDYTmYEq3R9iJaf6fbITRaw9HP4fP58Hg8hEIh9Ho9iYmJcsp9dnY2RqORXbt24Xa78Xg8p/HbCARnh2iNRt8mnSJ25s7Y0PKzRK1Wo9Fo0Ol0qNXqFg5qIBDA5XJRVlbGd999x+uvv87777/fkUsXCE6YSCSCw+HAbrd39FLOCo8++iiRSOSUa2jFKeupIRodtQPhcBifz4fNZjtjKXytHc22GrT8mDMa/RxSLZ3T6aS0tJS1a9dSU1OD2+0mFAqh0+kwGo2MGjWK7OxsuT2/QqGgubmZ4cOHd/tomaB7IWnUarW22CieDaK1d6Kns9Ia3W435eXlbN68GZvNhtfrJRAIoNfr0Wq1FBQUYDAYMBqNsq6bmppwOBzyTFOBoCvgcrmor68nGAyiVh/dmqhUKgKBwDH27qf0+2P2UrLPrZ+rdZMi+CGAe7wgsJRZpNVqiUQi6HQ6ed63VH+n1+vlk99QKITT6cRut3PDDTeIxoGCLoXf7z9ngp2Spk8lKCYc0lNHOKXtRCQSkZuMSCcX0u2nyvEMb1tDu1tf2/q26HoXv9/Phg0beOeddzh8+DA5OTn06NGDrKwsfD4ftbW11NXV8de//hWv18uUKVMYNWoUdXV1TJgwgX79+nXbDmyC7om0SSwuLpajnyqVSjY6p+OktvVYyZBJmmt9etpWul+0RsPhMNu2bePTTz+loqKCwsJCcnNzSUpKwuv1UltbS1NTE2+//TZut5s+ffowePBg7HY76enpxMTE4PF45IZIAkFnR9JMQ0MDRUVFmEwmNBqN7JS2R7p9dBNCSWdtPW+0fls/XtKoTqdDp9OhVCrp0aMHAwYMoGfPniQlJcl2tKGhgR07dmC1WvF6vfJj09LSSE5OFvoUdCk6+0zv9sRms8m9J06WrtQxvLMhnNJ2QKlU0rdvX77++mtCoRBarVauhTmdiEnr2hQpRdjpdOJyuWhqasLpdKLT6UhISMBgMGCxWNDpdMeMoJGMb319Pa+99hrbt29n4sSJ3HffffTo0QOj0dhCRB6Ph8OHD7N7924WLlzIV199RUxMDD179pSj2AJBVyESiVBUVMTWrVvl4fbS7e1lPKI3sh6Ph0AgQHNzM83NzWg0GlmjOp1O7tLd1ms3Njby4Ycfsm/fPqZNm8aDDz5ITk4OMTEx8vPDUY2WlZWxZ88eFi5cyKJFi0hISCAnJ4fm5maRzSDoUlgsFsaOHUtxcTEqlQqj0YharT4lfbb1mGi9KZVKuYGSVquVO3L7/X58Pp/8s1KpbFGKIwWOpOyEgoIC5syZw6RJk8jLy5NrvKM1Wl5ezp49e1iwYAE7d+4kIyODIUOGyLORBQJB52PRokVotVp8Pt8pPV40Gzw1hHfRDhiNRoYNG8bSpUupq6sjPT2dcDgsG9ST+eOMTvOL3jh7vV62b9/Opk2bWL9+PXV1dSQmJqJUKtFoNHi9XhwOB0OHDmXUqFGMGTOG1NTUFs9RXFzMf/7zH3Q6HU8++ST5+fktOhtGG0iTyUTfvn3p27cv06ZN44MPPuCNN95g48aNDBgwQI4QCwRdgbi4OMaNG8eqVauoq6sjKSlJbkACp1b7GR3wkTa833//PVu3bmXz5s3Y7XaSkpLkz4JgMIjdbqdv374MHDiQ4cOHy46mUqkkGAxSXV3NG2+8QXx8PH/729/Iy8uTa9Nar9NsNtO7d2969+7NlClTePfdd5k/fz4bNmwgIyNDBI8EXQq9Xs/gwYMJBALY7XY5RT3aMTxR2krRlUaeqVQquYOoSqWioKBArgGtr6+ntLQUjUaD3++XU+glpJrRhIQELr74Yn7xi1+Qn5/f4vWiM6VMJhNFRUUUFRUxdepU3nnnHebPn89nn33GzTffLBqpCLoU0sHIucCDDz7Irl27WLZsmXAwzyJi19IOSE1/DAYDFRUVpKWlHXNNWzWgbdH6ZDQUCnHgwAHee+89tmzZQlpaGrNmzaKwsJCUlBR0Oh2RSASn00ljYyOfffYZ77//Pu+88w7XXnst5513HnFxcRw+fJjnnnuO3r17c+2117ZokHK8dUhriY+P58YbbyQ9PZ2XXnoJtVrNtddeK05iBF0Gn88nn1JWVVWRkpIin2i0noN4MnWfcNRQl5eX89lnn7F3714yMjKYO3cuBQUFLVL0HA4HVquVpUuXsmLFCpYuXcrMmTMZOnQoZrOZmpoaXnnlFUaMGHGMRo/nNEtrj4uL4+abbyYrK4sXX3wRjUbDnDlzSE1NPfU3TSA4yyQnJ5OYmIjD4cBgMKDX61uktZ9I8Ki1Iyp1wNXpdMTExJCUlMSAAQOYNm0aRUVFJCQkoNVqUSgU2O12mpqaWL58ORs3buTAgQNyyQscdUpjY2P5+c9/zvXXX/+TdjQ6cBsXF8ctt9xCZmYmL730EiqViptuugmz2Xya75pAcPZoaGhokW3UXYmNjeWJJ56goaGBjRs3dvRyzhmEU9oOSFFci8XCwYMHGT58OHC0ju3HDFZbtG7EsGHDBv7973+TmZnJQw89xODBg9Hr9W3ObotEIowePZqqqio++eQT/vOf/7B582auvvpqXnvtNRITE7ntttswmUwtDPZPIaU4zZgxA7VazRNPPEHfvn2ZNGnSSf1uAkFHodPpiI+PJzY2luLiYoYMGdIu8w9DoRC7du3ilVdeIT8/n0cffZQBAwbIGoWWDmUkEmHEiBFUVVXx6aefsnDhQrZu3crcuXNZuHAhPXv25Pbbb5fT6U9WoxdeeCEqlYonnniCXr16MWbMGPk0ViDo7Gi1WtLS0nC5XGRnZ2M2m1ukw54IrRsVabVaEhISUKvVXHzxxVx33XUMGDBAPoWNJj09nUgkwsiRI6mvr+eTTz7h7bff5uDBg3K67XXXXcdtt90mj5c6mRIAjUbTwo72799f2FFBl+Kdd97hnnvuOSfsSv/+/fnlL3/J3LlzxRjEs0T3DnWcJWJjY0lNTWX06NGsWbMGn88npxydSHQ3+nRUOiF1u90sXryY//73v1xzzTX85S9/YcyYMS3qbNr6UqvVZGdnc/vtt/Piiy9itVr51a9+xeHDh7n11ltlh/RkOgRHP/fkyZO55ppreO2116irqztnit4F3YMxY8bw1Vdf4fP5jqmjPhGiA0aBQIAvv/ySBQsWcPPNN/PUU08xcuRIzGYzKpVKrluLfqzUrTM7O5tbb72VV155hXA4zKOPPkp1dXW7avR///sf3377LVu2bDmp31Eg6CgsFgujR4+mrKwMgNTU1BMO7LY1kkmn0xEXF0dOTg5PPfUUf/nLXxg1apQ8h1ulUqFWq+UvaTa3VqslIyODm2++mddee43zzz+fmJgYevfuzS233ILZbG43O2q1Wk/tzRIIOoDKykpKSko6ehlnjQsuuIBLL720o5dxziCc0nYiFAqRnZ2N1WqlpqZGrlc70QhvtGELhUKsW7eOxYsXc/fdd3PFFVdgsVjkjW7r66OfQ9r46nQ6evbsye9//3t69eolN0E6mRSotjoT6nQ6LrvsMoLBIFu3bsVms53Q7ycQdDThcJicnBxsNht1dXXyphR+uqa0rfu3bdvGypUrue+++5g9ezYmk6nN52utOUmjWq2W3NxcHn74YYqKijAYDHIqX3toNBQK4fF4OHjwoKiJEXQJjhw5Ijui4XCYtLS0E+5Q27o3glKpxGw206NHDx5//HFmz54t21FJg1K2RLRGpftUKhUGg4H8/HzmzZvHxIkTiY+PJy4u7oSzLE7Ejm7cuJGmpqaTeZsEgg7D7Xbz3nvvdfQyzhqxsbFMmjQJg8HQ0Us5JxBOaTuh0WjIzs4mMzOTNWvWyNHa47WcjyY6shsKhdixYwfPPfcc119/PWPHjj3lLn0KhYLMzEwefvhh1Go1H3/88QmnIASDQfbs2cOXX35JdXV1iw6EaWlpDB48mI0bN56U4y0QdCQKhYLs7GzS09NZu3atfDrSesRSW0TfHw6HOXDgAG+99RY333wz55133ml1CT2TGt28eTNTpkw56XUJBB1Benq63Bjo0KFDZGRkYLFYgBOr9Y4OzMbExJCQkMDvf/97JkyYcNKlNBJKpZLMzEz+8Ic/oNFohB0VnNMYjUb2799PQ0NDRy/lrNG/f38xU/gsIZzSdkJK1R05ciTffPMNTU1NcrT3p5Cc11AoRFNTEwsXLuS8885jypQpp7zZBeRob0ZGBtdccw2fffYZ9fX1J7Seffv2cffdd3P99dfzt7/9DZvNJhtNlUrFgAEDKCkpweVyndLaBIKzjXRyMmbMGL7++mt5nNLJ6CsSieDz+Vi6dCljxoxh8uTJHa7RG264QWhU0C0IBAI4nU7GjBlDbW0tCoWCjIyMNh3KtoJJkg71ej0ajYbrrruOSZMmtTgRPVmERgWCH/B6vXz77bds3ry5o5dy1pg6dapo7HmWEE5pOxEOh9FoNIwZMwar1cru3btbtLJvPXS4tTGVrt24cSOHDh3i+uuvx2AwnHTdSlsoFArGjh1LfHw827dvP6Hr9+7dy+HDhwkEAqxdu5aKiooW6U0mkwmn0ymvUSDo7Hg8HjweDyNGjKCxsZE9e/ZgMBhQqVQ/usGVvpeu2bJlC2VlZdx8880YjUb5/o7Q6JEjRwgGg6xbt47KykqhUUGXxuv1Eh8fz5gxY9BqtVitVvLy8jAYDHJDoejso+gRLNE9HLRaLXl5edxwww1y7fjpNjY7HY0GAgGhUUG3QDpA2bdv3znVUyQQCHT0Es4JhFPaTphMJgKBAGazmeHDh7NixQp5npNkEI+HZEjdbjerV69m1KhRpKWlnfZGN5rY2FgmTpzIli1bTij1qHfv3uTk5GAymRg8eDDp6ekt7o+uxxEIugLRGh02bBgrVqyQGw9JRDumbX3v9/tZu3Yto0ePJiMjo8M1mpubi8lkYsiQIceMohIaFXQ1TCYTXq8XtVrNuHHj5BFrycnJsvMZ3VchuqGgdLvBYCAmJoYZM2aQmpra4RrNycnBaDQyePBgoVFBl8fr9eL3+1mwYIHoKSJod4RT2o7k5uaSlpbGBRdcwO7du9m3bx9AC+f0eITDYaxWKzt27GDSpEmo1eofdWRbdxr8sXoUySj36NGDsrIympubf/J36d+/P2+++Sbvvvsu8+bNIykpqcVre71edDodPp/vJ59LIOgsSBq98MIL2b17N4cOHZI7aZ5IbanH42Hfvn1MnDjxJ+e0napGy8vLT1ijb7zxhtCooNvgdrtRKBTU1dUxbdo0PB4PgUCAoqIiWaPSiBjJEY3WlnSNTqdj4sSJaDSaM2JHT1aj7733ntCooFugUqmw2+3s2LGDp556qqOXc9bo7nNZOwtiTmk7ET0Au0+fPvTu3Zvly5dTWFgI0KImJrrZAfxgGBsaGgiFQiQlJR1XAJFIBL/fL9e0JCQknHBXsLi4ONxuNw6Hg4SEhB+9VqlUUlBQ0GIGW7TRrq+vp7CwELPZfErzWAWCs020RgcNGkTfvn1ZtmwZd999NxqNRh7lBLT4u4+msbERgJSUlOOewJyqRhUKBQkJCbhcrhPWaH5+vtCooNuQkpJCSkoKBQUFOJ1OBg4cyJEjR0hJSSExMZGGhoYWqbvRf/fSv2q1GpPJREpKSrvb0VPRqLCjgu6E3++Xv3/jjTe4/PLLGT16dAeu6MyzZcuWEwpCCU4f4fqfAcxmM1dddRXr1q2jvLwc+OG0tK1IrOSklpSUkJ6eTlxc3HEjtpFIhNWrV3PNNdcwZ84cli1bRigUOqGRFhqN5pja1h+7/ni3BwIBNmzYQFFRET6fD4/H85PPJxB0JjQaDbNmzeLLL7+koqJCrulq67Qk+hRm//79Z0yj0rqAk9Jo6+cVGhV0B4xGI1dffTXV1dXyaBeFQiF3qo3WqjQuTTo9zc3NJTY29oxoVEr3F3ZUcK5TV1dHcXFxRy/jjLNz504cDodIsz8LCKf0DJGXl0ffvn359NNPjxkLEx0xja6FMRqNPzqHFI46t6tWrWLfvn0cPHiQBQsWnNDYGYCmpiaam5vbTFkKhUI4nU6sVisVFRUcOHCAQ4cOYbfbWzx/OBxm69atOBwOJk6cSGpqaosTKIGgqzBw4EBZo9ENj+CHNMBoIpFIi9OUE9FoaWnpSWvUbrcfs+luS6OHDh3iyJEjQqOCbolSqcRmszFmzBiqq6vJy8sjNja2he4kZ1SypdJX9M9t6a69NSp9BYNB7HY7jY2NVFRUUFpayuHDh3E4HC2ePxQKCY0KugVPP/10t24C5Pf72bFjB06nU4xtOguI9N0zRHJyMlOnTuW5557jsssuIysrC7VajUqlIhgMyk0StFotcHTTWVBQQGVlJc3NzXJ6YDRSPU1WVhYajYZwOEyfPn1OqFFCJBLB6XRiMpnQarWEw2E8Hg9Op5Pdu3dz8OBBdu/ejdfrpbKykvr6esxmM/379+faa69l2LBh8ibhrbfeYsKECSQkJIjIkaDLotfrmTp1Kv/5z3+47LLLMBqNLeYFtg4eKRQKevXqxWuvvUZTUxPJyck/qVHgpDTqcDgwmUzo9Xp5/IzdbmfPnj2yRj0eDxUVFTQ1NWE0Gunduzc333wzgwYNQq1WY7VahUYF3YKLLroIgD/96U8MHz6cpKQkbDbbMc6n5JiGw2ECgQCHDh3CarWekEYjkcgJaVR6fofDgdFoxGAwEAgE8Pv9uN1udu3axaFDh/juu++wWq2Ul5dTW1tLfHw8w4YN48Ybb2TgwIGo1Wqam5tZtGgR48ePFxoVdGlKS0tZvnw5l156aUcv5Yxw8OBBnn/++Y5exjmDcErPAJKhHD9+PEuXLmXJkiXcdddd+Hw+jEYjfr+fjz76CJPJxNSpU9Hr9ajVauLi4oiLi6OxsZHCwsJj6tok43vDDTeQlZWF3+9n6tSpJ1SHEgwGWbt2LSqVipUrV1JcXExDQwNHjhzBbDbTu3dvuc4uJSUFOBoRXr9+PX/729+46aabGDhwIG+88QZWq5XzzjsPk8l0xt5DgeBMEq3RZcuWsWTJEq6//npZb+FwmBUrVmAymRg7dqx8m9FoxGg0Hre+pLVGg8EgU6ZMOSGNhkIh1q1bh0ql4vPPP6ekpASr1crBgwfRarXk5+eTnZ1N7969SUxMJBKJYLfb2bBhA3/+85+5/fbbGTJkiOw0jx07VmhU0GWRNDpu3DgGDBjAkSNH6NOnDwcPHgSOduqVZgS7XC4CgQCRSIRAIEAgEKCpqYlwOHyM9k7HjobDYdavX49arWbZsmWUlpZSWVnJ7t27aW5ulh1UyTkOhUJYrVaKi4vZsWMHv/71rxk6dCivv/46DQ0NjBw5UmhU0KVxu9384x//YOTIkaSmpnb0ctqdxx577IQ6bQvaB+GUniGk+Wlz5szhySeflE9LJWO1ePFi9u/fj0ajYcqUKSgUCmJjY+nfvz+bNm1i5MiRbUZulUoliYmJXHnllcCPz0eUWuVHIhHq6ur4/vvvsVgslJaWotVqmTBhAvn5+fTq1Quj0SgbeImcnBz69u1Leno6zz33HLGxsTQ3N+Pz+bBarWfuzRMIzgKSRq+66iqefPJJZsyYIY+NCQaDfPrppxw8eJBHHnmEYcOGoVar5ZPJLVu2MGzYsDb1J2l0zpw58m0/pVGA2tpavvvuO+Li4ti7dy+hUIgBAwZw0UUX0aNHjxadRKXXTU5OJicnh4yMDP7973+TlJREVVWVnEYoEHRlpMZF1157Lb/5zW8YOnQoZrOZ5uZmtFotarVarvF0OBzyaabb7Wbz5s0MHTq0zZKYU9FoOBympqaGrVu3snXrVpYuXSrbaOkat9stb2Al2+vz+VCr1ZSWlvLHP/6RXr16sXXrVmJjY8VmV9AtWLduHTt27OCCCy7o6KW0O9OmTWPRokUdvYxzBlFTegaIrhPNzc0lLy+PDz74QDZSUh1MamoqL730Ejt27JBPYc4//3w2b95MQ0MD0LJTX+vn/6l0I+n1wuEwq1evBuDhhx/mwQcf5MEHH2TOnDkMHz4ci8WCVqtFpVK1qMtRKpXodDouuOACioqKcDgcPPTQQwwaNIgvv/xSdCMTdFmiNdqzZ09yc3P55JNP0Ol0LTSanZ3N/PnzKS0tBY42Iho3bhzr16+nqanpuGMkonX0UxqFo5kMX3zxBQB33nknN954I7fddhtTpkyhd+/e6HS6FvqEHxowaTQaxowZQ15eHhUVFVxxxRXk5uayatUqoVFBlyVaowUFBQwcOJDy8nJ69uwpp92qVCq0Wi0KhUKuyQyHwzQ3N7NkyZIWjmpbvR1+SqPRddqSHd21axder1fuZO9wOPB4PLhcruM2PwoGg3g8HiorK1m7di0ul4uysjI+/vhjoVFBlyccDvPqq692y5rL8ePHYzQaO3oZ5wzCKT2DSPWb559/Pl999RVVVVWEw2HZoZw5cyZZWVn861//or6+nkgkwtChQ8nOzuZ///sfbrdbfq5TEXs4HCYUCvH999/zwQcfMGfOHLKystDr9bITGu3YtvUaSqUSk8nERRddhEajISEhgalTp7J79265o7BA0FUxmUyoVComT57MunXrqK+vlzfDKpWKGTNmkJ2dzauvvio3Cevfvz/Jycm89dZbLTR6skgObTgcZt++fbz33ntceumlJCYmotPp5FnFP+XYwtHa9GnTpsl6HThwINu3bxcaFXR5jEYjHo+H888/n8bGRpKSklCpVIRCIUKhEG63W9ZJTEwMSqWSYDDIwYMHefXVV/F4PCekoeMhOaT79u3j5Zdfxu12H9Mpt/Ws1OjO2NL3Ho8HnU5HIBDA4/EQDofZuHGj0KigyxMOh1m3bh3Lli3r6KW0O2lpacyYMaOjl3HOIJzSM4TT6eTAgQOEQiFGjhxJVlYWy5Ytw+v1Ake7BiYmJnLbbbfh9/t5+eWXsVqtmM1m5s6dy7fffsvy5cvlOpmfGuwtEX1tOBymrKyM//znP4wePZqpU6cecxIKtGlAW9+en59PZWUlNpuNzMxMQqEQR44cEelHgi6LpFGVSsWoUaPIyMhg5cqVLa7R6/Vce+21eL1e3nvvPTweD1qtlssuu4w1a9awfPlygsHgCXfuhJYb2EgkQkVFBf/4xz8YNGgQI0eObKHP1t1D2zrZUSgUqFQqcnNzqaurw+PxkJiYiNvtFhoVdGmcTicHDx7EbDZTUFBAnz598Hq9mM1mOWjjdrvxer0Eg0H0ej0KhQKv14vX6+XNN9+UNXqiNlQi+trKykqeeOIJiouLcbvdBAKBFvPGJf1H67o1wWAQtVpNMBjE7/cTDoepra0VGhV0abRaLampqcTFxbFmzRqcTmdHL6ldsVgs9O/fv6OXcc4gnNIzgNPppLGxEZfLxWuvvUZ1dTWzZ89m+fLlNDQ0tEgl6tOnD/feey9ffPEFK1euJBwOU1hYyLXXXst7773Hxx9/fNInplJr+oMHD/L000+TkJDADTfcQExMzDHXte40KhH9s3TiqlKp0Ov1xMbGYjKZsNvt1NXVnc5bJRB0CNEafeGFF2hqamLWrFmsXLkSm80GHA0cqVQqMjIyuOWWW1i7di3ffPMNwWCQzMxMrrzyShYsWMAnn3wip+6dTPDI7/dTXFzME088gcViYc6cOeh0ujavhePPJZUawvj9fjn9WOrgKzQq6KpEa/Tll18mEAgwe/Zs6uvrW3SsVSgU+Hw+TCYTHo+HuLg4lEolzc3NNDY28ve//52lS5fidDpbdNf+MSQd+/1+SkpKmDdvHhs2bMDn8+H3+1sEh6IDUsezo1KQSa/XEwwGUSqVhEIh/H6/0Kigy6JUKomPj+fSSy9l/vz55OXlsX79+o5eVrujVqvlSRmCM4twSs8AUsc/h8PBypUrefLJJ4lEIiQnJ/P111/LUVs4Wg82atQo5s6dyyuvvMLu3bvl5ke33norb775Jn//+985dOjQTw7rjm7y8P777/PAAw+Qm5vLL3/5S1JSUuTI8o89Fn6oRY02zKtXryYUClFaWkpVVRUOh4PY2NgT6lgoEHQ2Wmv0L3/5C5FIhLS0NDZt2tRCJyqVioEDB3LFFVfw9ttvU1FRgVKpZOjQocyZM4dXXnmFf/7zn5SVlf2kYxqt0SVLlvCrX/2KpKQkbr755hYzUNt6fHQGROv7fT4fX3zxBRqNBqvVSkNDA263W2hU0GWJ1ujnn3/OM888g1arZeDAgQByLSkcPYVsampCrVYTDoexWCxEIhE8Hg+lpaXcf//9/O1vf6OsrEx2TI+n02iNfvTRR9xxxx0sXboUh8OB3++XH9c6w6h1FoMUzJVeQ6VSYbPZ0Ol06HQ6DAYDZrNZaFTQZVGr1YRCIWJiYhgxYgR33XUX+fn5Hb2sdudkMqEEp4fovnsGCIfD6HQ6srOzycjIYPTo0SxYsID09HRWrlzJ1KlTgR82nnq9npkzZ7Jv3z5eeOEFHn74YbKyshg/fjxJSUnMnz+f++67j0svvZQJEyaQkpKCXq9HqVS2OHX1eDxs376dJUuWUFNTw4033sikSZOIi4trEcE9niFu/a/kkG7bto2lS5eiUCj417/+RWxsLFlZWSQnJxMMBuW0JIGgqyBpNCcnh6ysLEaPHs3ChQvJzMxkw4YNTJ48+ZhAzdSpU9m/fz9vvPEGv/jFL0hISGDw4MEkJCTw3nvv8ctf/pJLLrlE1m20kym9ptvtZvv27Xz00UeUl5cza9YsRo8eLacdRmuztSbbqv0OhUJ4PB527tzJ8uXL8Xq9fPDBB1gsFnr37k1ycjJer1euZRcIugqtNTpmzBjeeust0tPT2bJlC2azGYfDIWs0GAzicrnQ6/XodDpMJhMul0s+kXzzzTdZvXo1119/PZMnT25Ruw3IKbRer5etW7eyYMECvv32W6xWKy6XS07TB+STTjh+Sr2E5HCaTCa8Xi9xcXE4HA70ej19+vQhOTlZtuNCo4KuRCgUwm634/V65f1iXl5eRy+rXWlsbGTz5s1yHftPHQ4JTg/hSZwBpCiowWAgOzub1NRUrr76av773//Kf+ASUvpPUlISP//5z/n1r3/N4sWLufPOOzEYDPTv359HH32UnTt3snr1ah566CF0Op08D0qpVMp1p/v37yc5OZlx48bxm9/85kdPR1s3ZZAMotR0IRgMYrPZ2LFjB8899xxGo5HrrruO2tpa1q1bh9Vq5cCBA2RnZ9PY2EhycrIwqIIuQ7RGMzMzZY2+8MILVFdXs3PnzhbXS01U7rrrLh566CGWL1/O3Llz5VrOn//85xw4cICvv/6ajz/+GKPRSEZGxjHdO6WxTEOHDuWmm24iISGhhfPZVjOW6A2vtBEOBoN4vV4aGxv5/vvvee+99zAYDAwZMgSbzUZxcTGNjY2UlJQQHx9PfHz8Men7AkFnpi07+rOf/Yznn38ev9+PUqmUx5hJI1l8Ph8ajQa3243BYMDr9eL3+wmFQvJp6p/+9CeeeuopioqK6Nmzp3ziKmlq165d1NTUYLfbiUQiOJ1OIpGI3PG39ezTtoJG0T0bpOCUQqEgLi4Os9mMTqfD7XZjs9k4ePAgBQUFOBwOLBbLKTdkEgjONpJd+/bbbykrK2PXrl3Y7Xbmzp3b0UtrNxITE/nVr37FgQMHsFqt1NXViVPTM8hPOqW33HILS5cuJSUlhd27dwPQ1NTE1VdfzeHDh+nRowfvvvsu8fHxRCIRfvGLX/Dpp59iNBp54403GDp06Bn/JTobkhFSq9UUFhZSXV3NhAkTuOGGG/jnP//JunXr8Hq98smIZMAyMjK47777qK2tRaVSEYlEUCqVmM1mRo4cydChQ7FardTX11NRUUFZWRnBYFA+lb3llltISUkhLi4OnU7XIg23rZPS6PQl6cTTarVit9vZt28fn332GYcOHWL48OFMnDgRt9uNXq8nPj6ePXv28NRTT/HAAw9QUFAgP4/X60Wv15/ld/zcRmj05InWaK9evaisrOTWW28lGAwyb948Nm7ciM/nA1puNs1mM3fffTdNTU3y5lQandS/f3969eqF3W7HbrdTW1tLdXW1nEmQkZHBJZdcQkJCAiaTST6hUSqVLdIJoz8XojMhwuEwwWCQ+vp6OSi0ceNGamtrGTx4MMOHD6empkau+z5y5Ah/+ctfeOihh2hubsZoNKJSqYRGOwCh0ZMnWqP5+fmUl5dz+eWXM2fOHJ577jnUajU2m00O2kgnGR6PRz6VjHYOJT2Hw2EcDgdNTU18++238m2S7iS9hsNh+QQoHA7L80ZVKlWL0xLp9aPTdKVgsFqtRqPRoFKp6N+/PxkZGRw+fJjm5mY0Gg179+7lD3/4A4888giFhYWYzWah0Q5CaPTkkf7mt2/fTnl5OePHj+fqq6+mvr6eu+++G41G08ErbB8mTZrECy+8wD333CPqv88wP+mU3nTTTdx7773ccMMN8m1PPvkkU6dO5be//S1PPvkkTz75JE899RSfffYZJSUllJSUsGnTJv7v//6PTZs2ndFfoDOjVCopKCjgo48+wmw2c/7556PX63niiSdwuVwtTijhqPEdNWqUPDAcftgQazQaNBqNfLIzcODAFqcnbUVXW98u1bdIM9NcLhdOpxOXy0VJSQnl5eUUFxdTVVWF2+1m8ODB3HnnnRQWFspGu7m5mcrKSgwGA6WlpTzzzDPcfffd8miNmpoa8vPz22zYIjgzCI2eOkqlkp49e/LRRx+hVqu5+OKLCYfD/PWvf8Vms8nOoaQllUpFv379ZD1I+pI0LKUOJicn07Nnzx997eigERw18FJXz1AohMvlwm6343Q68Xg8HDp0iIaGBg4fPozNZiMUCtGnTx+mTZtGZmYmCoWChIQErFYrR44cQavVUltby7x58/jNb34j17JVVFQIjZ5lhEZPHaVSSX5+PkuWLCEtLY1rrrmGmJgYHnvsMZqbm4+p5wwGgzgcDlm3rbOCpLrQaF231TwsOvNHqp2LDiJHa1+aMy7Zc5/Ph8ViQa/Xk56eTs+ePTEYDITDYfr27UtTUxMVFRXY7XZsNhuPPPIIjz76KCaTSWi0gxAaPXWkwGlsbCwNDQ385je/IS0tjauvvrqjl9ZuTJo0iWeffZa5c+fKs4V9Pp84NW1nftIpnTBhAocPH25x25IlS/jqq68A5LrFp556iiVLlnDDDTegUCgYPXo0NpuN6upq0tPTz8TaOz0KhYL09HSqqqrwer2kpaUxfPhw+vTpQ0VFBX369GlxKiJteqP5sZS+1vdLTq7P56O5uZmmpiYaGhoIBoNUVFSwf/9+nE4narUav99PXV0ddrudmJgYFAoF2dnZ9OnTh6lTp5KamkpMTIycHiWtKz4+Hp1OR3l5ubyhfv755zEajfTq1UuewyaM6dlDaPTUidao0+nEbDYzYsQI+vTpw8GDB8nPz2+z1qv1z6112JZuWzufTqcTu91OQ0MDPp+P2tpaDh48iM1mkyPMjY2N8roikQiZmZn079+f1NRUEhMTMRqNLTbICoWC+Ph49Hq9/DehVqv529/+xu9//3sGDRqERqMRGj3LCI2eOgqFgoyMDFmj6enpjBw5kiFDhrBq1aoWJSfR5SjRj4eWtditg0nSv9EObHR6sOR4Sh25pVnjkm1UKpXExcUBkJKSgtlsxmg0YjAYUKvVxwSZJTt65MgRuSbvj3/8I48//jhDhw5Fr9cLjZ5lhEZPjyeeeIJx48YRCoUIBAK89tprTJ8+nYSEhI5eWrsxZcoU3n77bR577DF27twpB7gE7ccp1ZTW1tbK4ktLS6O2thY4OssrOztbvi4rK4vKyso2hfrSSy/x0ksvAVBfX38qy+gSSG2kGxoayMrKIi0tjbFjx7J582Zyc3MBZAMa7ZxG0/qPPjpdSLrWbrfz/fffs2XLFg4cOEBVVRUADoeDtLQ0EhISUKlUpKamkp6ejtFolOtk0tPT5W6F0QY9erMbvRaj0UjPnj3RaDRytPnZZ5/loYceIisrC7PZ3M7vouBkERo9cSSN1tfXk5mZSVZWFtOnT5cdVmlT2lYTomja0ql0uxQsKi0t5bvvvqO8vJza2loikQjNzc2kpaXJm9qMjAzS0tIwGAwEAgG0Wq3c3Cw6vbf160T/bDAYKCgokDUaDAZ5+umn+ctf/kJ8fLzQaCdAaPTEaa3RjIwMJk2axDfffCPP/m6dOfRjY85aazUcDsvOoxSAValU8mglpVKJxWKR67K1Wi1ms5lwOIxWq5XLbLRarZxyHwqFZKe2LdtuNBrJz8/n8OHD8uibxx9/nH/+858kJCQIjXYC2luj3RnpvcnOzmbHjh189dVXLF68mNtuu62DV9a+TJ06FY/Hw+233y6PjxO0H6fd6KitD/8T4Y477uCOO+4AYPjw4ae7jE5LZmYmubm5lJaW0rdvXzQaDdOnT2flypXs2bOHUaNGtUjjkxzBtupAW29EA4EAR44c4auvvmLt2rU4HA6SkpIYPHgwY8eOJSUlBZ1OJ6f+RtNW9FjaeEtR4x9ruqLRaMjMzJQdWKvVyiuvvMIvf/lLdDod8fHxomFDJ0Fo9MdpS6Pjx49n8eLFHDp0iAEDBrRIA2yroVdbnXMlbdTX17N+/Xo2bNiAw+EgMTGR/v37M2jQIGJjY1EqlWi1WrmOPPrUMxrpxLZ1DVtba1EoFGi1WnJzc+XUqubmZp5//nkefPBBGhoaSExMFBrtJAiN/jjRGu3Tpw8ajYbJkyfzxhtv4Ha7cblcAHKgVXIMf+w9ld5zqSZcqmGNjY3FYrGQl5eHVqtFo9G0yBiK1mh0iYwUoJWQbO7xsp0k3Utp/o2NjdTV1fHMM89wzz33oNfrhUY7Ee2h0e78f9nY2EgkEuEPf/gDS5cuxe/3s2/fPgKBQLepLZWYMmUKw4YN44svvsDj8Rxzv1TfLjh5TskpTU1NlVMVqqurSUlJAY4ajvLycvm6iooKMjMz22elXRS9Xk9OTg5VVVWykbRYLBQVFbF8+XJ5dpl0W2JiYpvPE+2ohkIhnE4nH374IUuXLkWn0zFy5EiKiopITk6WT0ekx7XF8U5lT/RDU6lUotFoyMjIwOfz0atXL9avX8+mTZsYN24cQLdK2+hqCI2eOK01CkfHNxQVFbFu3Tq0Wi02m00+fTQajS2cwtZpu9LtPp+Pzz//nNWrV6PRaBgwYAB5eXnEx8e3cGzb0lxbJ6FtBZJ+DIVCITdBc7lc5Obm8t1337FhwwZGjRqFUqkUGu1AhEZPnGiNBoNBtFotSUlJjBkzhtLSUpKSkmhubpb7MUSfnrbWUnRwSavVyoHbjIwMsrOz5dTb1jXjrfUu3X4qdjT6edVqNVlZWTgcDoLBIBs3bmTatGn06NEDm812zEg3wdlDaPTEkfqVmM1mWWdvvvkmDzzwAGlpaR29vHbFaDTy+OOPc91117Fv3z65hEBCjI05dU5phsdll13Gm2++CcCbb77JzJkz5dvnz59PJBJh48aNxMbGntM59nA0WnrhhRcycuRIdDodoVAIt9uN0Whk+fLlPP/88yxYsIBnnnmGhx9+WE7BaittVnJIt23bxkMPPcTKlSu59NJLueeee5g8eTKZmZmo1eo2jWdr2sPIqVQqjEYjWVlZJCUlMWTIEN5//315A99WBElwdhAaPXHa0qjL5cJsNvPVV1/x1ltvsWzZMubPn89TTz2F0+mUH9uWTiORCMXFxfz9739nzZo1TJw4kWuvvZbhw4eTlJQk16D9WORduq89dCql2xuNRvLy8li4cCEOh0NotIMRGj1xojVqNBqBoxpJTEwkJiaG1NRUBgwYQG5urjxypXXKvfQYyRGMjY2Vgzbjxo1j6NChpKWlYbFY5DTeaA1GazL6lPVEHdDjoVQqMRqN5ObmolKp0Gg0vPrqq5SVlaHRaIRGOxCh0ROnoqKCm266iVWrVslOWY8ePeTU++7GgAEDuOqqq+T0/WhEnemp85Mnpddccw1fffWVXBP5pz/9id/+9rdcddVVvPrqq+Tm5vLuu+8CcNFFF/Hpp5/Kpwmvv/76Gf8FOjsKhYL+/fsDR6MnHo+HDz74QG4FP2jQILRaLV6vt8UomNZEIhF8Ph/bt2/n73//OwUFBcyaNUueD9q6YcPZiqwqFArMZjOJiYkEAgF27NjB+vXr6dGjB4FAQE6JEpw5hEZPj2iNRiKRFhp95JFHKCgoQK1W4/F4qKmpkecVtlXfGQ6HKS4u5oUXXiAnJ4crrriC2NjYn6wTP1O/l/Q6cXFxJCcnEwgEKCsrkzUaDAaFRs8CQqOnh0KhoFevXnLQ1ePx8Oabb7J06VJ69+6N3W7H5/NhNpvR6/XY7Xbgh8640U3GVCoVcXFxaLVa8vPzyc3NlcevRI9nOhGH83SJ7uYbFxdHXFycPPLtq6++kjOfJEdccOYQGj09wuEwCxcuZOHChQD069ePRYsWddtsHKVSydVXX82CBQsoKyvD7XZ39JK6BYpIJ3Dphw8fzpYtWzp6GWccv9/PihUrePHFF5k3bx75+flylCXaELZGmk/4ySef8M4773DhhRfSv39/ORrcuvb0bKb6SH8+LpeLffv2UVJSwp49e/jXv/5FUlISsbGxZ20tXZ3OrIPOvLb2JBQK8fnnn/PCCy/wyCOPkJiYiN/vlzXauslY9Men3+9n7dq1LFmyhEmTJtGrV6820+g7QqMKxdFxTnv37qWiooKGhgaee+45MjIyREOVk6Az66Azr609kJoDGo1GVq9ezbx580hLS2PHjh1yhlF0RpHUaAh+mEOqVquJi4tDo9EwcuRIkpKSZEdV4kQyjdqL6NcKBoO43W6+//57gsEgCQkJ/O1vfyMzM7PbpT+eSTqzDs6VNGyNRsOqVauYMGFCRy/ljBIIBLjnnntYsGCBXNcuODGO53qeUvqu4NTwer2sXLmS8ePHk5ubi1KpxOPxyBGWthzSUCiE3+9n06ZNfPDBB1x44YUMGTIEvV7fKT7gpE26TqfDbDaTlJSE2+1mz549OBwOUewt6FKEQiFWrVrFiBEjiI+Px+v14vf78fv98jXRTmV0x+q9e/fy6aefMnXqVAoLC4FTb47RnkjOs8lkIi4uDpPJhN1uZ/fu3djtdqFRQZdg6NChJCcnEwqF+PTTT9Hr9ezdu5eGhga5sRG07Jcg/W1LDZAsFgtGo5Hhw4fL9YEdqc/o11YoFJhMJhISEvD7/VRXV1NeXi6PgxIIugqFhYWyDezOaDQaZsyYgcVi6XA7310QTulZIhgMYrfbcTgcjB49Gq/Xy6JFi/jlL3/JvHnz+Prrr/F4PC0KpKUOnjt37uSZZ57hggsuYMiQIajV6hZz0qLpKGGo1WqSkpIwGAxkZGSwbds2gBb1dwJBZyYUCtHU1ITT6WTIkCG4XC5WrVrFk08+yXPPPceuXbtaNDSIPi3dv38/L7/8MuPGjaNnz54tUupb0xEalTqHJiUlyRvfXbt2YTQahUYFXQYpo6i5uRmHw0FjYyMWi4XY2FhiY2Plub3RY80knUrzuIcMGUJGRob8nB29mYxueiTVyWq1WhQKBVu2bCEcDuP1elukIQsEnZlrrrnmnKmxzc/Pp6ioqEW2heDUEU7pWUIaui11BayoqKCqqoq6ujqSkpLYsWMHHo9HHj0hbXZdLhcLFiygd+/e9O3bt1P/4UuNI7KysuQh1BaLpWMXJRCcINKm0OPxEAwGOXLkCMXFxdTU1GA0GtmxYwcOh+OY0w2Px8M777xDQUEBeXl5nVqjFosFvV5PcnIyBw4cwO/3C40KugRSg7BQKITdbqeiokKeBypl6qjVakwmk1ynKWGxWFCpVPTp04e4uLgWI2PaCux2VOBI6tGg1WrRarUcPHiQQCAgzygWCASdi969ezNs2DCRcdROCKf0LKFQKDAajVgsFoLBIEVFRdx444306dOHnJwcbr/9dnlmoXRCGg6HWbVqFY2NjcyYMUMe4t3Rkd3joVarSU5OJjY2lrKyMj755BNcLpcwpoIugZQ+FxMTQzgcpmfPnsycOZOcnBwyMzO56qqriIuLa3E9wIYNG7DZbJx33nlyE6TjnZJ2NJJG9Xo9hw4d4sMPPxQaFXQppM65oVBI7regVCrx+/243W7cbneLxkaRSAStVktiYiKFhYUtgkad0ZZKWUfhcJjdu3ezcOFCXC7XMTXsAkFnpaysTD6A6e5otVpmzpzJhRde2NFL6RZ0zp1TN8ZoNLJ7924UCgXx8fEMHz6ciooKOcoiGcxIJILVamX58uVMmDBB3gx3RiMKP0R5ExMTSU5OZvTo0XzwwQc899xzVFZWihRBQZdApVJhNpvZv38/arWa9PR0hg4dSmNjIxqN5pju2FarlS+++ILRo0djMBg6RQ3p8ZDWlpSURHJyMj169GD+/PmyRs+VTYSgayOd9BsMBoLBIIFAQK79jkQihEKhFsHb+Ph49Hq93MdBCvyeSuBIcnLPlHMYbUelBmQvvPACzz77LE1NTUKjgi7B6tWraWho6OhlnDXGjx/P22+/zZw5c9DpdB29nC6NcErPIsFgkEmTJrFlyxbq6+vR6/VMmzaNCy+8EK1WK3cKlDhy5Ah+v59evXoBHeeQnowRNpvNFBQUUFRUxLBhw/joo484ePAgJpPpDK9SIDh9FAoFkydPZseOHbhcLtRqNRMmTGDKlClyQ6Po1EDJmevRo8dZH8cUzYlqVEoPzMvLIycnh8LCQj744ANKSkq67Tw5QffC4XAwdepUTCYTJpNJnv3tdrvluktJC2q1GoVCQWxsbLt0sD2d+cEn49CazWZ5VI1Wq+Wtt95i165d8ugagaAzU1tby549ezp6GWeV+Ph4rr766hZNEQUnj3BKzyJxcXEMHDiQzMxM/ve//1FRUUFMTAyFhYVoNBq5jT0cbWG/ZcsW0tLSiImJ6bTpgK2RNr1ZWVlkZWVhMBhoamo6pomTQNDZkDp0jhw5kt69e/PRRx/R0NCAXq8nJyenRfqclDq4e/du0tLSWswRPJMnKaeL5FDHxsaSm5tLfHw8cLQhmd/vF3Uxgk5NJBIhLi6OCRMmMHPmTEwmE2q1Gr/fj8/na3ECGolEZKc0unlQR2QznMzngbQ+SaNKpRKn04ndbu+0nysCQTQul4uXX36Zpqamjl7KWWXEiBFoNJqOXkaXpmt4Ot0EKTXw2muvpbq6moceeogFCxZQUlKCzWZj69atrF+/Xk5JKikpoWfPnsecoJ5tjmfEfyzyq9FoCAaDaDQazGYzNTU18kBzgaAzIv2dNzc3M3fuXBobG3nmmWf4/PPPKS8vJxwOc/DgQbZs2YLf70ehUHDkyBGysrI6PGh0PI0ebxOuVCrlUxetVovFYsHtdotZa4JOjRRUUSqVXHzxxUybNg2TyYTBYCA2Nha9Xo/FYsFkMqHRaNBqtej1etLS0giFQh2WbRStwxNZg3SdlEFlNpuxWCwEAoGzsFqB4PT55ptvePDBB2lubu7opZw1amtrSU9PF1lHp0HHejvnGD6fD4fDQXJyMr/5zW/49ttvWb16NR999BHl5eWkp6dz3XXXEQ6HaW5uxmq1EhcXJ9fAdEaiDazUoEmpVFJVVcW6devIy8sjNzcXhUIhUo8EnZ5AIEA4HCY+Pp4HH3yQLVu2sGLFClavXk1ZWRmxsbFccsklDBgwQD69iK737mzNSKR049YoFAqsViu7d++mX79+5Ofnc+jQIfLy8jpglQLBiRMIBGhqaiI3N5eHH36Yiy66iGXLlnHkyBH27duH3+9Hr9e3qL/8sTqv6LnDHYH0edHalsLR2ebNzc2MHj2aoqIiXC4XKpVKnMYIOj3V1dUsWLCAQCDAr371K/r169fhwdszidVq5bXXXsNms8mj4zrbfqArIJzSs0hzczOhUEjOOR87diznnXceTU1NLFy4kLi4OCZPnoxWq8XhcMhDwaU/7NajKDr6jz16PVItj8fjobS0lPfff5+4uDhuueUWjEYjXq8Xj8cjHFNBp0aK6vp8Pvbs2cOkSZPo06cPDQ0NLFu2DK/XS58+fVAqldhsNmpra1ukpbc+jeloR1VaS/TrBwIBKisrWbFiBenp6dx22204HA5iY2M79TgbgQB+sKM6nQ6bzYZKpWLOnDkkJSXx7rvv8uGHH1JfX08wGCQUCsn/QssgjZTq25ZTGM2Zdlrb+nwIhUI4nU7Ky8sZOnQod999NwANDQ0olUo57V4g6KyoVCrcbjdLly5l+/btDBo0iISEBObNmyc38eou+Hw+li9fzmeffYZarUaj0cjlBIKTQzilZ5Hk5GTC4TAmkwmr1UowGEStVpOSksKYMWNYsmQJcNQIBoNBPB6P/Fjpj9vlcnHo0CF69+4tj59oL4PZ1ga2tcGU0nWjrw2HwzQ0NHDgwAE2b95MIBBg9uzZjB49Wv7w0ev1otmRoNMTrdH09HRUKhXJycn4fD6mTp3Kyy+/jMFgQKlU4vV6cbvdLR6vUCjw+/1UVFR0yKljW0ZQus3hcFBRUcGOHTtQKBRcddVVTJo0iZiYGHw+H3FxcS1qYwWCzoikUaPRyIYNG8jJycFoNNLY2MiYMWNYuXIldXV1wLGZAgqFgkAggEajobm5mbi4uDNeY9qWjW5tU6Umaj6fD6fTSUVFBcnJydx1111MnDiRxMTEFnNMBYLOjnRaaLPZ0Gg0fPLJJ3JA5dFHH+3g1bUP4XCYjRs38q9//Yv169fj8XgwGAw4HI6OXlqXRTilZxGFQiF3ADQajfKJqcvlIjc3F6fTSWNjI3FxcahUKnQ6newUSs0OlixZQjAYlOetRbe+P9WojPQa0fWh0Sc8raPL4XAYv9+Py+Wiurqa3bt3U1ZWhtlsZsqUKQwZMoTY2Fh57qPRaJSbyAgEnZlojQ4ZMgRAro2WGqoEAgEUCgUajeaYk3+/38/q1auJRCL06NGjhW5OZ+PbVnCorROW6Nfx+/14PB6ampooLi6mrq6O+Ph4ZsyYwfDhw2WN6nS6FptegaAzE63RK664Qg7iOhwOamtr5ZpSn8/X4jHR87/3798vb5Cjs5Gka1u/3vH4MV1L90n3S6NqVCoVgUBAfr1gMIjf76ehoQGPx0NGRgY33XQTo0ePxmKxoFarUalUWCwWjEZjh/eYEAhOhlAohNVqJRwOYzabqa+v7+glnRaRSASHw0FJSQmvvvoqK1aswGaz4XQ6CYfDctNAwakhPt06CJVKhcFgkGesxcXFkZ6ezrZt28jPz8dsNhMfHy9HUAFqamr44osvmDhxIpWVlWRkZKDRaGTHtPWm8nj1ZNG0blTU2vmU7rdarTQ3N9PU1ERZWRkHDhyQHehBgwZx9913k52djdfrlTcMgUBAdq4Fgq6KWq2Wu3j26NGD0tJScnNzsVgsJCcnt5gt3NDQwMaNGxk3bhw1NTWkp6fL9wHHbH5PxFltHSySvm+tW7vdjsPhwOFwUFVVRVlZGTabjcTERIYPH87NN99Mbm4uBw8eJCcnB0BunNKda30E3RfJQZMCngcOHGDAgAGUlpbKgSO1Wi3bSJVKRSgUoqSkhP79+2Oz2YiLi5PT7qPtbTQ/1kRMspVAi86/Umqw9KVUKvF4PPj9fvx+vxyEDgaD5ObmMm7cOMaMGUNMTAzbtm0jPT0djUbTormRaKAi6Ir4fD5ZW4cPH6ampqZdRjSdTXw+H9988w0HDhzgvffeY+fOnTQ2NhKJRNDr9UQiEdGIrB0QTmkHIxnNUChEYWEhu3fv5tJLLyUhIYG4uDiamppko+Z2u8nPz8dms7Fw4UL0ej15eXlkZmaSmZmJ2WyW89mlTXTrVNvWzRRCoRCBQEAePB4Oh6mqqsLhcBAIBNi3bx/19fW43W68Xi9Go1E2wGq1mt/+9rekp6fLDZmampqIiYkhHA6L+jRBt6GhoQGj0UhRURH79+9nwoQJxMbGYrFYaGpqIisri0gkgtfrJTc3l8bGRj766CMsFguZmZmkpqaSmpqKTqdDqVSi1WrbdATbclLD4TChUAifzydvrmtqavB4PAQCAYqLi3G5XHi9XlwuFwaDAbfbjcFgwGAwcN9995Gbm0tKSgoajUbOXhAaFXQnHA4HRqOR3r178+GHH8pOqNRROyUlRR7llJWVhdPppK6uDoVCQUJCgnzCqlKp5CwkaHvEk6TR6GBwOBzG6/XKo2iam5sJBoNotVrKysoIBAIEg0FcLhd6vR6HwyGPT/vDH/5AcnKyfDJaWFgo7KigWyHZx2+++Ya9e/d2Oaf0//7v/1i3bh2VlZWEw2F5wgQguta3I8Ip7QRIqbxDhw5l48aN+P1+TCYTmZmZHD58mNGjR8u1JAMHDmTChAm43W6qqqooLi7mq6++khsjSKlNer1ePuGR0n8k4yo5oeFwmEAgQGNjI9XV1eh0OpKSkuQ0hMzMTOLj40lLS6NHjx7ExsbKBvbAgQPs27dPbrggta7PyMjo4HdTIGh/EhIS8Pl8jB49mjVr1sh1acnJyZSVlTFw4EDgqJbz8/MZP348breb6upqSktL2bx5M3C0SYtSqSQ1NVU+9Yg+zQHk9HjJ4AWDQWw2G/X19ej1ehISErDb7QSDQdLT07FYLKSkpJCTk0NMTAxqtZrdu3dTVVWFzWYjEAhQXl5OVlaWnAYoEHQ39Ho9SUlJjBw5knA4jFqtJhAI4PP5aGxsJCkpSU6fTUpKIjc3F5/Ph91up76+niNHjqBWq+U68ejaTSkjSTqZDYfD8ug2yfl1u93yXOO4uDhsNhvhcJiEhAQ5QBSdWbFnzx58Ph8+n09uBJOcnIzBYDj7b55AcBaQUtX379/P5MmTu1S5yLfffktFRYXc1Tu6PEDQfgintBMgnX5YLBbsdjs1NTUUFhYyePBgXnvtNRwOB/Hx8WRmZpKYmIjZbCY2Npa0tDQGDRqEy+XC4/HgcrlwOp2EQiEOHz5MeXk5gUCAUCgkG0JpzptOpyMzM5OMjAxMJhOhUAi9Xo/ZbJZToXQ6HXq9vkWaktPpRKVSEQ6H0el0mM1m9Ho9fr9f1LoIui1KpZJwOIzFYsHhcFBfX0+PHj0YMmQIr732Gk6nE7PZTEpKipw1YDab6dWrFwUFBfj9frxer/wViUSoqKigsrISu90uj1KSjLQUTMrIyCAtLQ2dToff70er1WIymVCr1UQiEbRarZweL2nU4XDIqYPSfSUlJQwePFg0SRF0WySnMTExkfT0dKqrq2lqakKr1VJXVyf3YVCr1WRmZsqOa0JCAvHx8XKnXq/XSyAQQKvVYrPZaGpqkjOJJH1GpwNLp6zSCaxer5cdS6mZoVarbdG7wefzodVqCYVCGAwGmpqacDgccqMUgaC7otVqWblyJXfccUeXygKQMgsFZxbhRXQColPzsrKysFqtqFQqevfuTSAQoLq6mvj4eLRarXy6Et0FVxqsLaUQhcNh+eQmOs1IIrpupq37W9esRdexeTweeezL8OHDiYuLw+/309jYKDp3CrotUpq7Xq+nZ8+eeDweIpEIOTk58ngYk8mEUqnEYDAcs4HV6/XodDpZpwA9evQ4bnOy4zVeaSsVPzq9MBKJ4HK58Pv91NTUMHXqVHkkhtVqFU6poNsijVvTarX07duX+vp6eSPp9Xqx2+0kJCTI9Z3RSD9LWpX0ZLFYyM7OPm7zo9Z13ZK+pcCtFMySkLQqpfb6fD6GDx9OaWkpF110EU6nk4SEhDPy/ggEnQG/3095eXmXGpfyzTffYLVagaMBYymLSdD+CKe0E2CxWPB6vTidToxGIwcOHGD06NGkpqYybNgwNm7cSGFhIVqtVjZ28EM9i4Qk8tYG93hNGqK/b2uzG/1vIBDgyJEjHD58mK1bt2IwGJgzZ47sKAuHVNCdsVgs8rgGrVZLaWkpRUVFJCQkMHDgQL799ltmzZrVoo67rdnCrTvmthUUgmNrS3+sI6j0fTAY5MiRI1RUVFBaWkpycjKzZ8+msLCQYDAoRjIJujWSRl0uF4mJiXKandvtRqFQUF5eLneZbsvOHa/Z1/F0GN1dt3WnXalJYLRDKtWGV1RU0NDQQDAYpKioiCuvvJKMjAzhjAq6PdIBjBQw6gp4vV7eeOMNampqusyauzKi5WInQRqZkpubi9vtllPvLrzwQkpLSzl8+DCAnD5wvFz86MYLPzbiofX9bTVzkG4PBALU19eza9cuVq9eTWJiIn/4wx/Iz8+XrxPdOwXdHSndLzc3V46UKpVKJkyYQFVVFTU1NS2uPx2N/pR+WxOJRKipqWH//v1s27aNHj16kJ+fT25uLgaDgZiYGKFRQbdHagyUn58vp9gGg0G5OVhzc7NcwvJjna/b0mhbgaG2gsLR90cjabSurg673c748ePp06cPubm5cr2r0KiguxMKhYhEIuzevbujl/KThEIh/vjHP/Lqq68Kh/QsIT4BOwEKhYKkpCTS09PRarVUVVURCARQKpX079+fESNG8Nlnn8nNTeDUZ5KeytocDgcVFRXs27eP3Nxcfve739GnTx/Rnl5wziBpNDU1lVAo1CLSW1BQwNChQ1mzZg1+v19O2WsvjZ7IyBi73U5FRQUVFRX079+fhx9+mF/84hfExsa2yxoEgs5Oa41K9dYKhQKv10s4HKa4uJhAINDm2JfTfe2f0qlkR91uN5MmTeKPf/wjffr0ERoVnFOEw2EqKytZsGBBRy/lR2loaODCCy/kueeeE7WkZxHhlHYSpBEuSqWSw4cPy63rNRoNl112GXa7nW+//ZZgMNhmRPZkTlVOFGkoeXV1NTabjdraWqZMmUJ6enqXKlAXCNoDqflQfHw8Bw4ckGvTlEol559/Pk6nk++++67FrLLWujwT3QbD4TAVFRU4nU5sNhvTp08nLS2NzMzMdn8tgaAzI3WaNxqNaLVaub7b6/XidrspKyujtrYWv99/Vjp/SsGpUCgkj5IIBoNMmzaNhIQEbrrppjO+BoGgsyHVf3dmbDYbX3zxhRj3cpYRTmknQqFQkJeX18LhU6lU9OvXjzvuuIMNGzawd+9eeZxLdHOT46XfnirS80ndBysqKjAYDBQWFmK329vtdQSCroRCoZCzBKT0QKVSSU5ODjfddBPbt29n//798vWtT0zbO8MhHA7T1NREY2MjdXV1xMfH069fP2FIBecskUiErKwsEhIS5E7yki2LRCLs2rULt9tNKBSSg79nah3Sl9Vqpbm5mXA4TI8ePejXrx8ej6dLjcQQCNoLqRlYZ+app54SnbA7AOGUdiIikQgmk0keyhs9HmLcuHFcccUVfPLJJ/J8s2hHtD2Mm/R8Ugdfn89HRUUFNpuNnTt3MmPGDJKSkuQGEgLBuYZU+63T6QgGg3KHTaVSyZAhQ5g1axZfffUVxcXF8hiJ9tRo6xo3j8fD4cOH8Xg8HDlyhIsvvpjU1FQMBgOLFi067dcTCLoawWAQl8uFXq8HWgaGpBPTTZs2UVdXJ99/phxTSaNHjhyRZ4lfdtllpKWlYTQahUYF5ySdfbzK7t272bZtm9jrdgCi+24nQ6lU4nQ6aWxsJC4uTt7U6nQ6Zs6ciU6n47XXXmP48OFMmTIFs9mMSqVqkSbYusPniRDdRVAy0pWVlTgcDjZt2kR8fDwzZswgISGBYDAoz2UUCM41lEolHo8Hm81GSkpKi4YpEydORK/X8/rrr1NUVMTIkSOxWCxoNJoWY5xOlejsiHA4TFVVFU6nk3379pGens6sWbMwmUyoVCquvPLKdvl9BYKuhEajIScnh2AwKKcISrbN4/HIm+EdO3aQlpZGdnY28fHxhMPh43bDPhmiO/F6vV4qKyvl+cR9+vRh1qxZcuMxoVGBoHPh8/l45ZVX2L17t/yZcCKj2wTtg3BKOxGSIfP7/Vit1mM2sQaDgRkzZhCJRHj99depra1l3Lhx5ObmYjQaUalUclfBkyXaGQ2Hw9TU1FBRUcHOnTspKyvjoYceQqlUcvDgQQYMGIDP5yMcDhMIBPB6vaJZg+CcQKVSkZCQgNfrxWq1kpKS0uJ+pVLJqFGjCAQCvP322zQ1NTFgwABZo2r16X/kSh2xKyoqqKqqorS0lMbGRu699170er0cpJJSFwWCcwm1Wk1mZiZ6vb5FY0DJjkonlpFIhIMHD9LQ0EB2djZpaWmYzWY5tfBEA0itr1OpVIRCITweDzU1NTQ0NOD3+1Gr1dx6660YDAY59V9oVCDoXLz88su8/fbbx+3fcibLcQTCKe10GI1GjEajXBPWWgQ6nY7LLruMnJwc/v3vfzN//nxGjhzJoEGDSEpKwmKxyG3lo6O+0UYzOlVJen4pncLpdFJXV0dVVRVbtmyhpKSExMREDAYDFosFrVZLc3MzNpuNcDhMcnJyp68NEAjaE71ej8lkOqZuU9rMKpVKxo8fT1paGi+//DJLly6lX79+9OrVi5SUFOLi4mSNSv8eb5xE9IZX0q3NZqOsrIzGxkaKi4upqKggISGB2NhYdDodbrdbTjE+3ZNZgaCrIaXrSvO/4dhZpIFAALfbjdFoxG63U1xcTGNjI6mpqcTFxckabT3PVHr88bprSwEjq9VKVVUVHo8Hl8uFx+MhPj4ej8dDWVmZ3IxJaFRwLqJQKDrt9Ia0tDR0Oh1arZZQKEQwGJQ76gvOPMIp7UCCwSAqlQqbzQZAU1MTSqWSmJiYNueRSkZQrVYzdOhQHn30UZYsWcInn3zCvn37GD58OKmpqfLGV6PRoFarWxhSQDa20Sejbreburo6GhoaqK2tZdOmTQDce++9bN68mbfffpuSkhJ69OhBamoqOp2O2NhY6urqcLvdFBUV4XK5WjjFAkFXR9JodXU1Op0Oj8eD3+/HYrEcsymN3lyqVCoKCwv59a9/zcqVK/n888+prKwkPz+f+Ph4UlJSSExMRKfTyY5s6+eAHza/Usp8TU0NTU1NNDU1sX//foLBIFdddRX79+/n9ddfZ9++feTk5JCenk5SUhKJiYlyqqDY+Aq6I5JGGxoaUKlUuN1uAoEAJpOpRSqthGQHfT4fgUAAg8GASqWipqYGq9VKYmIiarWa1NRUkpKS5I6+x5tJKulTCupWV1fjdDrxer04HA55vJvX62XZsmU0NTVRWlpKWloaubm5xMTECI0KujWSU2c2mzGbzeTn55OXl9fRy2qTyy+/nH79+uH3+1m9ejULFy6ktrZW7p4NCCf1DCKc0g7C7/dTWVlJXFwcjY2NrFixgpKSEpqbmykpKWmRhhv9b3Tzo549e3L33XczadIk3n33XT799FPMZjO9evUiJyeHxMRETCaTXHcqGUepOUs4HMbpdOLz+WSHtLi4mPLycoYNG8a1115Lbm4uNpuNrVu3kpCQwIEDBwgGgzQ0NDB58mSmTZuGWq3G4XCQkJDQYe+nQNDeRGvU4/GwZMkSSkpKcDqd7N27l8mTJ8uZBtEnm9K/CoWClJQUfvaznzFy5Eg+/fRTNm/ejFqtJj09nbS0NOLi4oiJicFkMsmaV6lUssELhUI4HA68Xi/19fU4HA6qqqpobGykX79+TJw4kcTERGpra9m2bRtpaWns27ePUChEY2MjEyZM4KqrriI+Ph6dTtdh76VAcCaI1qjdbpftqMPhYM+ePbKWjjeWKRQK4Xa78Xg8GAwG/H4/wWAQtVqN0+nkyJEjxMXFodPpMJlMKBQKwuEwarVa1ngwGMRqtcrNAaXTUanExefz4fV6USqVFBcXk56eLjdCa2pqEhoVdGsUCgVGo5GYmBiuvvpqrrjiCsaNG9fRyzouKpWKPn36ADBo0CDuv/9+Nm3axP/+9z9eeumlMzLnWPADwintIPx+vzxX8Omnn0alUjFz5kzS0tJYtGjRMfWkrdP4JFFoNBoGDx5MUVERhw4dYs2aNaxZs4bdu3fLs9qys7PbTOt1Op2Ul5fLNaxGo5HCwkLuuusuhg8fLqf05ufno1QqueOOO8jKykKtVlNZWclLL71EcXExd9xxB0ajsQPeRYHgzOH3+2lubsZqtfKPf/wDjUbDnDlzyMzM5NVXX20zTT66067kZCqVSgoLC7nzzjuZNWsWGzduZMOGDWzfvh2dTodCoSA1NRWj0ShrTkoF9nq91NTUAOBwODCbzRQWFnL33XfTs2dPqqqq8Pv95OTksG3bNu666y7S0tIAqKys5L///S/z5s3jt7/9LVlZWR3wLgoEZw6fz4fdbsdms/GPf/wDtVrN7NmzycjIIBAIcPDgweMGjaJPO6UArVKpJBgMYjAY5A73zc3NaDQaWZ8+nw9A7rqtVCpxu92o1WrsdrvcOV+qSfP5fIRCIex2O0ajkXvvvZfk5GQCgQCVlZW8/PLLskYzMzPFaamgWyFlKtx000088sgjclfsrsSoUaMYPHgwKpWK5557TjilZxDhlHYQNpsNhULBunXr2LVrF5mZmSxdupShQ4fKzYP8fj8ajeaYms3WjqpCocBkMtG/f3/69OnD9ddfT3FxMQcOHJCboOzcuZO6ujr8fj9KpZKEhAQyMzPp1asX2dnZ5OXl0bt37xY1oi6XS3ZKU1NT2bx5M3l5eVgsFkwmE1lZWbz++utkZmbKefjCoAq6Cw0NDXg8HrZs2cLu3bvJzs7mk08+Yfjw4QQCgRY6lDa4UgqelHYb7bDq9XpycnLIzc1l9uzZHDp0iPLycg4dOkRzczNlZWU0NDTg8/lQq9UkJiaSkZHB4MGDyczMJC8vj7y8PIxGo/waJpMJn89HSkoKRqORzZs3c+WVV6LVaikoKCA7O5s33niD7Oxs7rrrLiwWi9CooNsgZS7s3LmTXbt2kZ2dzdKlSxk2bBihUEge3SQFh6Id0eggr9ScSHIiA4GAbHsDgQB+v7/FzEIpZRiQmyJJKbxwNKAlfUZIzc1UKhUej4f169czZ84cjEYjJpOJnJwcXn31VTIzM7n55ptJSUk5JuVYIOiqqNVqDAYDv/71r7ukQyqh0+m45557eP/996mqquro5XRbhFPaQbjdbsLhMMuXL+fBBx8kOTmZkpIStm7dSn19PYsWLeLjjz9m4MCBZGRkkJGRITcziY2NlWtcpNpQ+CEiZTabGTZsGEOGDJEHhPt8PnmuomQotVotGo0GpVLZoq5N2lCr1Wr8fj9xcXEMHTqUL7/8kmnTpmE2m6mqquLLL7/khhtuYM2aNUycOJGEhIRjam8Egq6K1+tFp9PxxRdf8Mgjj5CcnMyBAwfYtGkT1dXVLF68mI8//pgBAwaQmJhIcnIyMTExGI1GYmNj5U1wdPBI2sBqtVqKioro1asXoVCIcDgspw7CD02T1Gq1XBce3XhF+jIajdhsNsxmM0VFRaxevZpp06aRmppKdXU1a9eu5aabbuLLL79k8uTJDB06VGhU0C2IRCLU19eTnJzM6tWrj9Go1WolNzeX6upq2eEMh8N4vV5UKpU8R1ihUMjZCdLzBoNBudwl2nmN7uAbXT8uPUa6LnqN0utKI2okO5qcnExdXR1r1qzhxhtvZM2aNUyePJmkpCTRPFDQbVCr1cyaNatbZNP16tWLp556iptvvlnWu6B9EU5pByBFbb/88kvS0tIYOHAgBoOBnj17cs0118h1Y/v376eyspK1a9eiVqux2WzExsbK7e4LCgrIzc1Fo9EQFxdHamoqWq1WTh2M/tJoNC02s62bNkiOaPSGVavV4vF40Gg0TJo0iWXLlrF7926Sk5MpLS0lHA4zceJEQqEQCxcuJCMjg6ysLPk1BYKuihSUWb9+PVlZWYwYMQKj0Ujv3r256qqraGhooLKykpKSEiorK1mxYgUqlYqmpiaMRiOZmZkolUry8vLIzc1FoVBgsVhISUlBrVa3aJigUqlkBzSattKDgRZBKJPJhMFgwOVyMWjQIN5880327NlDQkICpaWlKJVKZsyYgUajYdGiRcTGxtKzZ0/UarVwTAVdnvz8fJYvX05mZibDhg3DZDJRVFTE1VdfTX19PWVlZZSWllJWVsZ3331HY2MjBw8elFNwpdNMKXAr2UYpmAs/ZCQdbxMqncRGd+dtPfdbqVTi8/kwmUxs3bqVvXv3Mm7cOEpLS1Gr1Vx00UVotVreffddevfujcVikZ9HIOjKGI1GLrroom5TL33hhRcyffp0li9fLkbCnAGEU9oBKBQK3G43GzZsYM6cOS1SGkKhENnZ2eTk5DB69GjZWPp8PsrLy/F6vZSUlLBnzx72798vn9pIjRhcLhc2m01O94uLi5NfMxwOYzAYGDhwIP369ZMdWKBFZFa6VjpRDQaD5ObmMmLECN5//30GDx7M2rVrGThwIImJiVx66aU8+uijbNy4kVGjRuH3+yksLBSOqaDLIm0qN2/ezHXXXSen7kl/01lZWWRnZzNq1Cj59EXSqN/vp7i4mD179lBXV8f+/fupqqpCp9NhsViw2+1YrVbS0tLIysqSmxzBUf1rtVr69u1LYWFhi0ZKbY2N0Wq1GI1G3G43cXFx5OTkMH/+fAYNGsT69esZPHgwaWlpzJ49m1//+tds376dHj16iM2uoMujUCjwer1s2rSJ6667Tk5rl5zKrKwssrKyOO+881potKysDK/Xy4EDB9i7dy+BQICGhga5vMXn89HQ0CAHmJqbm+WT1ejgrTT+RaohlerBo+1etHYjkQh2ux2NRsP8+fMZMmQI69atkzV6xRVX8OCDD/LFF19w4YUXtkgXFgi6KiNGjOCiiy7q6GW0G0lJSVx//fV8//338vQJQfshnNIOwGq1yilF+fn5Le6T0oyktCHplNNoNBIfH08kEmHkyJHAUYPndDppbm6W616am5tpaGiQO4S5XC6Ki4s5ePAgu3fvRq1Wyw6v1LRF6iQIxzZr0ev12O12DAYDs2bN4q9//SurVq2iuLiY6dOnA2AwGBg/fjyrV6+mf//+JCQktIgQCwRdDavVSmlpKcFgkPz8/BYnH4FAAJ1O10KjZrO5hUalRmGRSASXy4XdbpfrzOx2O42NjfLPTqeTgwcPcvDgQb7//ntUKhUZGRn079+fiy66iKSkJIA2taRUKomNjaWxsRGlUsmYMWN45513WLFiBaWlpcyYMQOlUonJZGLSpEl88cUXTJ06lYSEhDazJgSCrkK0HS0oKJD1KDml8INm2tLoqFGjgB+aHEnjW/x+Pw6HQ7ajgUAAh8PRQqNSum5dXR2BQACPx9PiJLX1CBrpcyIcDst1pStXrqS0tJSLLrpI1ujkyZNZsWIFY8eORavVtvidBIKuhk6n4+c//zkajaajl9KuXHnllSxcuJCNGzfi9XqPaZwmOHWEU3qWCQaDeL1etm3bRu/evTGZTMAPXQGl9vRGo7HF6WXrQd7SbdKMs7aQnjMcDuNwOHjggQcoKChg0qRJrFixgscee4xLLrmE6dOnt2h33/r11Go1oVCIPn36cPHFF/PMM88QCASYPn26vJ5Ro0bx2Wef8fzzzzNw4EB69+5NQUEBsbGxRCIRNBoNBoNBNt7HW7NA0NFIGt2+fTv9+/cnJiamRbBGGqjduu6rdc0nHNWgxWKR0/Gk21qnz0ujXx588EH69u3L9OnT+eyzz3jllVcYO3asnD7c1qxEo9GI2WzGbreTnp7OmDFj+POf/4xKpeLCCy8Ejm6Sx44dy0cffcRjjz3GgAED6Nu3L0VFRej1eqFRQZeiLY1Gp85KzmR0NhAcq1Hp1FMazRR9jUT0eCan08lvf/tb+vXrx4wZM1i8eDGLFy+mvLxcHq/WOrArodFoCAQCuN1uVCqV3Ik0WqPnnXceS5Ys4fHHH6d///5Co4IuTXx8PEOGDOnoZbQ7Go2G999/H4/Hw1NPPUVdXR0LFy4kFArJB0JSQEkKkAlODOGUnkUqKirQ6XQ4HA6+//572amLNmBS1Fan0x236240J3ISqVKpqKuro6qqiquvvpqkpCSuvfZaSktLeeONN/j++++55ZZbSElJOeb5VCqVXLOmVquZOnUqX3zxBRUVFXzwwQfk5eWRkZFBSkoK48ePZ8WKFWg0Gj7++GNSU1OZPHky/fr1w2w2YzKZ5DEXcFTYwWAQs9l8qm+pQNCutNborFmzZB1GO5rShjf69tbft/Xz8a5RKBTU1tZSXV3NjTfeSHp6Orfccgv79+/n2WefZf/+/Vx77bUYjcZjNKpQKEhISJDT/AcOHMjmzZsBePfdd8nPzyc3N5fU1FSmTp3Kp59+il6vZ+nSpSQlJTF58mT69u0r6zEtLQ2PxwMIjQo6H601OnPmTDmdNnoUk9/vlzUazfH02rqERULSm1qt5vDhw9TW1nLjjTeSkJDA7bffzvjx45k3bx579uzB7XbjdDqPCTyFw2ECgYC8LkmrycnJLFq0iPz8fPLy8khLS2Py5MksW7YMnU7H0qVLSUlJYeLEifTt2xez2Syfqkp1sUKjgs6G1JtE6nnSHdFqtWi1Wv7yl7/g8/m48cYbeeGFF9i6dSu1tbVyQzVpXrFSqRQO6gkgcivPInv27KG0tBSr1YrH4yEnJ6fF/VLKq8vlwuPxtNsspHA4zHfffYfZbCYnJweNRkN6ejqTJ0/m8ccfJxAIcP/997N169YWNTGSUdVoNHKkVjLyt912GwMHDuSNN97A5XIRiUSYPHkyCoWCqVOnMm/ePCZMmMDGjRv54x//yJtvvsmWLVtwOByEw2HMZnOLxhACQWcgWqNer7eFRqM76fr9fjm40h5EIhF27txJXFwcPXv2lNNyR40axRNPPIFWq+VPf/oTJSUlLTpuS1gsFrl+XK1Wo1KpuO222xg0aBCvvvoqdrsdtVrNBRdcgFar5aKLLuJf//oXF198Mdu3b2fevHksWrSII0eO0NTUhNVqFRoVdEpaazS6RrotjUp1oNK/p0o4HGbnzp1YLBa5WVhsbCwjR47kxRdfZO7cuej1eiwWi9y0LLqeVCrLie7We/vttzN48GBeffVVmpubUSgUTJ8+Ha1Wy4wZM/jHP/7BhRdeyPbt23n88cd566232Lt3L01NTahUKqFRQadE6o0gBW+6OzqdjvHjx8v6fPbZZ7ntttswGAwtGqYJfhrxSXYWGTlyJPHx8dTU1BATE0NqamqbpybhcJjm5mZ5TujpIEVmV65cydChQ1EqlajVanQ6nVxf+otf/IJ+/frx9NNPs2rVKjwezzEC0uv1KJVK2aHOz89n5syZNDU18fHHHxMOh0lJSaFXr1589913GI1GxowZw9133839999PWloaixYt4sknn2TdunXs2bMHm80mR5DD4fBpbxoEgtNF0mhtbS3x8fFkZGQAHJOOJzVZ8fv9p/2akkZXr17NiBEjjumgnZWVxX333cegQYN4/vnn2bZtm3zqIq1FOi21WCy43W6USiV9+vThyiuvxGq18uGHH8qnoAUFBWzbtg2z2cykSZO4//77+cMf/kBBQQFLlizh2WefZefOnbJGQ6GQ3ORFaFTQ0bSl0ePVXHq9XgKBAPCDTk4FSaOrVq1i+PDhLZxOlUpFVlYWv/rVr7jtttswmUyYzWY0Gs0xnxtSqn4kEiEzM5O+ffsyZ84cmpqa+PDDDwkEAqSlpVFUVMSOHTswm81MnDiR+++/n4cffpi8vDwWL17Ms88+y9q1a1vYUWnkm9CooKOROsp35bmkp4IUdLr++ut5+umnef/995k1axa9evVq0dBQcHzEO3SWUavVbN26lbS0tDZnkUnGy+fz0dTUhMvlOuUTUyk6W11dTVVVFf379z9mLIxKpSIxMZFf/vKXnHfeeTzzzDMsXrxYLt6WrguHw5hMJmpra+VmEQkJCdxyyy2sWLGCXbt2ofr/2Pvu+KjK7P1nep9MMumF9AQIhACB0JTQq/QmILp2VlFXXfu6svbdVbGxyldFVJoognTpoddQAqGn9zbJ9P77g9/7emcyaSQh7T6fDx8gM3Pveyf3uec95zznHB4PAwYMQHp6Ov2sSCRCSEgIxo8fjzfffBPjx4/HiRMn8Oabb9KoUlZWFoqLi1FYWIiioqJmfb8sWDQXIpEIFy5cQGBgIB2dwqxBY/4xGAwwm8133OiAydHS0lL06dOHGnRyTj6fDz8/P7z44osYOXIkvvzyS+zbt6+WYyoUCuHv709lgf7+/vD398ejjz6KnTt3Ij09HRwOB4MGDcKZM2doAxapVIrIyEhMmzYN77//PqZPn46LFy9i6dKlWL16Nc6fP48rV66guLgYWVlZLEdZtDmEQiHOnTuHoKAgOu7ME+x2O/R6fbOCR0yOFhcXIzEx0cV+ko2mr68vXnjhBTzxxBMIDAyEUqmEUCikfCbr4fF4EAqF6NatG/z8/ODn54dHH30UO3bsoBxNSUnBuXPnANze6EokEoSHh2Pq1Kl49913MW3aNJw5cwZLly7F2rVrceXKFRQUFLAcZdEuQKZBdOUGXRKJBKmpqfjtt9+QlpaGd999F76+vpBKpRCJRJ1W1txcsDWldwlOp5PWgBiNRvTr14/+3P19BGazGRUVFbBarVAoFPUa37rgcDhw8OBByGQyREREuHT2ZY6bUCgUWLx4MSIiIvC///0POp2O1rAxz3nhwgUkJCTQBk09evTAtGnTsHLlSuh0OkgkEpSWlqKiogKBgYEuhd48Hg9JSUno2bMnCgoKcPz4cfz3v/9FQkICxo4dC39/f1gsFojFYgiFQrZGhsVdBeEoj8eDXq9HSkoKrU/z5HAS/hiNRtjtdojFYhdONRYOhwOHDh2CQqFAVFSUx0ZIACCTyfDEE08gIiICK1asgMlkwoQJE1yauUilUuTm5iIpKYk2aEpISMCMGTOwYsUKzJ49GxKJBGVlZSgrK3PJBJMg0oABA5CYmIjc3FykpaVh+fLl6N69O0aOHAlfX1+WoyzaDISjfD4fer0egwcPdhlhxlQyMBv9EdWRp14NjYHD4UBaWhqUSiViYmLoOcjfxDFVKBRYsmQJYmNj8cEHHwAA9Hq9S5BXJBJBKpWib9++tFFRr169MGPGDHzzzTeoqamBWCxGSUkJSktLERwc7NJ8SSKRYODAgejduzfy8vJw+PBhfPrpp4iPj0dqairtAcFylEVbwW63w8fHB5GRkW29lHYBf39/PP3005g4cSLWr1+PLVu24MKFCy6lBSxug3VKWxkVFRUunXWzs7Nx5coVyOVylJSUwG63Q6FQwMfHB2KxGGKxGIGBgbR202q1orKyEgaDAUqlknblbYwMgMxFO3jwIJKTkyGVSmvJe5ibX6lUihkzZkAikeCjjz6Cw+HAnDlz4OXlBQ6HA41Gg+vXr9MW9qRz4dixY5GWloa3336bzj+tqalBdHQ0xGIxzGYzDAYDbZkvEAgQERGByMhIFBQUYNu2bXjvvfcwfPhwjBkzBjU1NbBarQgNDWVntbFodbhzNDc3F5cvX4ZCoUBVVRXtckk4KpVK6SglMubBbDbTTS9T2tcQCEcPHTqElJQUWiPGdIKZm1+ZTIapU6dCLBZj2bJlsNlsmDRpEuWJwWBAWVkZRo8eTT9Hakj37duHt956C3379oVAIIBGo0FERASdRUzkf2QUVFxcHKKjo5GTk4PNmzfj448/xpAhQzB69GiWoyzuKjxxNDMzE15eXtBoNB45GhwcTJUOTFWDWCyGSCRqtJyXcPTw4cOUo+4SWXIch8MBsViMadOmQSQSYenSpSgtLYVGo4Fer6cOrFQqRWJiIrXjAoEAEyZMwL59+7B06VIkJSVBKBSiuroakZGR4PP5tKMwcW4JR2NiYpCbm4tNmzbh448/xtChQzFq1CiWoyzuKgQCAZRKJSQSCYYPH445c+Zg+PDhbb2sdgMOh4Po6Gi89tprmD9/PpYuXYrffvsNZrOZlsewYJ3SFoPFYqGZzOrqami1WjidThQXFyMnJweHDx9GcXExDAYD5HI5nSdKHDuBQACTyYTCwkKIRCKoVCoMGDAAcXFxUKvVMBqNtJugQqGAWCx2yZzWZVxv3LiBGzdu4IEHHqBG1JNDyzzOuHHjIJFIsGLFCpSVleGxxx6Dn58f8vLyUF1djbi4OJpxdTqdkMlkePTRR/HBBx9g4cKFiI2NhUwmo9dBots6nQ46nc6lxicsLAwPP/wwCgoK8Msvv+DkyZOYPXs2+vfvj4KCAjidTgQFBbHRXhbNRl0cLS8vx61bt3DkyBEUFRXBYDBAJpOhvLwcJSUllKN8Ph9msxnFxcWQSCRQq9VISUlBQkIC/P39aV0Xj8ejGRmiSgBqj4IhIPMPn3zySfq+ukDkvOPHj4dcLscXX3wBjUaDmTNnwsvLC0VFRaipqUFCQoLLZxQKBZ544gm89957WLBgAbp3704bsohEIohEIlo7SuTI5FxRUVFYvHgxcnJysG7dOnz44YeYNWsWEhISWI6yaFHUx9GbN2/iyJEjKC4uhl6vh1wuR3l5OUpLS2vZ0ZKSEojFYvj4+CAlJQU9e/aEn58fnRtMnFPSFAyARyeTgHD0iSeecHndndNMqf+4ceMgl8vxwQcf4OrVq3SUFJHj9+nTh36Gy+VCqVTiySefxLvvvov58+ejR48eUCgULhy12Wx0E1sXR9evX49///vfmDVrFlUlsRxl0RoQCASQSqWIjo5G//798dZbb4HH49G6ahaeERERgc8//xxz5szBO++8g4sXL9LnQ0v0qejIYJ3SFgIxNsQBq6qqwo4dO6jkZ8iQIZg5cyYCAgLg6+tLs48ERAZYUlKC8vJynD9/HseOHcPWrVsRGxuLSZMmISAggBolgUBAW1ITw0r+JvVoDocDBw4cQHx8PIKCgui56ooQk5/x+Xzcc8898Pb2xrJly/Dll1/isccew/HjxxEeHg6JRAKBQAAul0sjPHFxcRg+fDh27NiBuLg4CIVCSCQSei7iREskEmi1WhgMBpq15fP5iIiIwNNPP43Tp0/jhx9+wMWLFzFv3jxIJBLodDq6gWDB4k7REEeHDRuGGTNmUI4qlcp6OXrx4kUcOHAAmzZtQvfu3TF16lSEhYXRzpqkURFzpASzVpRkWQ8ePIiePXvShi3Mja6nTS9wWwo/bNgweHt746OPPsKqVaswf/58nD17FjExMZBIJNQhJhHYnj17YuTIkdi2bRt69eoFkUjk0mmbrI9s7JnBI5KVefHFF3Hs2DGsXr0affr0wezZsyGVSlmOsmgRNMaOMjnq5eVFP8vMpJaWltbiaHx8PKZOnYrQ0FDYbDbo9XoXe0m4yvw/ABeOhoSEeJTWM8Hk6D333AMfHx+8//772LNnDw3i9uvXz2XTThQKTI4mJCRAIBDQ9QB/PkNEIhGdVUrOKZFIEB8fTzm6Zs0a9O7dm+Uoi1aDv78/lixZgvvuuw89e/Zs6+V0KMjlckyYMAFhYWH46quvsGXLFpSVldVSSnU1cJzt4OqTk5Nx+vTptl5Gs1FRUYHq6mocP34cP/30E0JDQzF//nwkJSXR+WKeNpjAn8aNbELtdjuMRiOKi4uxadMmHD58GAMGDMDo0aPh7e2N0tJSZGRkoKCggEaLw8PD4e/vj8jISPTp0wcSiQR//etfMXv2bAwdOpTe7CqVCmq1ut7aGiJPKikpwT//+U/Y7XYUFxdj2rRpmDhxItRqNex2OyoqKmhkR6fT4bXXXsO0adMwZ84c2oGQCdJ9UK/XQ6PR0M8yr58MIjYYDHj44YcRFBSEbt26QSQStcwvqp2iPfOgPa+tKWgpjgK362ZIVmbTpk04evQo7r33XkyYMAE+Pj4oKSnBuXPnkJ2djbKyMpSWliIoKIhyNCkpCWKxGEuWLMEDDzyAkSNH0vMRCWJ9IM5mSUkJ/vGPf1Alwty5czFlyhTIZDJaT0fWXVlZiZdeeglTp07FzJkzIZFIPD4HHA4HLBZLrU7cxMnNz8/HqlWroNFo8NhjjyEqKgpqtbrTb3jbMw/a89qaguZwFPizMRFw28l15+g999yDiRMn0g6+Fy5cwK1bt5Cfn4+SkhKEhIQgODgYsbGx6NOnD0QiEZ555hnKUYFAALvdDoFAUG9HTbIOm82G8vJyvP7669i7dy+EQiHefPNNTJkyhQZuCUcdDgeqqqrq5Chz5A3pCGwwGFx+Ro5TWFiIVatWoaqqCo899hiCg4MRHBzscXZrZ0J75kFnafwjFouRmpqK119/HYMHD76jOm0Wf8JsNmPp0qX4/vvvUVJS0iWkvHW5np17B3EXodVqUVJSgt27d2PTpk1YuHAhpk2bBm9v70bVf7rLcPl8PhQKBWQyGZYsWYJx48bho48+ws2bN9G9e3ccOHAAEokEcXFxGD9+PLhcLmw2G06fPo3ff/8dq1atgpeXF4xGI5KSklwyL8zsTV0grwcFBeH111/HZ599BovFgv79+8PLy4s2V7FYLKiqqqKzRydNmoStW7di6tSptImD+3Xy+XxqzMnoG6vVCoPBgHPnzqGkpATZ2dm4evUqqqqq8MYbb8DHxwdCoRCVlZVQq9VN+t2wYAG0PEe5XC7dmD799NMYO3Ysli1bhszMTPTq1Qu7d+8Gj8dDWFgYBg4cCOD2JvncuXM4e/YsVq5cCR8fH8ord4421DCJrDkwMBD/+Mc/8Pnnn6OyspLWjxP5sFgshtFoBIfDgbe3N+677z5s3rwZ48ePr9Px5XK5VIJMMjJWqxU1NTU4e/YsCgoKcOvWLTqS4h//+AcEAgG8vb1ZjrK4YzSXo4CrEoioieRyOZ5++mmMGTMGn3zyCa5evYqEhARs2LABeXl5tBGS0WiEQqGAw+GAt7c3AgMDERISAqfTiYEDB1J1g3tjpfrWIRQKERQUhH/+85/w9vZGVVUV+vXrRxVHwO1upSaTCRwOByqVyoWjzHpQ4ng6HA5wuVwIhUJwuVxaL0uu4dSpU8jNzUV2djYuXryIqqoqvPnmm1AqlSxHWTQLZEzRV199hdDQ0LZeTqeASCTCG2+8AalUiuXLl6OoqIj2euhqYDOlzYTFYoHFYkF5eTlWrlyJ8+fP46WXXsKAAQNo9Kg5s4mYkc9z587hueeeQ2BgIB577DH069ePymLJOaxWK0wmE65du4YffvgBZ86cwUsvvYTevXvTzS6RPTV2XQ6HAwaDAVarlUpwSbTaZDKhrKwMRqMRwG3p1GeffYaEhAQ888wzdba9djqdsFqtKCwsxK5du3Dw4EEUFxcjLi4Ofn5+2LFjBwQCAWJjY8Hj8bB48WJIpVI65qIzoj3zoD2vrSHcTY5evHgRzz33HLy8vLBw4UL06NGj1rxCh8MBu92O7OxsbNiwAdeuXcNbb72Ffv360fXIZDKXrroNweFwwGQywWaz0Y0408nV6XS0C7ZGo8GHH36I2NhYLFmypM7MCdl8FxcXY//+/di/fz9u3ryJyMhI+Pn5Yc+ePZBKpYiPj4fT6aQc9fPzQ0BAwB1/n+0Z7ZkH7XltDeFucjQjIwNPPvkkioqKYDQaUVNTU6sLJp/Ph0AgoE2RAgIC8OGHH6Jv377UMSSjHZpiR4ksXigU0s+S85LgLADU1NTg3//+N+WoJ8URWYfNZkNJSQkOHDiAnTt34sSJE9DpdBAIBLBYLIiMjESPHj3gdDqxcOFC2qywW7dud/x9tme0Zx505EwpkbSnpqZiw4YN8Pb2busldTrY7XY899xz+OqrrwCgUzulbKa0FVFWVoa0tDTqAA4cOLDF5AzkF2c0GrFq1SpERkbipZdeQkREBJWzEqPodDpphrVfv34ICQnB//73P3z22Wd4+eWXERYWBqlU6vL+xjwkSddPTx17SabIbDbTbOmECROwcuVKTJ48GfHx8S7XQjblBoMBhw4dwg8//IDKykoMHToUzzzzDGJiYiAUCjFy5Ej83//9H4qLi2E0GpGbm4vk5GQ2usvijnC3OPrNN99ApVLhueeeQ3BwcC2OkWAOn89HTEwMnnnmGaxevRrvv/8+3n77bURHR9+xTF0ikXjkNMnWGAwGcDgceHl5YerUqfjf//7XIEcPHz6MH374AYWFhRg0aBBmzZpFZ0P2798f69evR35+PqxWKwoKCpCSkgIfH587Wj+Lro27wVGDwYCvv/4aOTk5VPpqs9loVlMkEtGMI5GwS6VSlJeX47333sO7776LqKioO5oxSOo+yegosi6SdRUKhdQpVSqVmDRpEr7++mtMmjSpFkeZc5LT0tLw3Xff4cyZM6iqqoLVaqVdgIHbzQ6B2xmunJwc/P7775g8eXKzvk8WXQ9OpxNqtRovvfQS65C2Eng8Hh5++GF88803MJlMbb2cNgHrlDYTFosFGo0Ga9euxeLFizF06NBaNS/NAdkgbtq0CaWlpXj11VcRGxtLsy8km8GcY2a1WnHp0iUcP34c2dnZKC4uxttvv42kpCQMHToUqamptMlCY53Sut5L2ttrtVpqzLt37w5/f39s3LgRf//732mjBrLe69ev49tvv8WpU6cwdepUTJ8+Hb6+vrSpg9PpxJAhQxAbG4u1a9dizZo1OHPmDAYNGlRrZmRHjjyyuDsgEvN169bhqaeewpAhQ1yahzQXpAZ806ZNuHnzJp599lkEBwdTXjJlfkyO3rp1C5cvX0ZeXh5KSkrw2muvYcCAAbjnnnswZMgQqNXqRkntgT8DU3XV1wmFQphMJpoR6t27N4KDg7F582Y8//zztTh648YNfPvttzh69CjGjh2LJUuWQKVSuTRpSkpKQnh4ODZt2oTff/8d6enpGD58eJ0jbViwqAvEjq5btw5//etfW4WjDocDW7ZswY4dO2C1WlFdXe3SDIwof4RCIRwOB20eyOVyYTKZkJGRgRdffBEDBgzAyJEjkZKSAl9fX9pxu6G1erKjzCAS6TpMmqQlJiYiKCgImzZtwgsvvEBtI+FoVlYWvvnmG6xbtw5GoxEmk4nOQgduS6EBwMvLC9euXYNAIEBKSgq++uor+Pv7sxxl0STw+Xw899xzGDNmTFsvpVMjJCQE48ePx5YtW6i6qSuBdUqbAYvFgoqKCvz888+Ii4vDoEGDGqwzuRMYDAYcPXoU06ZNQ2RkpEtXQPcal+zsbGzevBnHjx9HREQERo4cialTp8JkMtF28bt378YzzzyDxMTEeh3O+sA0jgaDAVqtFkVFRTCbzZBKpUhOTsb27dvx4IMPIigoiMqM0tPT8fnnn0MikeCDDz5Ar169aF0MEzweD/7+/nj00UfRo0cPrFmzBh9++CGWLFmC6OjoZkm5WHQdEI7+8ssv6NGjR4sHjQiMRiMOHz6M4cOHw8/PjzpuzG66hDNlZWX4448/cO7cOYSGhuLee+/F2LFjYTKZUFRUhK+//hqbN2/Gs88+SztwAne2cWRKAysrK1FZWQmbzQaBQIDk5GRs3LgRCxcupBy12+04d+4cPvroI4hEIrz++usIDw/3OHuVx+PBx8cHs2bNQnh4OHbu3ImlS5diyZIlLs8pFizqA+Hohg0b0L17dwwZMqRVOGowGLBv3z46FgYAdQB5PB7sdjt4PB4cDgeEQqFLWYzJZAKXy8WlS5eQlZWFnTt3ol+/fnjhhReQkJBAHUbgznjqcDig0+mg0WhQUVFBR9YMHDgQGzduxKJFixAYGEjLXs6fP48PP/wQJ0+ehNFohNFopDNMAbg8e8h8VIlEgvXr10Or1eKJJ55A9+7dWWeURaPA4XAQFxeHxx57jL1nWhn+/v743//+h8jISHzxxRdUPdFVwDqlzQCXy6XjW1588UVam9VYWWxjQGa05eXlITg42CWyy8zE2Gw2XL16FR988AG8vb3xxhtvID4+3iXTQmpP1qxZg3/+85946qmnMGrUqCZLkRwOB8xmMzIyMpCWlobz58/DZrPBaDTScTUajQa5ubn47rvvMH/+fISHh2Pfvn346KOPMHHiRMybNw8+Pj71dlEEbtfWjRw5ElFRUfj666/x7rvv4qmnnqL1dy35XbPofOByuaisrERGRgZee+012jSkpe4bsgmsqqpCbm4u+vfvD+DPEQ9MZ9TpdCI7OxtfffUVVCoVnnnmGYSFhdXKLE6bNg2bNm3C66+/jueeew4jR45ssoyRSA8vX76MtLQ0nD17ljYmM5vN4PF4qKioQFZWFr777jssXLgQYWFhOHDgAP7zn//QLsJyudwl0OYpC+rl5YWhQ4ciMDAQ69evx1tvvYVnn30Wffv2ZTnKokEIBALU1NQgIyMDL730EpWvt/R9U1lZiczMTFgsFirZ5fP5tMablL+Q5l8kSGMymejrAOjM8H379uHmzZt4++23aefshoLSRKlAlE0WiwWXLl1CWloaTp06hYqKCpSUlMBoNEKpVEIoFKKwsBArV67E/fffj5CQEBw8eBDvv/8+rl27BpPJBJ1OV+91k+swGAwAgDVr1qC4uBh///vfkZSUxHKURYPgcrl46qmn4Ovr29ZL6RIIDAzEa6+9hpCQELzxxhtdSsrLOqXNgN1ux+7duxEREYGwsLBaUr2WADEWYrGYDtdlyoVIdPTy5cv44IMPkJCQgMcffxy+vr61MhUikQihoaF48skn4e3tjS+//BIhISFISEigmR1P5ydwOBwwGo3IyMjAxo0bUVxcjJiYGMyZMwcRERGQyWS0+19eXh6OHz+OEydO4Pjx4+jVqxfOnTuHOXPmYNasWbT7LnGsPYHZvTAyMhJLlizBtm3b8M4772Dx4sVISkqCv79/q0TVWXQOWK1W7N69G3FxcYiMjGzUxrEpIAEiLpcLmUwGm82GmpoaiEQiuuG1Wq2wWCxUbtezZ08sWLDAZZwEM6Pq7e2NefPmQalUYtmyZQgMDERCQkK99zlT1m42m3HhwgVs2LABBQUFCA8Px/jx4+Hv70+dTL1ej+LiYpw7dw5HjhzB0aNHkZSUhLNnz2LcuHEYO3YsbZbErEF3b05A1iOVShEVFYV58+bh4MGDeOONN/Diiy9i+PDhHrOsLFgQWCwW7Nq1CzExMYiKigKfz28VO8rj8aBUKmkQlvCNcI/H49F7njihTIePOWamuroaQqEQ+fn5WLp0KQIDA+l87rrAlOLp9XpcvHgRq1evxqFDh1BYWEhnflutVto5G7htt7/66ivs2rULgwYNQlpaGnJzc1FTU0MzuExuMhs2AX86wjabDVqtFiKRCCdOnMCSJUvw1ltvISEhAQEBATRjzIKFO6Kjo9k65LsMX19fPP/88wgICMDLL7+MwsLCtl7SXQHrlDYDeXl5OH/+PCZNmtTk5kFNgUwmQ0xMDE6ePInw8HD4+PhQQ2S1WlFZWYmVK1ciLCwMjz/+OPz8/Fw+z8zWcDgcSKVS3HfffXSTTFrVewL5rN1uR35+PtatW4cLFy4gNTUVTz75JPz9/SESieg12+12cDgcxMfHY/To0SgtLcWBAwfwyy+/wGw2o0ePHnTDzmww4WnDy/wueTweQkJCMHPmTCgUCnz77beYM2cOzeawYOEJBQUFOHfuHGbPnt2iNWruUCqV6NmzJzIzM+Hj4wOj0Qg+n085qtPp8PPPPyMyMpI6pOR1ArI2h8MBPp+PyZMno6ioCCtWrMC//vUveHl51blpJPwpKirCmjVrcPz4cQwePBjTpk2jASqmtM/b2xshISHo27cvtFot0tPTsWXLFuh0OipHJHV15PgNQSKRIDIykmabPvnkE5hMJowdO7bVsl8sOj7y8vJw7tw5zJgxo1U5qlAo0LdvX9y4cQNSqdRlBi8Zr0ICqxaLhTYMYtp2AJQTFosFer0eubm5+Oqrr/Dee+/RGlRPIAGswsJC/PDDD1i/fj1KSkpgs9moxJY0WGI2HLPb7bBarbh48SIyMzOpw0rqR7lcrovD66nRGXk+ELur0Wig1+vxyiuv4IUXXsDcuXNZXrKoEz4+Pp22W3N7BofDwcKFC+nEjezs7LZeUquDdUrvEFlZWbhx4waysrIQExPj0alqKXA4HMyePRtffPEF/vvf/2LAgAEIDw+nUdljx46hrKwM77zzDnx9fWltDDNyCoBmMM+cOYPr16/j+vXruHLlCrp3744pU6YgMDCw1qbA6XTCaDTi+PHj+P777xEVFYX33nsP/v7+tSLaHA6n1iY2ICAAM2fOxOjRo7Fz5058/PHHmDZtGsaOHUsdYeZGta7mC+Q9arUaEyZMgL+/P9asWQOHw4ExY8bAbDYjMDCQrWNjQZGVlYWcnBzk5eUhPj7+juunGwKRAS5cuBDvv/8+1q9fj9jYWISEhND7kUjt7r//fjq/l0h8CciGtLy8HBcuXEBOTg6uX7+OrKws9OnTBxMmTEBQUFCtjKnT6YTJZMLJkyexYsUKBAcH46WXXoJKpXJ5DrhvrslxvL29kZqaiv79++PQoUNYvnw5xo4di6FDh0IqldaSItcF0vQsNDQUQ4YMgZ+fH1asWAGDwYDx48eDx+NBJpO16HfPomMjKysLRUVFyMnJQVxcXIP3WHPA4/GwaNEi3Lx5E0eOHAFwO+tJSk7kcjnMZjMdq8bMVhIQm0cCsSKRCDabDX/88QcSExMxefJkjxwlvRdOnz6Njz76CKdPn4bJZKJjnIhDynw/CSQRdRTJZJIu2yqVisrxmc2a3MH8PskzhuwRcnNz8e6770IoFGLYsGG4evUq7r33XjZjyoKCy+UiLi6urZfRpTFq1Ch88803eO6553Djxg2YzeZWe062NVintIkwm8107IpGo0FERASkUinNJrY0iHxVpVLh4Ycfxt69e3Ho0CGsW7cO5eXl6NatG3Jzc2l9GvkMMzrqcDhQVlaGXbt24ddff4VSqUR0dDSmTJmCIUOG4Pjx49i1axcWL16MUaNGuTRJMBqNWLt2LXbt2oV58+Zh1KhRdDyMu8FmkoQYVA6HA4FAALVajTlz5iAmJgbLly/H5cuX8fzzz8PLy6vO7AnzZ0QCSIxxUlIShEIhvvnmG9hsNgwZMoR2/xWJRHfUsp9F5wCTo+Xl5YiOjqayVaasrSXB5/Ph7e2N559/Hrt27cLVq1dx/vx5lJSUICgoCFlZWfjrX/9Ku14yJXccDgdmsxklJSU4fPgwDh48CJVKhYiICEycOBGVlZXYv38/duzYgSeeeAKjRo1ykSEbjUasWbMGW7duxeTJkzFo0CCXOaXMLCngyivme7y8vDBhwgRER0dj5cqVuHLlCh577DE6wqIxRpDDuT0+Kjg4GHa7HVwuFz/99BMcDgcGDx4MgUAAq9XKcrSLg8nRoqIixMTEQKlUusjYWxIkcET6LezatQsXL17ElStXUFRUhJCQEOTl5bnUkBLpOnlmiEQi8Hg8SKVS2O12SCQS6hRaLBZ89NFH2LZtG5YsWUJl6+Q6TCYT1q5di2+++Qb5+fnQarWwWCyUU+7PJeZ+ghlcJk1PJBIJdYrJz5jv88RV97pwh8MBrVYLPp+Pd999F88//zzsdjv69u1L57Te6XgqFh0fxL5wuVw899xzbb2cLg0Oh4NRo0Zh+fLlmDNnDiorK2GxWNp6Wa0C1iltIsxmM5X6ZGZmQqlU0k0fsxlCS4HUk0qlUgQEBGD27Nm00ZDNZsOFCxfw22+/YejQoS5DxolhslgsyM3Nxffff4/8/Hz8/e9/R+/evSGRSGiUV6vVYs+ePfj0008hEAgwfPhwOJ1OFBQUYPny5SgoKMDLL7+M3r17U+ewIbhnablcLp1tuHTpUqxcuRL/+te/8PTTTyMqKopuAhrajJBsrJeXFxITE/HII4/gu+++A4/Hw8iRI+Hl5YWamhp2nmkXhieOkvu2NZ1SsViMoKAgLFy4EA6HAyaTCRaLBWfPnsXKlSuRlJTkUqNJ7vXKykrcunULu3btgsFgwOLFixEbGws+n0/rUi0WCw4ePIiPPvoIfD4fqampcDqdyM3NxfLly5GdnY3FixcjIiKi3mBRQ+ByuYiPj8cLL7yAX3/9FZ9//jkWLFiA4OBgl6xrfeBwOJDL5QgMDITD4cCoUaOwZs0aAMCYMWOgUqlQXV3NcrQLoy6OMus5W9oxFQgEkEqlCAoKwqJFi2jQ1Ww2Iz09HS+88AKAP2s/yd/EMSVlJ8S2VldXw2Qywem8PXKpvLwcx48fR35+Pj788EMMHz4cXC4XhYWF+PLLL7Fu3TqYzWZUV1fDarXW6YDXVzdOZLtWqxVisRheXl7gcrnQ6XQust+6vj93x5XD4aCqqgo2mw3vvPMOXn31VdhsNkilUhQXF7OSzS4MklAQCARQKpVtvRwWAIYNG4affvoJDz30EPLz86kcvzOB1TreAZgPfjKgmshsWsMp5fP5UKlUUKlUtDlKdXU1du7cibVr16Jbt25Qq9XUiBJjZLPZUFBQgFWrVkEsFuPdd9/FsGHDoFKpaPaDRI8nTZqEwYMH4+eff4ZOp8OlS5fw5ptvQqvV4o033kCvXr1c5LqN3TC4y/74fD7CwsKwZMkS+Pj44LPPPkNRUZHL+z0dA/jToJIIsVQqRUJCAh577DGsWbMGp06dosPQWXRtMJuYSKVSlzFKrQFyHhLs4XK50Gg02LRpE7799luo1WqXxkZkU2g0GpGbm4udO3dCLpfTUU1SqZQeRyAQQCaTYdSoURg4cCDWrVuHmpoaXLp0CW+88QbKysqwePFiREdHe5TBN+UaiErC398fCxcuhLe3N3788UdoNJoGn2/u8miFQgG1Wo3Q0FCkpqbi22+/xZkzZ2A0GlmOsqD3wN3iKJGXi8ViGmCpqqrCpk2b8N1338FsNsNoNHr8LOEjj8eD2WyGTqejDimXy4XVaoXBYIDJZEJpaSnWrVsHnU6HjIwMvPrqq1i7di2qq6tRXV1NpbN3Uj/LtKOk867NZoNEIqFlAe6KJU9gOq4cDgdarRbl5eX45JNPcOrUKZjNZhgMhk4rEWTReLC1xu0HJGP63//+l/oenQ0NOqV5eXkYMWIEevbsiYSEBHz66acAbkf3x4wZg9jYWIwZMwZVVVUAbj8Qn3nmGcTExCAxMRFnz55t3Su4y+ByuaioqIDdbodGo4FcLqfGhdRrtCSI0RMKhVAqlaiursb333+P//znPy5t44lUDgDt0ltdXY39+/ejuroaTz75JEJDQ12MDDFKxFjPmjUL1dXV+Oabb/DCCy8gKioKr732GmJiYqgckGymG5sxcf83l8sFn8+HWq2mcsZPPvkEhYWFLk0emAbT0/dBOiXK5XL06tUL06dPx4oVK3D58mUIhULaQjsnJ6fTyhwIWI66whNHyWgkMkqppUHuVYFAgMLCQnz66af429/+hkuXLtHNt16vp44dcUgLCwtx5swZOJ1OPPTQQ/Dz86O1bEwnEQCEQiFSU1NRXl6OH3/8ES+++CIN8DCl+8z1NGXtgKszr1AoMHfuXKjVaqxcuRLV1dUuckb3YzCzMCTg5efnB29vb3Tr1g0DBw7EsmXLcP36dQiFQno/1tTUtJoj0l7ActQVRUVF+PXXX2EwGKDRaCCTyej97t49tqUhEAhQVFSEZcuW4aGHHsKKFSuQmZlZq2Mt8GfdNamttlqt0Ov1Ls8RwmmijjAajbh8+TLWrFmDZ555Bnv27IFGo6EBU1LTeSdBbMJTi8UCu91eay3kWceUDtcF0iCJ2F2j0Yji4mIsXboU6enptGFia/8+2gtYjrqCcDE8PJyOUmPRPjBnzhz83//9X6f8vTTolPL5fHz00Ue4fPkyjh8/ji+//JKOHxk1ahSuX7+OUaNG4YMPPgAA7NixgzbRWbFiBRYvXtzqF3E3QQyKyWRCdXW1S/aQOe+spUAMgtlsxo4dO/DOO+/A4XDgxRdfxOLFizFu3DiUlpaitLSU1sKQroAlJSVIS0vDvHnzoFara41fYUamnU4nZDIZ9Ho9Vq1ahZEjR+LJJ59EQEBAi12Le+t6Hx8fPPjgg6iursamTZtolNp9Q+3uBJP/c7lcWps2YsQIjBw5El9//TWKiopo5Lc1uzm2F7AcdQWToxqNxmWDRjZwrcnRN998EzU1NVi0aBEmTZqE5ORkVFZWIj8/H+Xl5dDpdNBoNCgsLER+fj4uXLiAKVOm0AAXOab7H+B2J26r1YoVK1agf//+uP/++yGXy11UBMx1NQdkzM306dNRUVGBnTt3UgebGTiq71w8Hg8+Pj6QSCTo06cPunfvjo8//hi5ubn0++gKzclYjrri5s2btPutVqt1qYFuDY4SWCwW7NixA88//zx++uknFBYWoqqqitoeYldIvbPdbodCoYDRaASXy4Ver6fvY/7trgjKycnBv//9b2RmZsJkMsFsNlPHjqk2utNMKfCnrFir1dJnkEwmowqLxhyLWTdot9uh0+mQl5eHL774AlVVVaiurkZaWlqXyJiyHHUFyej7+Piw9f/tDBzO7ean//rXv1xKgjoDGrySoKAg9OvXD8BtOVaPHj1QUFCAzZs348EHHwQAPPjgg9i0aRMAYPPmzVi0aBE4HA4GDRoEjUbjIs/s6CD1XWRcAnOTRhzClniAMzeixcXFWLZsGX7++WfMnz8fb731FlJSUiASiTB06FA4HA4cOHAAVVVVqKqqohHZtLQ0BAYGol+/fjRT5N4R0GazoaqqCsXFxfj999+h1+vxxhtvUHktcOfyDU8ba6YRdDqdCAgIwCOPPIK0tDScPXsWVqsVN27cQGlpaS2DzwQz8yqTySCVSjF27FjIZDKsW7eO1uL6+vo2ug62o4LlqCvcOUr+TTa6LdWQzJ2jn376KX788UdMmDABTz75JJKSksDn89GzZ084HA6cOnUKhYWFyM7Ops1OLl26ROeQkk2te4MTs9mMyspKaDQaHDp0CBqNBkuWLMGCBQtow5PmBF6Y1+HeII3L5UKpVGLSpEk4cOAAMjIyYLfbUVBQgMrKSo/OMBOk8VFAQAD4fD769esHg8GA9evXU6kzU7rZWcFy1BUcDgeXL1+GRqOhHGXedy3BUXflTWlpKb788ku88sorOHPmDMrLy1FTUwOtVks72JKRLiSLSWq2iESXrMu9lMXpdEIgEEChUEAgENAMpNlspp0yWyI4yrSjxKY7nU7o9XrweDzaRIwEbJti+8h1GwwGHDlyhEqao6OjUVJS0uy1t3ewHK0N0om6K2TKOxpEIhHmzp2LIUOGQCAQdJqO2U3arWdnZyM9PR0pKSm0qyQABAYG0odWQUEBlZIBQGhoKAoKCuh7CVasWIEVK1YAAMrKypp1EXcTMpkMQqEQBoMBPj4+NEoJ3JbxNNcpZTYrsNvtyMnJwRdffAGn04lXX30VMTExEAgE1FD6+/tj0aJFWLVqFXJyctC7d28oFAoq3R0/fjw1XCSySowoyfb+3//9H86fPw8fHx+8/vrrSElJoXr1lsy8MI9BjKvZbEZUVBRGjBiBlStX4uDBgzTL5OfnV68hZ3YVJR1+Fy5ciI8//hjbtm3D9OnTm71h72hgOerKUW9vb+h0OpdNYUtseJkb6Pz8fHz00UewWq146qmn6GgiLpcLiUQCh8OB0aNHY8eOHSgtLUVMTAxEIhGMRiMyMjIwaNAgyk+n00lnhDocDuj1ehQUFGD79u3Izs6GSqXCc889R2eJum92m8tRd0WCXq9HWVkZxGIxkpKSsG7dOkRERKC4uBjz58+HWq2u1yElkMlkUCqV9LvYtGkToqKiEBcXh549e8Lb27vTGNWGwHIUSElJQXx8PLy8vKBSqagdJYojq9VKR54RbjQF5D4mDm5hYSHefvtt7Nu3DzqdjspeyXutVistC5HL5TCZTDQ7JBQKYbFYXJ4jzE06CYAKhULw+XzqkOr1+lYtHSFON3E8DQYDrZclzx2BQICKiop6vyMALjOJyYzlDRs2IDY2FmKxGFeuXMHf//73LjMTvLU42pFAAqRZWVl11lqzaFsEBQXhkUcewaVLl2A0GltlAsjdRqOdUp1Oh5kzZ2LZsmW1OnHdycb/8ccfx+OPPw4ASE5ObtJn2xKkG5ndbodUKkVNTY3Lw53IdNyzko0FcRgdDgfOnj2Lzz//HP3798f8+fPh7e3t0rlTKpXCYDAgJSUF/v7++OWXX7BmzRrweDxotVoUFRVh3LhxLutjyoyNRiN27tyJU6dOYeLEiZg2bRqVajSnYUpd18XhcGhm2WKxwGAwALj9nQYHB+PMmTOQSCR48cUX0a1bt1obZCbc5VMSiQR2ux2xsbGYOHEifv31V/Tr14/Oc+0KjinL0dtw52hVVZXL/UOyIM1VAABAeno6PvnkE/Ts2RP33XefS40HqZ0mgZd58+bh2LFjOHDgAMRiMbRaLQoLC9G7d2/odDraSZMEpjQaDUpKSnDixAlcunQJEydOxOjRo6FQKDzWWjcX7llP8gwhMxt9fHywdetWcLlc/OUvf0FkZGSjjktq3Hx8fGAymeDv74/k5GRs2rQJn332WaPq3zoLWI7eho+PDw3qSiSSWhxlduC9k3uDbKi5XC4uXryId999FydPnoRer3fZvJFsKKmp5PP5EAqF1Dkl9pw4bEwJLo/HoyPI5HI57ahLbGtj5O1NBTOwRvoqMJuGCYVCel6DwUDlxg19V2TPQZxqnU4HAFizZg0+/PBDaDSaLiHhBVqXox3tOed0OlFZWUnHDrFof3jooYeQlZWFZcuWtZhSsy3RKKfUarVi5syZWLBgAWbMmAEACAgIQFFREYKCglBUVAR/f38AoPO+CPLz8xESEtIKS29byOVySCQSarSIs0eGcZOo653A4XDg8OHDWL58OUaPHo05c+a4zFkkx+ZwOLBarbDZbIiIiMBTTz0Fg8FAG7x8/PHHsFgsMBqNEAqFdLNrMpmg1+tx4sQJbN++Hc888wyGDRsGkUhU64Zm1sk0F+T8RBIC3H7oZWRkYO3atViwYAHuv/9+hIaGNjoyzpROiUQimM1mDBs2DGlpadi+fTvmzp0LmUzW6bMwLEdrQy6XQywW01prwDUocyeSUWYG5siRI/j8888xaNAgjBkzplYtl9PppB1oKyoqoFarMWnSJBqMMZlM+OWXX2C321FVVQWxWEznDtbU1KCwsBDXr1/HyZMnMXPmTIwePdplbmBLSQI9XWN1dTVKSkpgMBjA4XCQk5ODvXv3Yvz48ZgwYQLCw8ObxCki4yVZqPj4eJw7dw4bNmzAY4891uE2a3cClqO1IZfLIRKJqN0im36SBbzT5zaxC2lpaXj77bdx8eJFWCyWWjM9AVD7Ddx29gwGA7hcLsrKyiASiSCTyWiTL+LAknWJRCIoFAoq/9VoNLV6N7ifryVAmqHZbDYq5SVZTCIbJmULjYF76QA5xuXLl7F9+3Y88MADkEqlLXoN7REsR2ujNUYdsmg5cDgcPProo9i/fz+OHj3a4X9XDe7KnE4nHnnkEfTo0QPPP/88/fmUKVOwatUqAMCqVaswdepU+vMffvgBTqcTx48fh5eXVy05Q2dBjx49kJGRQaUNxEi4N0NoCO51l6dOncIHH3yAsWPH4v7776eZERKdZdZlKhQKyGQyOksqMDAQwcHBiIuLw5AhQ3DlyhVUV1ejpqYGBoOB1tBs2bIF69evx/z589G3b1+aTSTG7k5RVxMH4gi41yhUVFTgxx9/RL9+/VzmITY2Isks8iZRYrVajSlTpuDgwYO4efNmhydpQ2A5Wjd69OiBixcv0iAIANqUqClg8pPUh77zzjsYPHgwJk+eDKlUWqt+i8O53Y3Xz88PwcHB8PPzg4+PD0JCQhAWFobIyEjExcUhOzsblZWVyM3NRV5eHv371KlT+OOPPzB8+HD06NGjVrOJO3XkGmqyUl1djYKCAvqdmc1mHDhwAD179sTEiRPRrVu3O6rT5nK58Pb2hkAggEQiwT333IPdu3fj8uXLLEfRNTnqdDoRHx+PCxcu0OwicfjIyJXGglk/6nQ6cfbsWbz88su4cuUKVebYbDbqyDEbK7mXtxBVj9FohMVigUgkgkQioe8jtlImk8FisdARLTabjXbWJY51c+rxmOtk8tW9aSBpkkYyvk2pA2TuJ8h6yTPSarViy5YtOH78eKfvYs9ylEVHRbdu3TB8+PBOYUcb3FkcOXIEP/74I3r37o2kpCQAwHvvvYdXXnkFc+bMwbfffovw8HD8/PPPAICJEydi+/btiImJgVQqxcqVK1v1AtoKHA4Hvr6+9MFNQJqs2Gw2l6xGQ8cim91z585h2bJlmDFjBmbOnAmxWOwxI8LM2BDjyHzN4XDgvvvuw6effoqffvoJ99xzD/h8PsrKyrB3715UV1fj4YcfRmJiIp2fSNbRnOxoXWt1Op2wWCxUXkCyud999x26d++OWbNmwc/Pz2U4ObNmtL7vjpyDKWcaNGgQtm7dimPHjiEmJgbh4eF3dD0dASxHPYPD4UCtVsNkMrlk5gHQuq/GZmKYDYDOnz+PTz/9FGPGjMG4ceNc+OIu1yPyQG9vb6hUKhd+Wa1WjBo1Cj/99BO2b99OG5JpNBpcvHgRWq0WU6ZMQVhYGFQqlUtTleagvgxrZWUlioqKYLFYwOVyYTQasW3bNoSGhmL8+PEIDg6mDinzO2nofOT9ROpYVVWFqKgoHDlyBHv37kVYWBjL0S7IUQBQqVS0Qy0TZHxKU7OlxI6+9dZbyMnJcakFdb/3mbaXaVPdHVxSA066XwsEAurE8Xg8VFdXezz+nYJ5HKLuIE4mkdgSm03qSElGi3xvTZWaMnlKzmk2m5GTk4Nz587h8OHD+Pzzz5t9be0VLEfrxltvvYU1a9a09TJY1INnn30W3377LYqLi9t6Kc1Cg07psGHD6tx07N27t9bPOBwOvvzyy+avrAPAy8sL/v7+uHLlCp3pBYCOZGlKLaPD4UBhYSE++eQTDBgwAPfffz9kMpnH7969RpQ0VWG+7nA4EBISgr/+9a/Ytm0bli9fDo1Gg4iICCQnJ2PEiBHw9fWlQ7ztdjvdbDbGEazvPe4RWi6XSweTk2iu0+nE9u3bodPp8NBDDyEgIIDKH4mMqzFwdwZIB0KxWIwJEybg66+/xsyZM13GzXS2ocMsR+uGt7c3/Pz8cPnyZQQHB7tkR0hzk6bcayUlJfjPf/6D7t2747777nPJMtT1OyA/d+eoSCRCZGQkZs6ciSNHjuDXX3+FXq9HZGQk4uPj0b17d4jFYnh5eXmsI71TeKpzs9vttIaUlB/Y7XacP38eJpMJ9957LwICAiAWi10CWE0Fl8uFl5cXnU06YMAAHDhwAHPnzoXRaKRrYznadTgql8spR0mmiThFFoulSbP4HA4HSkpK8O677yIzM5PWj3qyKQ31KSDH0+v1lOPEXhLeM7vrMmXALQH39THHm5Hvh8/nQywWUxUSs77U0zU1Vn1EJMhGoxFisRh79uzB4sWLodFoaLfsztbVnuVo3cjKymrrJbBoAGq1GikpKdiyZYvHZ1lHQed6qtxlhIaGIiIiAtevX8ewYcMAgNbD1NTUQCKRQCwWN8oQlJeX48MPP4Rarcb9999PM6SNMSbEIDJBshIRERFYsGABpk6dSg0YkQFyOBw6bJscpz54ijA3BJIRIpJmIms6deoU0tPT8dxzzyEkJAQikYge8042veS9AoGANmZJSEiAWCzGuXPnIJPJEBQU1OkMKYv6ERISgvDwcFy7dg2jRo0C8Oe9YjKZwOfzG3VPOJ1OVFRU4L333oNcLseECRNcPleXEaiLt+TnUqkUMTExkMvlGDx4MA0wkU2fVCqFv78/3ZA2hhPMc9YV1HKX1tfU1KCoqIg66g6HA9evX0dmZiZmzpyJ0NBQ6hh7utbGbsZJUIgoGkJDQ2Gz2ZCeng61Wg0vLy+Wo10IXC4XUVFRiIiIwNWrVzFixAiXe8lkMtHGQ55AbCRxEsvLy/HWW2/RpkZEAkw45e60MeHpHibBppqaGgBwWQfT2SWjY5ri/DUEZvCIOVOcXKtQKIRIJKKd+IlzzKzNJZ8haEwml9nMyel0wmAwIC8vjzZWVCgUnX6EEwtX1McbFu0DXC4Xf/vb33D06FGUl5d3SIcUaERNKYu6YTab0aNHD5w/f77WBs1ms0Gn0zWKzBaLBWvXrkVhYSH++te/IigoyGPmxZNUrq4aTvKaSCSCSqWCr68vvLy8aAaCdBdsDePCNKakkx9z41BUVIQtW7Zg5syZCAkJobU6zGu7E0IRqSQZlaFSqZCUlIRDhw65NIdi0XVgNpsRHx+Ps2fPUi4y5WmNrVuz2WxYv349rl+/jgcffJBKcZsCTxzl8Xjw9vZGWFgY/P39IZVKadMub29vBAUFuQRsGnOOxoApTdRqtSgtLaXSei6Xi5qaGqSlpWHo0KEICQmBt7e3y2xGd6lfU74DPp9Pm6rJ5XJER0fj0KFDsFqtza5pZ9HxYLVaER8fj/T0dI8crW8cBdPWWK1WrF69Gnv37nXp7k6CLO7Z0sbcu0Q2SxoAWa1WWCyWWg4pkc7eadf9uq6LOSLOXVJMlFgikYjaWKZD6WkdjV2be30pAOzfv5+WQbB2tGuhpKQEp06dautlsGgAPXv2xMCBA9t6Gc0Ca/2bAT6fj5SUFNTU1ODmzZsAXDd7Op0OBoPBY8MB8h673Y709HTs2LEDjz32GCIiIqghqMvZBOp3RsnrBEKhEHK5HHK5HFKpFF5eXlAqlU02oMxra0xWlTikzBE5FosFmzdvRlRUFPr160elQMxr8nR9jZUdEceUzGjr27cv8vLyahlYFl0DIpEIKSkpqKqqwrVr11xeI/cjccbquqftdjvOnTuHjRs34oEHHoCvr28tyXxdaOx9q1QqERERgaioKERFRSEyMhLBwcEunaMbq0xoLEeJNLG4uNhlhIXD4cDRo0cRHh6O2NhYKBQKCIXCWoqKpvKTfIbMbwVub35jYmJw8+ZNWCwWdrPbBSEQCJCSkgKNRoMbN264vEY4SrKA9UnkL168iG+++QZ6vd5lfjjzb0+fr+/+ZZaFEKeQBDf5fD64XC6sVqvL/O+WAnFyidNL1sLlciEWi6nqiTikTIfe0/U19lnkvi+wWq0wGo24cOECVTF0hnmILBoPk8lE97gs2i/8/PxoUqujTpxgndJmwOl0IioqCoGBgbh27VqtTJ/NZkNNTU2dnfDsdjvy8/Px6aefYtSoUUhJSaHZiKZ0oK0LxMAQwyYQCOiAb/LzO23M0JCcmHQhZtbZ2Gw2nDp1Cjk5OZgwYQIkEglEIpFLnU5zQQw5MeIxMTEwGo24fPkyqqqqUFlZ2exzsOhYiIyMhL+/P65evUozGkyuGo3GOhUNDocDRUVF+OSTTzBs2DAkJSW5bNqae88yOU4alimVSshkMpf5nXfyLGiIoyaTCaWlpbVmKl69ehXFxcUYPHgwZDIZVCoVNXBNdUI9nZdID8lxunXrhpqaGly/fp3d7HZRREZGws/PD1evXq2V7SMSUtI1lwmSxSwoKMC7776L8vJy6HQ6l3EoTBvUVKeRZB/dx8aQLr7u92tznVL3oBLTGWYGg8RiMW2y6MkZJeu+U8UR83xkFmtZWRkuXboEvV5Ps9AsugYMBgMOHDjg0sWeRftEjx49mtTPpr2BdUqbAfLQTklJwYkTJzy2TDeZTNBoNLBarbWcVofDgV9++QV6vR6zZs2CXC5vdLMEd+PlSf7amGwJ8zqaA/daGuKQMuvDSkpK8Ntvv2Hq1KkIDQ2lDqmn49R3bfWBOPQkUqRWqyEUClFaWgqJRAKVStXsa2XRcWC1WiEUCpGSkoLjx4+7jINgZgbJLFP3+8xut+PXX39FZWUlJk+eDIFA4DETURc8cbKu11sadZ3L6bzdCbusrIxmlMj3odVqcfDgQQwePBhKpbJWjWddJQVNkRYzszEOhwMSiQRcLhdVVVUuGS4WXQOkyd7AgQNx9OjRWgPgmTJed46SUpn169fj+PHjVF7LzOq7y82bCqZD60nB467wuVO484gofpjOtdN5u0Ga3W6HQCCAVqul522poC75m3lM4vyTwC5b99214HA4sGvXLlRXV7f1Ulg0gKioKPj6+nZYjrJOaTNAJDyDBw9GcXEx8vLyakl4HA4HdDodqqqqYDabqYFxOp24desW9uzZ4zKfkwlipFrK4DQXzHXUteElmwf32iCbzYbt27dDLpejf//+tBamKQ5nY9bnvh6BQIBevXqhoqKCBgdYdB2QIMXw4cORl5eH7OxsALWb9NjtdhgMBpfMh81mw61bt7B582ZMmzYNXl5e9P0E7Zmjnl4jDml5eTl1AMkfLpeL9PR0yGQyREZGgs/nw8vLq9mbevc1uMPhcCAmJgZFRUW0EziLrgPC0WHDhqGgoAC3bt2qZRM4HA5tmMe8PxwOB7Kzs/Hzzz9TOTrQMbtOErgHbZilAqTenM/n09IgUt/aUuf29H+tVguj0Yji4uIOu9llcecgpVideSRQZ8H48eNdpoF0NLBOaTNAnKqQkBDExcXh8OHD1KAArlFarVaL8vJyakisVivWrl2L8PBwDBs2jMp02sPG9k7hdDphNptp91vgz+jujRs3cOLECdx33300M0LkiS21gWDKjUiEmcfjQaFQ4NatW00exs6i44NkFfz8/BAVFYW9e/e6OJHMzIDVaoXBYKCqBovFgnXr1sHHxwd9+vRxkby3Z9S3PtJpt6qqij5vyAa4tLQU6enpSE1NhUgkok2XWqrxEDMA5Z51EggEuH79OpXys+g6IHY0KCgI0dHROHDggEsQhNyfpL5Ur9dTjtpsNqxevRqFhYU0k+o+o7O98tU9IEvWTK6XOJrMAKtMJqMOutlsdpH4tzRIsyPgtuJEq9Xixo0buHXrFuuYdjHY7XaYzWYcPnwYpaWlbb0cFvWAw+GgsrKyw/ZPYZ3SZoCMT5BKpRg7dizOnj2LgoKCWpkT8rfJZEJFRQWqq6tx+fJlnDhxApMnT4ZCoXDJuLRk9rClwdwsMP8QA6bX6+l1kA28VqvFmjVr0K9fP/Tu3RtcLpfKIN3lui2xPveaP7J5CQwM7HTzD1nUD7J5FYlEGDt2LE6ePIm8vDyPslpSi6zX62GxWHD9+nXs378fQ4cOhdVqddkk1iWXb2t4yjAxXzMajaioqKhVW2u1WrF//37ExMQgJCQEfD4fSqXSxUFsiWt030AzJdQ2m82jPJpF5wbhqFgsxtixY3Hq1CnanM7dlhKO6nQ6mM1mZGZmYufOnbBYLNQeM5//7YGT9cGTpB34M5hLwOVyabMxMr8V+LMMqKU4QzhOMrTuqi+TyYS9e/fSsXIsugZIkPbixYs4evRoWy+HRQMgdfUdEaxT2gxYLBb4+PjAx8cHAwYMgFKpRFpamseNIXnQWywWVFZW4rfffkNwcDB69OhB55vVZVjay4YX8LypJH9I8wP3Optz587hxo0bGDt2LEQiEYDbHYE9Ha8lQAwqE3w+n+3u2QVBOOrr64sBAwZALpdj37591MF0DxwRnmq1Wmzbtg0KhQKBgYFUft/e4Um+S/hJGhuRTqbkNQ6Hg5ycHGRnZ9N28kKhEDKZrMXXx3SC3ddLNrrt5VnH4u6AcNTb2xv9+/eHTCajHGUGa5nzqwlHt2zZgoKCAthsNuqUdhT5tyeeMrOT7u+VyWQQiURUsuuuPGjptbmP0AFuz1V+8sknW/RcLDoGrFYrNBoNduzY0SFsYVdGRw4asU5pM+Dn5weBQEBlNdOmTcOhQ4dQWVnp0WCQB3xVVRXS09MxcuRImiU1Go0dbmQJ87qMRiPdFDDrwsrLy7Fx40bce++9CAkJoYaO2fnXk6PY2Bo994wtkWECf0abBQIBwsPDUV1dXe/MOxadD4SjPB4PAoEAU6ZMwb59+1BeXu6SjWBufgGgoqIChw8fRp8+fWhAo7q6ut1veD1lcEkmsrq6mo6PIOBwONBqtdi9ezeSkpKgVqvpyInGSPSawlGyHpKNZtbXi0QihIeHQ6/XsxztYmDaUcLR/fv3o7S01CVzR0Dsh0ajwb59+2rVkgoEApcsa3sH044yR5cxeSMSiWinXb1e79It3JNyozHn9PSHrIOshbyXw+FAIpEgPDwc5eXlbG+GLgbmfbljxw52Zmk7BofDgUKh6LDzvjvmqtsJmJs2oVCIxMREBAYGYteuXbWMCgGXy8WpU6cgFAoxYMAA8Hg8ulFr7xmCuiKzVquVtgpn1tPabDbs3bsX5eXlmDx5MsRiMW1wxDyGp41DY4ys++fIRoT53VssFhQXFyMwMBBqtRpSqfQOr55FRwSTowKBAImJifDz88OWLVuoQoEJcv+cOHECDocDcXFx9D2kO2x7aWrUWJBNu0ajcXnOkI3nxYsXYTAYMGTIEBosYs4Prg9NeWaR781sNlPHkwSSysvLERgYCKlUynK0i6Euju7YsYMGMZmOKcmGHjt2DLdu3aIBXZLdI+91d2bbK9zLWJgBHFJjLRKJ6Agam83mIq9ljtCpC3U5nu4lOEzOM48tFoshl8sRFBSEoKCgDp2JYdE8FBYW4quvvmIDE+0UFy5cQGlpaYd49nkC65S2EBQKBUJDQzFjxgwcPnwYubm5tZr4kIzo+fPnMWjQIPj4+FC5DlP+St7b3sGU7ZLGRUwiZGdnY8uWLRg3bhwCAwPpz0ndWGPrfup63f27JXVpTMNrs9mQmZkJgUAAuVx+x9fKouPDx8cHwcHBmDp1Kvbv34+srCyPGzmLxYKTJ08iLi6OOkgkwFFRUUHlrx3BMXU6bzcfKysrc5kxR9ZeU1ODI0eOYNCgQZBKpVRCKJFImlSX5+k9njIxDocDBoOBju0gP8/OzoZMJqOyfhZdE97e3ggICMB9992H/fv3u3TiZdoMi8WCo0ePUvvDzDLabDaXObgdgadkH+C+ZofDAZlMBofDAZFIVGsETGOUG54Cb8xj1BU8J7PDSbNA4HbG1tvbu9nXy6Ljwm63Y9OmTdi6dWtbL4WFBxw/frxDzxFmndIWAskuJCcnIyEhAb/88gvdBDIf+OXl5SgqKkJycnKtJgU2m42OjWFmHN2P0V7gdDppi36mUSUNEbZu3QqhUIjU1FQXuS6B+7/rusb6rp0pwSRZGKYRLi0thUgkQkhISIdw9Fm0Hpgc7d69O9atWwez2VzrPiwrK8OtW7cQFxdXyzHzlHFsb2BeD5ktqNPpamVUbDYbjh07Bi6Xi+7du9OaPYFAQLt6MnnZEEfr+z6I82m321FTU+OSydJoNPDy8nIJXLHomiAy0f79+yMuLg5r1651aZ5H7EtlZSUyMjJq9WPwlFUF2j7I6678YfKIWUfqnt0lnORyubBYLC6vkesmzuOdwJ3fBO7fn9VqhVqtRnh4eLvci7C4uzAYDFi9enWHbabTmVFeXt7uy4zqA+uUtiDMZjN4PB7i4+Nx6NAhnDhxwsVgcrlclJeX48aNG7Smyt2gkiwCQVsbUyaYdZukaRMz48F0EC9fvoxDhw5hxowZCA4OpptcUt/XWLhnQz2tibxGHHpmPcy1a9cgEAgQGxuLkpKS5lw+i04AwtHY2FgcOHAAhw8fdsmuOxwOFBUV4fr16zAajbVqTsmG2JOT117AvJaqqqpa41/Ie4qKinDhwgWkpqZCpVLR63HvgNtYJUNdjinzO9TpdKipqXFxeIuKiiCXyxEZGYni4uLmfwEsOjTsdjuEQiHi4uJw4MABHDlyhI56AW7f17m5ubh58yZsNptLlpTc4+TnTa21vBtg2ixi/5n2k/zh8/mQSCQeZ5EyO+O2VDaY+V2522ir1Qo/Pz+Eh4ezHGUBHo+HjIwMF/UNi/aBoqIi1illcXu4tMFgQHV1Nfbt24fU1FSsX78e+fn5LpuyjIwMcDgcHDp0iLbCJyDGicwydd8QtzWYRpQ0K3E3/GTj+fPPPyM4OBjDhg1zeY97zUpDaMjYkmPY7XaYTCZqrLlcLoxGIzIyMhAREQEAOHv2LFug34Wh0+koRw8ePIjhw4dj9erVyMrKcnnfpUuXIJfLkZ6eXqtjs9N5uzV+eXk5TCZTrdEN7QVEJltZWQmr1VqLR2QEjFqtRkJCAq1tB27X+DUlw9QYhQMpXaioqKiVFcrKykJsbCwEAgHL0S4OJkcPHDiA1NRUrFmzBjk5OVSay+VyceXKFTq6yD2rz8yoMrOI7cWOAqAONJ/Pp02L3JUJfD4fIpEIAoGABl3djwHcWeDak7Se1LCS15mNAmUyGXr16kWfK2wzsq4LiUQCsViMRx55hC2Jame4du0azp0712GbHAGsU9piIC3pd+/eDblcjsceewx9+vTBF198gbKyMvrAz83NxbRp03Djxg2cPHnSxSAwN4IkE9PWNTHu9S3kD3N9zIyR3W7HoUOHcO3aNdx///20bpZcFzkOeX9d56vvNeb/yXGZjjz5eVVVFTIyMjB48GAIhUKMHz8e/fr1a6mvhkUHg8PhAJ/Px759++Dt7Y2//vWvSExMxLJly1BSUkLvn5s3b2LOnDkwmUy4efNmLdk54WdZWRkNLLWXzS7w5zzB0tLSWvIqstm8fPkycnJyMGrUKAiFQvr8IWoGplFz52JDHGWei/zfarWirKyM1p+TdZDvePDgwRCJRCxHuzhI6cr+/fvh7e2NxYsXIykpCZ9++imKi4tpxjArKwszZsxA9+7dIZVKXRxTZqDIZrO5OKZ3Yktbit8ki8t0AJllAOQayExSmUwGi8UCm80GrVbrslfwFAyu77zMv+u6Pmb2ldndVywWg8fj4d5774XdbkdkZCQkEkmzvw8WHRM8Hg9xcXEYPXp0h3Z+OiMyMjJw/vz5DtvkCGCd0haD2WxGXl4eDh48iKlTp0KpVGL27NmQyWTYsGEDDAYDjQInJSVh6NCh+O2331BaWgrgz9oNYlhJh8rG1l22JtwztqSOlGlEyTVkZ2djw4YNGDduHJKSklw+S7r7MQ1rfWjodSLp0ul0LnIt4PbmJjMzEw6HA0lJSfD29gafz2+SdJhF54JUKkVBQQH279+PGTNmwNfXFw888ABkMhnWrFkDrVZLh04nJydj4sSJOHHihEunWGaApqamBuXl5TSDUZ+z1tpg8sxqtaKiooLy1F0CX1FRgYMHD6J///4ICwurtaElzilQ28l0R30bXfKa2WxGSUkJampqanX/zcvLg1gsRmJiIuRyOcvRLg4Oh4OCggIcOHAA06dPh1qtxoIFCyCTybB+/XpqQ00mE5KTkzF79mx4eXnRbCJz5BhTFks6/DbHuWzOZ5l20uFw0LE1JLDrXksqFoupg066C7sHsJn2zn1tdQVw3ddD7DGPx3OZf8osORKLxQgNDUVCQgJCQ0NZfnZxOBwODBkyBH379m3rpbBgwOFw4Pvvv+/wM2RZp7SFIBQKkZaWhsDAQAwaNAhcLhcqlQpPPvkkrl69inXr1qGqqgo5OTng8XhITU0Fn8/Hr7/+SjvqESNEmhdYLBYYDIZaEpu7CfdzmkwmWK1WGn0mBs3pdKK6uhpr166FRCLB3LlzIRaLa0VzybW5H7u+WjT3nzEbtWi1WuqQEtjtdlgsFqSlpSE1NZWN6rIAcNs52rVrF4KCgjBw4EBwuVyo1Wo8++yzuH79On766SeUl5fj1q1b4PP5GDVqFIKCgnDkyBGXjChTMl5RUYHy8nI6pqGtsqaEixaLBZWVlaisrHTZYJK/LRYLDh48CIFAgJEjR4LH49WKdrvXhtbnZNd3rTabDTqdDgUFBXQ95Hgko3X+/HmMHDkSXl5ezfwGWHQGOJ1O7N69G4GBgUhJSQGXy4WPjw+efvppXL9+HatXr0ZZWRmysrIgEAgwbtw43HPPPbVGCTEdPsJL0pG3rVQNZE18Pp86oUzHkKxXLpdDIpHQPQCxb8xAkafgl7s9beg6SdaZ2aSQfJb8WyKRQCgUYtKkSewYGBYAgG7duuHtt99u62WwcINer0dmZmZbL6PZYJ3SZsDhcMBsNkOr1SInJwdHjx7FjBkzoFarIZfLweFw4O/vjyeeeAJXrlzBunXraAc9Ly8vTJgwATt27MC+fftcsi3kb9L4iGRq3DMed5KVca+7aeg9zPORxkZkI8vMejgcDpw8eRIHDx4En893adPPzI6SY5CorKdMjHvUmGksiUyaZJ6ZnYrJmu12O06fPo2CggIkJydDJpM16Tti0XnA5OiNGzdw9OhRTJs2DTKZjDb0CQ4OxlNPPYXLly/jxx9/hNlsht1uh1KpxKxZs5Ceno6MjAwArrwj92lVVZVLxhRonqqhMRz1BNJpt7Ky0qNE3maz4fr167hw4QKkUimtl3Xf8Op0OlRVVcFoNMJqtbo0TfAUIGP+3+FwwGq1Qq/Xo7S0FPn5+VR66H49t27dgk6nw4gRI9gNbxcGk6O3bt3CkSNHMG3aNCiVSohEIsrRxYsXIzMzEz/99BPMZjNsNhsUCgUeeOABSCQSSKVSKj1n3p8cDocGjYi6B6g9u7MhNEcB4Z7hJLaT8IL8nM/nQywW01pZkUjksb6b1NaS62VeE3Ot7nx1r1kF4LIWAC6BcZFIhKCgIKSmprLzg7s4yP356KOPQqlUtvVyWDBgtVqxfPlyVFZWtvVSmg1+w29hURcqKipQVVUFu92OvXv3IigoCAMGDACfz4dCoYDZbIbJZEKPHj3w97//Hd988w1qamrwxx9/ICMjAydOnACHw8HKlSvh5+eHfv360aH1zE0ike8QY9XcBgd3AqPRSOXExLiSbCnZ7P7www+YN28ebt26hX//+99YtGgR+vTpQ6+D1NCQzDCR6pHXSAQZgIvUiZzTZrPBYrG4SLTIewjsdjtKS0uxZs0ajBkzBnFxcewDtAuDydE9e/YgICAAycnJ4PF4kEql0Ol0sFqt6NmzJ1599VUsX74cNTU12Lp1K86ePYuTJ09CKpVi37598PLyok2zmJs4h8NB60uDgoJo0IbpvDYFjXm/ezDHZrOhoqICZWVlLpxhPkfKy8tx8OBBPPHEE7h69Sp++eUXjBw5ElFRUbSGjMjhdTod3SALhUJIpVIIhUK6kSWcZdaZW61WmEwmGkgj2WVPDrZWq8X+/fsxdepUJCQksBztwnDnaGBgIJKTk+m8XLvdDpvNhoSEBMpRjUaDLVu20MZYISEhKCgogN1uh06nc3HkiL0iCh+i7GFmU+uDp9c9yWUbAnGWmYoBsg6yRqVSCYlEgueeew5Xr17F1q1bacdwUq7C/EPsIOGie20oU2rLDBJ7kuqStZBjqdVq8Pl8PPDAA+jWrRt8fHwavEYWnRMCgQBisRhRUVGYNGkSW0vaznD9+nV88803qK6ubuulNBusU9oMiEQiAIBGo8GRI0ewePFiyGQycDgcCIVCeHt7o6qqCiaTCf7+/nj++eeRmpqKvXv34sSJE0hOTsaIESOwb98+rFixAo8//jiVLBFjwqwxtdvtUCgULnVtdT0cPEl73F+ra/PL/DlpRkIMI/PnxOBXVVXhu+++Q0REBCZOnAibzYZdu3bhs88+w/jx4zF69Gj4+vpSB5S5WSdzIt0dcXcD7h75JhsLd3liTU0NfvrpJ4hEIowcORLAn80uWHQ9MDl6+PBhF45yOByXkQvBwcF49dVXcfr0afzxxx84fvw4UlJSMHbsWOzcuRNbt27FpEmTEBkZ6eJkkc0cMQje3t6QyWQu97Qn1MfRhsDMUtpsNpSXl7tIZN2Pbzab8ccff6Bfv36YNWsW7HY7fv31V2zduhVJSUlITEyETCarlfUk2dTKykoqNXTfCDMzLSQjVdd1O523u/D+8ccfCAsLo81TLBYLhEJho6+fRedBXXYUuO3ISaVS6PV62Gw2BAUF4ZVXXqEcPXHiBAYMGIDx48fjjz/+wPLly6ncldndnqmiIVJeq9UKwFWu2lg0RdLuzhWm08jkE+m0O3XqVMycORN2ux0xMTH44YcfkJWVBS6XS+2lu40mxyLOqicVA7PshXkN7sErEiDmcrlITU1FYmIiLBYLPvjgA7zxxhtN+p5YdA4QlUGPHj3QvXv3tl4OCwYqKirwr3/9y6U5WUcG65Q2A3q9HgBw/vx5KJVKpKSk0Ic7MaYkg2Cz2SAWizFkyBDcc889AECN55w5cwAA33//PeRyOXr06OESzSVGiwyeF4vFLvWaTINS18bWPXPi/n7yb+b/HQ4H9Ho9TCaTi0NJ1sTj8VBVVUXrZV966SWIxWJwOBxMmTIF0dHRWL9+Pc6ePYtZs2ahT58+EIlELg4iszaVgDijnhxp8jd5nWRuyPzIr776CtnZ2XjxxRep9MlqtdKND4uuBSZHvby8aNCHgMwCJLXbSqUSI0aMoAENcq8/9NBDsNvt+OOPPzB16lQEBQXVCu4Q+azRaIS/vz/kcrnLzE93bta1GfYkafcE4jRWVFS4jFphHoeM0Th8+DBEIhGefPJJ6nwuWLAAPXv2xIoVK3DlyhXce++9iIiIcMnyMtfh3kysrrExZNPt/nkSXNu2bRuMRiNef/11qNVqCAQC2Gw21intoqjPjhLJoEQigV6vh9PphEKhQGpqKlJTU12UOw8++CCsVitWrFgBs9kMjUZDz0HsJ+EECbYwM5DkfE11UN3tlLtdJedmKhjcPyuVSiGRSJCYmIinn36aOuULFy5Er169sGzZMly8eBF6vR4Gg4FeC3MP4Gk8lbuiwz3wSxx18jOn0wmRSAShUIikpCS88MILKC0thdPpxOzZs5v0vbDoPODxeJBIJFi0aFFbL4UFAwaDAf/+97+xe/dumM3mDt11l4B1SpsBYjCPHTuGqVOn0plNzAe/VCqFl5cXtFotHc/ANALA7UjxzJkz4e3tjf/+979YtGgRhg4dCplM5pIRJP8mRok4eJ6ct7rgyYC6v+Z03u7gaTQaYbfbab2XuxNsMBiwefNm7N+/Hy+88AK8vb3pRpUYtW7duuHgwYP4+uuvERERgVGjRqFPnz5QKBS1vkt3Y+6JYEw5FjH2VqsVV69exYYNG1BZWYmXXnoJgYGB4PF4CAgIYLOkXRhMjk6ZMsUjR8lIFKPR6JJ5Z75PKBTiwQcfhK+vL1avXo0xY8bQiDGTEw6HA0ajEYWFhVAqlfDx8YFYLPbY0bYxSgXm+8nxmQGj0tJSl/FMTJBN6rFjx3Dp0iW888478PPzc5mROGDAAMTExGDbtm3YunUrVCoV+vXrh9DQUBrUYW5sPW2o3f/vSbbsdDpRUFBAmywtXboUgYGB8Pb2dpHis+h6aIwdFQqFlFvurxFuCYVCPPbYY/Dx8cEnn3wCHo8HjUZDMwjMIAoz2CsQCGoFQe/kGph/k/N4epaQ15jXxuPx0K1bN7z66qvw9fWlGVWBQIDk5GR8+umn2LFjB9avX4+cnBxaGkQC3nUFnT2tkfkdEDsKgJY0CAQCpKSk4M0334S/vz8sFgv69OnD1pR2YYjFYkyfPh2pqaltvRQW/x81NTU4deoUdu7cSTuSdwawTmkzIJfLceTIEVRVVWHw4MEenR8ej0c7S2o0Ghd5HRMSiQSTJk0Cn8/H+vXrUVlZiQkTJlC5rrvcx2w2U8kb2fTWB08Gt64NJqkLI5FkT8bMZrPh6NGj+P3332lWlJkhIX98fHwwbdo0JCUlYd++ffjkk08QERGBe++9FyNGjIBUKqWbA+Y11LdBIJtys9mM/Px87NmzB1u3boWfnx/+8Y9/IDAwEEKhEP7+/qxD2sXRGI5yOByaSSfzbj05jlKpFNOnTwePx8Mvv/wCrVaLvn37uqgIyPFsNhuqqqpgMBigVCqhUqkgFArrlPTWd7+7S/EsFgs0Gg00Gg1MJpPHrCRZx40bN3Dq1Ck8/PDD6NmzZy25O3Bbbjx//nwMHDgQO3fuxK5duyCVStGrVy8kJia6ZHsbs2bmejkcDkpLS3HmzBmcPn0aEREReP311yGRSJCVlQWVSsVytIujsRwVi8UAbmdWiW0C/rzPuFwu+Hw+Zs2aBaFQiG+//ZY6bxaLxSW4QsBU5birkxoLJveZdtq9A7Anh1EgEMDLywtisRiPPPII4uPjAYDKfcmxAgICcP/99yM5ORk7duzA1q1bkZ+fT0e2GAwGelx3Z9j9nMx1kvE0RDrM4XCQnJyMV199FUajEQcOHMD8+fNZjnZxCAQCDBs2jJ1k0E5AMqQbNmxAbm5up3FIAdYpbRby8vKwd+9ejBo1CoGBgXVK8fh8PpRKJTic250tzWZzrawCyWqMGTMGERER+Pbbb3Hr1i3Mnj0bUVFR9HjEiJLPkXpPoVDoIo1lyog9wb0ek9mohDQ7YL7GlPQZDAYcOXIEX375JSZNmoSxY8e6zIHzlI2Njo5GeHg4ZsyYgf3792PPnj349ddfERYWhqSkJERFRSEkJAQymQx8Pp9Gj5lrs9vt1BG9cuUK0tPTkZOTg5iYGPzlL3/BH3/8gerqaoSFhUGtVrOGlEWjOAr86Zg6nU4XR89dIicUCjF9+nTExcXh448/RkFBAe655x74+vq6dJoG/qyfNBqN0Gg0UCgUUCgUEIvFdAPoaQPs/n/CAYvFgpqaGtTU1NDmZ+T9TBkewZUrV7B9+3YsXLgQ9913n0uXavfz8fl8xMfHIzIyEvPmzaP1eidPnoS3tzciIyMRHBxMM78AaOdPADRQRZrSVFVVobCwENeuXYNWq0ViYiJeeukl7NixA9XV1YiKikJoaCh9brDoumgqR0kNsnuDO8I7Ho+H6dOnIz4+Hu+88w4uXboEvV4Po9EIm83mInclxyX8IVwgDiXzdcBzIJcod5jvZX7eU8aUONVyuRxisRhLlizB1KlT6fWR9xGQmr6ePXsiKioKDzzwALZv346DBw/iypUrqKyspHOA3Z1rsrdw71PB5XIhFAohk8kQGBiIgQMHYuDAgdi1axfKy8vRvXt39O7dm7WjLBAbG4sZM2a09TJY/H9IJBIMGjQIe/fuxc2bN9t6OS0Kdkdwh3A6bw+hz8zMxOLFixuMrJKIKJ/Ph0ajcTGqzE0v2Rw+//zzWLduHd5//308+OCDGDBggIt8hpyPGAyr1Qqr1UozjgKBgA7odv8M89/kc8TpI2twz6YQw2Y2m3Hw4EF88803GDlyJCZPnkzljw19XzweD2q1GrNmzcKECRNw69YtXLx4EadOncLq1auhUqkgkUjg6+uL2NhYeHl5USchLy8PeXl50Ol0qK6uRmxsLBISEjBjxgyEhobSGXSrV6/GK6+8QruFsui6aCpHyaaXObCeHIcJHo+Hnj17YunSpfjhhx+wYcMGjBw5EjExMS5ZG+amlSgbqqurIRKJIJFIIJPJ6DxC9269hG92ux0mk4l2xCUNz5jOMlk7OZfT6cSlS5ewb98+TJ06FdOmTaP88HQ9zJ8RhcGCBQswffp0XL16Fenp6bh27RqOHj0KuVwOPp8PqVSKiIgI2jXXbDYjJycHFRUV9HnSu3dvjB8/Hn379kW3bt1oNvrHH39EaGgofH197+j3yqLzoKkcJb0aBAIBLS9xBzlGQkICPvroI3z11Vf47bffIBKJYDAY6OgmT5J0piPKVDV4KiVhvsf9WcF0TplrJz8TCASQyWRQKBR44okncP/999M+EZ6k78x/i8ViiEQiLFq0CDNmzMDVq1dx+vRpXLlyBSdPnqRKJ/IMsdlstGabSJVlMhl8fHyQnJyMvn37om/fvggLC4NEIgGXy8WGDRvwxhtvsLJ6FgCAsLAwdj/VjsDhcDB58mTs3bsXmZmZnaLrLgHH2ZxCihZCcnIyTp8+3dbLaBTMZjN1LH/88UdkZ2fjnXfeoaNcGgLJKGi1Wiq5IaNQmEaW1HUeOnQIW7ZsQVRUFObOnYvIyEiXDSZQuzaUGTUmkiam1Il0ASTncl+3p8iw0+mEVqvF+vXr8fPPP2PmzJmYMWOGS0dOgrpuKfesE1mr1WqFw+GAwWBARkYGnWtIjkXWIxKJ0Lt3b6jVavq9MTO6ZrMZy5cvR2RkJB5++GEIhcJatavtGe2ZB+15be5oLkfJPWo2m2mHTvI5UhdOYDKZcPDgQfz444+Qy+UYMmQIgoOD65W7MmW+JIBEul2S85CMI3NOqDuvSCaEeS6z2YzDhw/jyJEjePjhhzF//vxa8tv6+Mm8fvIzIhm22WzQ6XTIyMhAVVUVXR8z6yKVSilHSRdPwlG73Q6j0YhPPvkEYWFhWLRoEcvRFkR7Xps7mstR4M/O8ISTJOtOlA7MWvEDBw7Qhl6kARKxO0znsT5HlNkVH/hTteQJ9W2rFAoFJBIJJBIJnn76acyfP59u+AmX6joG4SazpwLhFqm51ev1uHTpEjQaDX2Gke+DBJQSExPh6+tLxz4xz6fVavHxxx8jIiICCxYsAJfLhY+PT5MkzW2J9syDjvIdAn8++xUKBU6ePMl23W2HyM/PxwMPPIBDhw7V+Sxqr6jrGclmSpsIDoeDoqIiAEBaWhrmzJlDO842BmTz5u3tTTOBXC4XNpsNGo0GNTU19GdkrElsbCw2btyIDz/8EEOGDMGkSZMQEBDgMtfTXY7ENOzMNvFkE8vhcCAQCGo5f+7t5El9XFFREb777jucPHkSs2fPxn333edy/oa+s7r+TYaEA4BMJsOIESNcnFf3ejkmmOsk0efJkydj5cqVGDx4MMLCwmC326FUKtmIbxdCcznKDIKQzSIz88l0TMViMUaPHo2YmBisXbsWv//+O7p3747k5GQ6Fqa+mk+SxSA/ZzqGnv5NPsf8G7jNca1Wi927d+PmzZt49NFHMXv2bNqkzP363CX2nq6fGdgiWRwi9SPrcs8MMcFcN5ErSqVSzJgxA8uXL0dycjJUKhW6desGhULBcrQLobkcBf68L905SvoNkGZBhKOxsbFYvXo1duzYQeu9mXOvCdy5R8AM5Lrf78z3EYfRXaVEbDqPx4Ovry+eeOIJzJw506VOr6GAkad1Em7xeDwIBAIolUoEBQXVOqY7rz29Dtyu8Z05cyb+97//ISkpCRaLBREREYiJiWE52sVAGhyFhoa29VJYeEBoaCimT5+Os2fPwmAwdIqxMOwTpokg9SyXL1+G3W7HsGHD7ij6RTKYAoEAPB4PQqEQKpUKcrm81sDrbt264emnn8aiRYtw9epVvPjii/jss89w5coVWidDamWY2Rb3LGZ98j1PG1UOhwOtVotdu3bh1VdfxZUrV/D0009j2rRpdANRn3FmntPTz5iOJ/MP0zGu77tlvkautXv37hgwYAA2bNhApUtk5ACLroGW5CjZ7JH7nEgHmQETHo+H6OhovPLKK3j11VdhMpnw3XffYceOHSguLnapdXMPFjFRX/CGgHleclyz2Yzz58/j66+/hkajwZtvvokFCxZQR7K5YDqf7v93V1Uw/5CfMf/mcrlISEjA4MGD8dtvv1GZNFGNsOgaaGk7SpQGJPBB6sOZ911kZCReeeUVfPbZZ5gyZQpCQ0Ph5eUFuVxOnUVie5ndeZsDYpfEYjGUSiWkUilSUlLw/vvvY968eZBIJB5l+E1BQxz3pHzy9B4mCEd///13mM1m3LhxAzqdrslrY9FxweFwIJPJMGDAANoRm0X7w+zZs6mCsjP0aOj4V3CXodVqwePxcPbsWfTo0QN+fn4tIskgmRlvb2/weDzodDoX2R6fz0efPn0QHR2NjIwM7N27F++88w6ioqIwfvx4REVF0Q6f7hIjJupySN0zpDqdDleuXMHWrVtx8uRJJCYmYu7cuQgODnYx1A1duycntSUV4+4bdJvNhnvvvRcffPABrl27hpSUFPaB2sXQWhwFbm8yZTIZOBwOrU0jx+bz+ejXrx9iYmJw7tw5bNu2DRs3boRarUZSUhJCQkKoPJEpw3N33OrLODLr0sxmM8rLy3H06FHk5eVh6NChWLRoEcLCwmqNiqoPzdkQNxXkukeMGIGjR49Cr9dDIpFQCSGLroHW5Cifz4dMJqOZUOZxhUIhHYOUkZGBTZs24eTJkygpKaEdLC0WC5Xtu8tp67KfxAYxO+4ypfkSiQQ+Pj4YNWoU/vKXv9B5wI3F3eIo81k0YsQIHDlyBFKpFMnJyR1KZs+i+eDz+QgNDWXn07ZzBAUFYenSpZg7d26nyJSyTmkTQDaHer0eJ0+exGOPPeZSC9ISEIlEUKlU4HK50Gq1taR9CoUCgwYNwsCBA3HlyhUcO3YMn332Gex2O5KSktC/f39EREQgPDyc1p421IGXoKKiAvn5+bhw4QJOnDiBnJwcREVF4bnnnkPv3r1r1bIy1+UJJMPEJEpLOqR1HVOtVmPUqFH4/fffkZyc3KHqOFg0D63JUaZjSJxLT520VSoVhg8fjqFDhyIjIwNpaWk4cOAAjEYjwsLCEBsbC19fXwQEBLg4qO51nO7n5vF4MBgMKCsrw82bN3Ht2jVUVVWhd+/eePvtt5GUlORSY13XNbsrIkhtWmtw0/18wO3vLzAwEOPGjcOWLVvQp08f1intQrgbdpRkTDkcDh0HwwwAeXt7Y+jQoRg4cCAyMzNx6NAh7N27F1lZWdDpdHA6nbRemkiBmTPDCccIf0hQl2Rsyd+kcdiwYcMwc+ZM9OnTh46Gqs92ku+CKdFtzZoxT3J+wtFt27ahX79+rB3tYhCJRFAoFAgICGjrpbBoAEOHDsXw4cPxxx9/tPVSmg3WKW0COJzbIyEqKipgt9vRp0+fFn9Qk1pPkvWsrq6GyWSqZaCA2xKb7t27Y/LkycjJycGxY8fw66+/wmAwQKFQQC6Xo1+/fvDy8qINRWQyGZxOJwwGA+0CXFFRgfT0dBgMBuj1eigUCvTq1QsLFixAWFgY/Qzgud7G3aCRkTJEFlVVVVUrYt2acDqdSE1NxYkTJ3D+/HkMHz6crYXpIrgbHAVuO1akc67BYPAoaeXz+ejbty969+6NOXPm4NatW0hLS8OlS5dQWVlJO2QnJCTQ2k+lUgmZTAaHwwG9Xg+dTgeBQACDwYCLFy/SRmn+/v4YOXIkBg8ejMjIyFpqgLo46l5XJhAIIBQK6TUQtJaDyvz+Ro4cicOHD+PChQu49957WY52EdwtjhLHlPDHvcaZ2No+ffrQTu5ZWVk4dOgQrly5glu3bkGv16O6uhpCoRB6vd6lsRBRN5HsqEwmg81mo13k4+LiMGDAAAwdOhQREREudtTTKCj3QBLJvJLadr1eT8dOtTbIGkaMGIFDhw7h/PnzLEe7GJxOJ6ZPn97Wy2DRCPj6+mLUqFHYt29fh8+Wsk7pHeDSpUsICQlpNTkLyYrI5XIIBAJUV1fDaDTSLnpMx5TH4yEgIACBgYEYPHgwtFotysrKcOPGDVRUVODSpUvIycmBWCx2qbUxm810CHl0dDQSExMRGBiI8PBw+Pn50awos0ESQX11KeS9IpEISqWSdkCsqqqqs4toa0AsFmPgwIHYvXs3Bg0axA597mJobY4CfwaQ5HI5zGYzzGazx9otJkeHDBmC6upqlJaW4vr16ygtLUVubi6uXr1KO2OSrJHJZILJZAKPx0NsbCwmTpyIbt26oVu3bggKCqIc9cSn+jhGHGjSeZPUvBmNxhb+huo+P3C7sdmQIUOwf/9+DBo0iM2WdjHcDY6SbCWPx4PRaKRNytydUz6fj+DgYAQHB2PYsGHQarUoKSnB9evXUVJSgqysLNy4cYPeozabjX6W1LJGR0cjNDQU3bp1Q2hoKIKCgii/iOPKdOoaUjOQ7CypdxWLxbWCR60Z6CU1hSxHuya4XC7Gjx/f1stg0Ui88MIL+Pzzz5Gfn9/WS2kWWKe0ieBwODh8+DBGjRrlMje0Nc7D4XAgkUholJRkHJnNG4ihI5tTmUwGmUyGiIgIOBwOl/mlJPJKPkuOQ85RVxfCxtSBMo08j8eDSqWiBoxsOjQaDXWsmdfoXhfanO+MrNvpdKJfv374+OOPkZubi7i4OJf3sOi8uFscBf5sZEKapJjNZo+zgZn3ppeXF7y8vBATE0PlhaSejbyHyT3StZOMdnHPsjSWo+7rJplep9NJZ4iScRrux6urUUpTz+vOvwEDBmD37t3IyclhOdqFcDc5SpxOmUzmMt+U8IYZ5CXvl8vlUCgUiI2NpU2ZmBwl72OWx5A5oEQqTED4xKzzdn8PE0z+S6VSKslnBpSZnfbd10SOwfxZUznKXF9KSgr27duH3NxcxMbGejwvi84HMrObRccAl8vF5MmT8dVXX7X1UpoF1iltAioqKlBZWYmamhr07t37rhGWmTXV6XS01rQhp5FsZsmGk8BTLUt9WcymNEwh0mPSDAa4XTCvUCjA5/Oh0+lgNBpdZEx1neNOHVXyOTJu4siRI+jWrRtEIhFrTDs52oqjxMkTCoUwm810A+teJ+qp3lMoFDZ6MHlddWiN4QlzDRKJhHbqI88QkpExmUw0eOSpEVNLgcPhwNfXF5GRkTh27BhtBMVytHOjLTkqFovB5/PpfFP3ABDz/8CffCN21D2g6gl1yXLrew8TJOgkkUiorJ+cj7l+5pxVT9Lk5vCVeSy1Wo2IiAgcPXoUoaGhTR7dw6LjQSAQYMKECewomA4EDoeDBQsWYOXKlbQJY0cEGwZpBBwOByoqKlBVVYXMzEyIRCKEh4ff1TUQg+rj44PAwEB4eXmBz+e7SGyBPw1SfVHg1jIoQqEQarXa41xQPp8PuVwOf39/hIaGIjg4GAEBAVAoFLVG4NypUXXfPAuFQowYMQKHDx9GeXk5qqqqmnmFLNor2gNHgT+dU6Z0HaiduWgrjgKgMn73czMzSkqlko7LEAgEdday1SdBbAhOpxNCoRCjR4/GsWPHkJWVhYqKiuZdHIt2i/bCUWKLlEqly+iYuuZ5EzWE+5/W4Cg5t1wuh0Qi8fhsIOtXqVSUo2RmuHvTNHJM8tmmroXJUdLlu7KysmUulkW7BIdzu6HmmDFj2MkFHQwpKSm4//77O3TQiM2UNgJOpxPl5eUQCoXIyclBeHg4fHx87vovnkiASEaGtL13Hx/D7OjpaY13KrmrS87HnMMml8tdWui7G1QicyTH4vP5HgeY13d+d4mxp+si/46Pj4dGo0FJSQni4+Mbfc0sOhbaE0cBuNSHWiyWWrVsZM0tIVtnHre+Y/H5fAiFwlrKCffjkI04OZZYLPbYnde9vt1TFtjTmtzfk5CQAL1eD6vVCi8vr0ZdL4uOh/bCUQJmIySr1Uozp57u45bgaX3SWvIzgUAAsVhMM6R1HcPd/kokEuj1+jrt/p1ylLyvZ8+e0Ol00Ol0iIyMbPrFs+gwIOOLpk2b1tZLYdFEkMaFd7NHREuDzZQ2AqTRiFKpRFFREeLi4to0EkGcO5lMBrVaDX9/f5qZYWZOSfS3NRoLMZulKJVK+Pr6ujikZJ31XQOHw6HONcmW1rXWpkZ7me9PSkrC+fPnW+V7YNE+0N44CsDl/lYoFC6Nie7WvejOs/oc0ro+S+YseqonretzjQEzMNW3b1+cO3euVUfTsGhbtDeOunODcBS4Xc5it9tdbGlrgHlsoVAIqVRKs571rZv5bzIPlXC0Md9pU793MoM5PT29Q0sDWTQMg8FA95csOh4mTpzooj7saGCd0kaCw+FAp9Ph4sWL6NmzZ1svhxpUd+fUx8eH1ovV10jB/Th1SQnJ+z3Jg0UiEdRqNXx8fGiXwTu5DiInrAuepEj1vc+9tiY8PBzZ2dkoLy9nN7ydGO2Ro+RvgUBAm5CJxeI6gzANZTwbw1Hme8lMVZlM1qzaPYFA4KJw8HTuxtSe1sXRqKgo5OTkQK/X3/EaWbR/tEeOknuR2FK5XO7CUaZjyrzH3X/uyUYy4f4eAsJRMvv4Tpxg8oypy6G9U44ylRNRUVHIzc2lGVkWnRdtHdBlcecYP348lEplWy/jjsHKdxsJDodDI0h+fn5tvRwXkGwGyWioVCoYjUbo9XqYzWbYbDaagWjIGLnLlJibZHdHmNTkNOcBRoypRCJptNygvg0783WyZn9/f+zdu9elKyqLzof2zFHgz3ud1GiSztgkKwN47njtLklnHq++/5P5hqShUXPWDdzO5DR2BlpTORoUFIQdO3Y0a50s2j/aK0eZTiTJPJKZwKS8pDE2tL7jEzCPQRooufdVuBOQdROONnScxnCUGTwKDAxEfn4+25G1C6BHjx5tvQQWdwii/uioYJ3SRsJut6OmpgYKhaLdRyGI0yiRSGitDOk2SDbBdUV3yb8JmK8Tp5dEkpu72WWutyWkjXVFiP39/WEwGNgZa50cHYmjZH6iUCiEw+GgYyfIv4GG69jqqgMTCAQuI2RaAoT/zT1efRw1Go0uI2lYdD50RI4KBALqlFqtVhrkbUwdNwCPASZSO9oSnGKeh9jkppa7MFEfR8k+gkXnxsMPP8w+gzswWnvMVmuCdUobCbPZjKKiImpM2juI5IZkS2QymUvk12KxwGw2UxkSM1tDQLoMEmdULBZTWVNLPrBIZIc0PWppCAQCSKVSXLlyBV5eXq06rJ1F26EjchS4HZQhWQ6n00m5SMY+EY56qg8nXCR8FwqF9Hgtvakgx20NxYFQKIRcLkdmZiYUCgXb8KiToqNxlIA06CNBJPKHjGUB4PJzJggXicqI2LrW2PQLBIJW46hIJIJcLkd2djYCAgLqbMbEomODy+VCpVK19TJY3CGEQiH+85//YPr06R0ygMQ6pY2A3W5HcXExdDodYmNjIZfLO0QUyT3zyePxXDYDzGwps7EDMWpkE0rqU1vzmrlcLt1gt3S9ikAgQEREBLKysjBo0KAWPTaL9oGOylECJleZDqp7DRsTJKNIpH+e6thaeo2tdXyhUIiIiAjk5uZi8ODBrXIOFm2LjspR9zUSBxWAy0gZd44ys5XM4BHz9Za+/tbmaFRUFLKzszFkyJBWOQeLtkdHChax8IyWThzdTbBOaSPB5/ORnZ3tMnS+o8KTTNf9mu62hI65uW5pCAQCqNVqmM1maLVayGSyDktYFnWjM3EUqL3BdOdHW3HUXVHREuDz+VCr1bBardDpdCxHOyk6G0eB2s2SmKiPo611f3O53FbhqEAggJ+fH0wmEyorK6FWq1mOdjKQBpZs3XDHBlE3dsRO2eyd1wiQ+WW3bt2qswNlZ0NbGJvWckqZmeCOKGdg0TBYjt4dtOZmhSmJZNH5wHL07qC1OOp0OmGz2WAymWAwGFrlHCzaFqQZX0dulMPi9qzZjjrSh3VKGwHyELbZbLQrWVcwqB0NnqRLxEDb7XYYDIYmzWlk0XFgMplgNpvhcDhYjrYSWiIz685R5v/tdjuMRiPL0U4KYkftdjvL0VaCp875TUV9HHU4HCxHOzG4XC6d2MCi48LHxwdqtbqtl3FHiaS6AQAApeNJREFUYJ3SRsBqtYLH44HP50MoFLaKNKarw30Mxp3Cveugw+GA2WxGVVUVOBxOh6ljYtE0WK1Wyk+Wo+0bnroGGwwGlJWVwel0shztpLBarRAKhbT5HsvRlgezI3BzbKm7HXU6nTAajSgrKwMAKBQKlqOdEKSDMyvf7dgQCoUd9nfYMVd9l6FWqyESiTBo0CB8//33OHLkCJUisWg+PM1HvdPjuP9fp9Nh06ZN2L9/PxISElpNIsyibaFWqyEUCpGSksJytBXR0hx1OByoqanBzz//jN27d6Nnz54d1piyqB/Ejg4cOJDlaCujOQ4j8/dBOvNXV1djw4YN2L17N+Li4tiZ350UNpsNUqmU5WQHR35+PoqKitp6GXeEztFpoJXB4/GgVqsxdepUhIaGYvny5Th06BDuv/9+REZG0k0UGzm8c5B6svqcU09DveuaqeZ0OpGZmYk1a9YAAF5//XX06dMHhYWFiIqKYn9XnQw8Hg8BAQGYPXs2wsLCsHz5chw+fBjz589HeHg4y9FmgvCsoc1oY2c3kvdcvHgRq1atgtlsxssvv4zExEQUFRUhIiKC/V11MvB4PPj6+mLGjBkIDw/HV199hcOHD2Pu3LmIiopiOdpMNDa464mjnroCk27CFy9exA8//EA5GhMTg6KiIsTExLC/q04Gp9OJ0tJSPPXUU3jllVcwbtw4doReB0JNTQ1OnjyJJUuWoKampq2Xc0dgndJGQi6XQyaTYfDgwcjMzMSyZctw6tQpzJkzBxMnToSXlxdrVO8QzJqy5hyDy+XCZrOhpqYGBw8exLp165CTk4NffvkF0dHRtB7mbnctZXF3IBAIYDKZwOVyMXjwYCxbtgxnzpzBzJkzWY62EO4kQ+JJUqjVarF9+3b8+OOPyMrKws8//4yoqCg4HA7o9XqWo50UYrEYXC4XarUaSUlJ+Prrr3H27FnMnj0bEyZMgFKppO9lf/9Nx53KdokTynRINRoNdu3ahdWrV+PGjRtYv3495WhNTQ3L0U4Ks9mMs2fP4qmnnsL+/fvRs2fPtl4Si0Zi165d+Nvf/kb52RHBOqVNABleP2TIEPz888+w2Wz46KOP8Pvvv2PBggVITU2FTCbr0DOC2goOhwM2m61RRGIaUOB2BN5ms8FoNOLChQtYv349rl+/DoFAAKlUCn9/fwC3O5KFhYWxv5tODKlUigEDBkAsFqNHjx7o1asXfv75Z2zbtg0LFizAsGHD6MaXvQ8aDw6HQ6V89b3HPVPjzlWbzYbDhw9j7dq1KCkpQWRkJDQaDfz8/ACwHO0KEAqF6N69O0wmE06cOIFhw4Zh8+bN2L59O+bMmYN7772XZmfY+6DxIFxrLEeJU8nlcmlWlHSpP3jwIDZt2gQASE1NhdFoZDnaxeB0OnH8+HHWKe0gcDqduHDhAu3N0FG72LNO6R3A398fISEhUKlUCA4ORkVFBd555x1s2LABDzzwAFJSUiCXy2vVL7IPcc8gBtHTZpb5fwIi8wVud4uzWCy4du0aNm/ejFOnToHH4yE0NBQ2mw1BQUF0vppQKGR/B50cPB4PMpkMYrEYfn5+iIuLw5AhQ3Dq1CksX74cGzduxIIFC9C/f38XjpL7jb0/6oZ7Fob5ndX1GvljsVhw5coVbNy4EefOnUN0dDTuuecelJWVwWAw0N8Xy9HOD6PRiLNnz8LLywve3t5ISkrCjBkzsGfPHqxatQq///475s6di/79+0Mmk0EgEABgOdoYEDtKnE93O+oe9CXvsVqtsFqtuHr1KjZu3IgbN25gxIgRmD59Oi5fvoybN2+yHO1isFqtWLVqFR5++OG2XgqLRsDpdOLIkSOwWq0dNksKsE5pk8Dj8SCXy+FwOJCSkoI9e/YgNjYWgYGB8PPzQ25uLt58801ERUVhypQpGDVqFFQqlUvmlH2Ye4bNZqMGtS6JJbMjIIfDgc1mQ0ZGBvbu3Yu9e/dCLBbD19eXbmJMJhPi4uJgt9vZFvZdCA6HAyqVCr1798bp06cxd+5cjBs3DoMHD8aRI0fwxRdfQKlUYsyYMRg7dix8fHzA5XLZTW8D8BQkYv7tLv9zOp0wm83IyMjA7t27cfjwYYSFhWHq1KlQq9XgcrnIzMxEWFgYrFYry9EuAolEgujoaBQVFSE2NhZHjhzBwIEDsWDBAowbNw47d+7EDz/8gNWrV2PUqFEYO3YsvL29weFw6HxTlqOeYbfbqQ1156h7zwaSIa2qqsKlS5dw+PBhnDlzBoMGDcJ///tfhIWFQSQS4Y8//oC/vz/L0S4E0iSysrISV65cQffu3dt6SSwagdzc3A7tkAKsU9pkCIVCCAQCpKamYuvWrfTnIpEIUVFRMBqNqKqqwscff4y1a9di2LBhuO+++xAUFASlUskaUw9gZkrratRADC2pGb169Sr27NmDCxcuwGazITAwkDqjdrsdQqEQWq0WiYmJrCHtYhAKhRCLxejTpw9OnjwJnU4HLy8vKBQKjB07FgMHDsSNGzewfft2bNu2DQMGDMDYsWMRFhbmUeHA4jaY9aT1GT6r1YqamhpkZGRg586duHHjBvz9/TFz5kx4eXlBJBLR7ExOTg5mzJgBiURyNy6BRTtBQEAAysvLER8fj61bt6K8vBwhISEICgrCwoULMW7cOBw7dgx79+7Frl270L9/f4wdOxahoaHsyKA6QOwo8/91yekJRy9evIg//vgDZWVlSEpKwn//+1+X79hgMCA9PR0DBgxg7WgXg91uR2FhIXbt2sU6pR0AW7ZsgUajaetlNBusU9pEGAwGyGQy9OzZE/Hx8SguLkZgYCBsNht4PB4kEglEIhGCg4Oh0Wjw22+/YcOGDejVqxcmTJiAlJQUBAYG0llQ7lHfrmhsibzPXXrEfN1qtaKwsBDHjx/HoUOHkJ2dDZVKRetcyGeIUXY6nVAqlUhKSnJpnsGi88NqtSI4OBgKhQKbN29GRkYGhgwZQuunfHx8MGjQIPTr1w9Xr17FsWPHsGvXLkRGRmL06NEYOHAgAgICwOfffjwy667I/7sanE6nx4HqhK8OhwMmkwn5+fk4dOgQDh8+DK1Wi+7du2PatGm0RpDZxVej0YDD4SA5ORm+vr539XpYtC3sdjsSEhIQHh6OtLQ0nDp1CkFBQeByueDz+QgNDcWsWbMwevRoXLhwAbt378arr76K4OBgjBo1CikpKfD39weXy6VBJCZHga7JUyLdI0Fcd+mu0WhETk4O0tLScPz4cQgEAowcORJjxoxBYGAghEIhfS9wO/NSXV2N7t27s11YuxicTicqKyuxdetWPPDAA/Dx8WnrJbGoB9nZ2TAYDG29jGajQafUZDLh3nvvhdlshs1mw6xZs7B06VJkZWVh3rx5qKioQP/+/fHjjz9CKBTCbDZj0aJFOHPmDNRqNdavX4+IiIi7cCl3B3q9nmbsJk6ciC+++AKBgYEA/swkCAQC2Gw2eHl5ITExEVarFWVlZfjoo48gkUjQp08fTJgwAbGxsfD19YVcLqeS1a648a2rOYPBYEB5eTkyMzORlpaGq1evwuFwQKlUIiwsDHw+nwYDuFwudWoFAgFqamrQo0cPhIeHd3g5Q0NgOeoKq9UKDocDrVaL1NRU7Ny5E3379oVUKqXvsdvt4PP5SEhIQFxcHLRaLW2S9cMPPyAmJgbjxo1DdHQ0/Pz8ujxHgdryPyLxKi8vx6VLl7Bv3z5kZWXBz88PCQkJCA4Odslqkc0yOU5WVhbCw8Ph5+cHk8nUqbOlLEddQThqMpkwbNgwHDlyBPfeey/UajUNcnC5XHh5eWHIkCHo27cvysrKcOzYMezcuRNr1qxBREQERo8ejZiYGPj5+VElEvMe7UocZdZ1k3/b7XYYDAaUlZXh4sWLOHbsGAoKChAXF4dHH30UiYmJUKvVEAgELgFhu90Om82G48ePIygoCAEBAZ1+NinLUc84ffo0Lly4gNTU1LZeCos6UFFRgdOnT3eKvW6DTqlIJMK+ffsgl8thtVoxbNgwTJgwAR9//DH+9re/Yd68eXjyySfx7bffYvHixfj222/h7e2NGzduYN26dXj55Zexfv36u3EtdwUymQx8Ph8CgQDR0dHw9fWFRqOBSqWi77Hb7dQYCgQCcDgchIaGIjQ0FJWVlcjMzMTBgwdp3VtycjL69++PkJAQKBQKWjcDdP7mDiQDQzKler0eJSUlyMjIQHp6OjIzM1FdXQ2VSgUfHx/w+XzY7XbqiBJj6v59VVZWYtKkSRAIBNDpdFCr1W18pa0HlqOuEAgE4HK5EAqFiIyMhNPpxK1bt9CrVy8Arh0oORwOhEIhfHx8MGLECAwfPhw3b97E5cuX8eWXX8LhcCA6Ohr9+/dHv379EBoaCoVC4VHl0FlBHEmbzUa7XOfm5iI9PR3p6em4fv06+Hw+YmJiMGXKFOpYkM8y/yY/NxgMyMzMxKJFi1BaWgq1Wg1vb++2ucC7AJajriAcFQgEiI2Nxa5du3Dp0iUMGzbMJfhD6kjlcjkUCgUiIiIwffp0ZGZm4sSJE1izZg0MBgPCw8PRt29fJCcn02BIV6o/JXaUdLDX6XTIz8/HuXPncO7cOeTm5iIkJARDhw7Fs88+i8jISLo3YaodmDwtKSnB3r17MXHiROj1etqzobOC5ahn1NTU4IMPPmCd0naM3Nxc7N+/v1MEjhp0SjkcDuRyOQDQDm0cDgf79u3DmjVrAAAPPvgg3nrrLSxevBibN2/GW2+9BQCYNWsWnn766U5lGEi2RS6XIzIyEpMnT8by5cvRr18/+h7m9TI7xQKAj48P1Go1IiMjodfrkZ+fjwsXLmD58uUICgpCjx49kJKSgpiYGAQEBMDb27tOmW9HiAbXVSdK2s+Xl5ejoKAAly5dQlpaGrKzs1FaWgq73Q4vLy94eXm5NKLhcDguxhSoPQxcr9cjOjoaiYmJ1OHozGA56gpSW+zv7w+hUIh77rkHhw4dQnR0tEs2jnn/kI0wl8tFbGwsoqOjMXbsWFRWVuLGjRvYu3cv1q1bB5VKhYiICAwcOBBxcXHw8/Oj92d9aM/frXtAh4DJ0ZKSEly7dg1HjhxBdnY2ampqoFQqERMTg6lTp0KpVNKunO6deN0llRwOB3l5efDx8UGfPn3g5eWF4ODgu3fBbQCWo64gHNVoNAgICEBycjJ+//13JCQkwNvb2yXYyHy+c7lcSCQSJCUlITExEfPnz6f249SpU/j9998hFovRrVs3pKSkIDo6Gv7+/tSOMpvoeepE297hvma73Q6Hw4GKigrk5+fj5s2bOH78OHJzc2G32xESEoLU1FT07t0b3bp1g1gsrjWyjtnJnsDhcODcuXPg8XiIiYmhfRs6M1iOeobD4UB6ejp+//13TJkypa2Xw8IDli9fTsc5dXQ0qqbUbrejf//+uHHjBp566ilER0dDpVLRmqvQ0FAUFBQAAAoKChAWFnb74Hw+vLy8UFFR0akibGfPnkWvXr2g0Whwzz334LfffkNlZSW8vb09PpQ8PaR4PB6USiWUSiVCQkKg1WphNBpx4sQJ7NixAz4+PvDx8UF0dDT69OmDyMhIxMfH0+Hj5Ltndg1t6JxtBYfDAYfDAYvFAp1Oh5s3b+LatWs4d+4csrKyUFJSgrKyMkgkEkilUvj5+bk0m2E6DQR1yRR4PB70ej0WLVpE62PIBqgzg+WoKwhHORwORowYgUOHDiEzMxP9+vVzyQ641y8zN2hSqRRSqZRu7AoLC1FWVoabN2/ihx9+gFAoBJfLRbdu3ZCUlISIiAjExcVBKpXSTD6zE2Z75SizztNms0Gr1eLGjRu4fv06zp8/j1u3bqGmpgZWqxXh4eHo3r07goKCoFKpPHbfbehcBoMBGRkZmDZtGq3BJ/dpZwbLUVesWLEC165dw0MPPYTRo0fj9OnTSE9Px8iRI1346e6ckuwpj8eDt7c3VCoV4uPjMWPGDGRnZyMnJwfnzp3Dxo0b6WdDQkKoHSUcZXaoJY5ae+Uo6aoLABaLBTU1Nbh16xZu3ryJCxcuIDs7GxaLBWKxGL1798Y999yDnj17IiwsDGKx2KXO1BOYgSm73Y6SkhLs2rULI0aMgEKhgEgkYu0ouh5Hyd7LaDRix44dGD16tEsZDIu2x549e3DgwAHodLqukSkFbj+wz507B41Gg+nTp+PKlSvNPvGKFSuwYsUKAEBZWVmzj3c30atXLwgEAgQEBKCyshKPPPII3n//ffj4+IDH4zX5xnA4HJDJZJDJZPD19YXdbofVaoXJZMKlS5dw8uRJmEwmeHt7w263Izo6GvHx8RCJRAgPD4evry9EIhF8fHygUqloxqKuyHBLG1pmrRhpplBSUgKdToeqqircunULGo0GBw8eRFVVFSoqKmg9qFqthlAoRFRUFP0uALhIr0i9aF3nZl5PeXk5evXqhTFjxlAJZ1cAy1FXEI6SjdTMmTOxYcMGxMfHQyaT1RvRdpeckn8HBQUhKCgIiYmJMJvNMJlMqKqqQlZWFg4ePIiNGzdCLBajpqYG4eHhiI6OhlAorMVRHx8fui53jrYW3DlqMplQUlICrVYLjUaDmzdvoqqqCkeOHIHFYoFer4dSqaR18V5eXpBKpbQDp3udqLvTUJdz6nA4cOHCBfj6+mLMmDHQarWQyWStdt3tCSxHXXH//ffD6XRCLpfDbrdj6tSp2LlzJ3r16oWAgAAamKyvGSC5n/l8PpxOJ6KjoxEdHY3hw4fDaDSiuroaxcXFuHLlCi5evIhdu3aBy+VCo9GgW7dulKNhYWGUo2q1ul472lqoj6OVlZW4desW9Ho9jh49SkeoBQUFITIyEhMnTkRYWBhUKhWd7cqsKyWOPPM8dV2L2WzGzp07AQCjRo2CyWSCr69vu3HQWxOtzdGOBnL/2Gw27Ny5E5MmTcLkyZPbelks/j/MZjP27t2L8vJymM3mrlFTyoRKpcKIESNw7NgxaDQa2Gw28Pl85OfnIyQkBAAQEhKCvLw8hIaGwmazobq62mM93+OPP47HH38cAJCcnNwCl3L3wMzA+fr6IjExEQkJCSgqKqLfQ1PBdLxIlkUsFkOlUoHL5cJgMMDhcECn06G4uBjXr1+ntVhGoxE2mw2+vr7w9vYGj8eDWCxGfHw8unXrRo/P5XLh5+eHoKAgKBQKCAQCjxkKdweWGDGbzQar1Yry8nLa6Yt0PyQSKr1eD4vFgoKCAuh0OgiFQmg0GkilUojFYgCgs0T5fL6Ls8mM4jJlv8waXfd1Mj9P6t3mzp0LoVDYJbvushy9DWYXSYVCgd69e2PPnj04efIkRo4c6fLeuh7k9W3chEIhRCIRlEolwsPDAYCqHcrKylBTU4OCggLcvHkTEokEFRUV0Gq18Pb2hlqthtPphFQqpRwlshvCUVJfTrp0A6i1MSf3PsnIEq5YrVZUVFQgOzsber2ebqwLCwtx+fJlGAwG2Gw2FBcXw2g0wsfHB3a7HYGBgYiKioJKpYJKpYJEIqG1f3WNg/H0HXn6PgmXq6urcfXqVTz33HOQSqVdsqMny9HbYP7uuVwuBg4ciLS0NOzevRtz586l973D4aglOSVw5wS5z/h8PhQKBRQKBUJCQtC3b1/YbDZoNBrU1NQgPz8f5eXlyMvLw9mzZ3HmzBmUlpaiuroa3t7e8PHxgc1mg0QiQffu3REeHk6zlRwOB/7+/rTDt0AgcMm0euIH8zXCUWJHjUajR446HA6Ul5fDYrEgJCQEIpEI3bt3x6xZsxAUFISQkBB4eXlBIpHQPQPz+3BXaLiXK7ivk3zfOTk52LVrF+bMmQOj0QiVSuVy7V0BrcXRjvr9mc1m5OfnY9myZRg3blyXyJp3BOTk5GD79u0wmUxtvZQWQ4NOaVlZGQQCAVQqFYxGI3bv3o2XX34ZI0aMwC+//IJ58+Zh1apVmDp1KgBgypQpWLVqFQYPHoxffvkFI0eO7LBEbAjE0QsMDMSjjz6Kl19+Gd7e3nQOX30ZPne4v889GkwkOMQAORwOxMTEwOm8PU6FoKKiApWVlRAIBMjLy4PJZEJ1dTVMJhMdWUOcQ9IUgRgc4ngS40QkUnw+n0ZauVwuTCYTdDodbDYb5HI5ZDIZRCIRNbYOhwMCgQByuZxu3EkEmHxvTCPu3niGaUQbc++QNRcXF2Pu3LlISEiAVCrtMk4py9G6Qe6t0NBQ/OUvf8G7776LuLg4hIaG1llLyfws4Pk+ZGYFCRQKBZRKJQICAgD8We8F3O7saLfbYTQakZeXh6KiItjtduTn5+Py5csoKyujnb0Jx+12O0wmEywWC6xWK82OkA0SaRQjEAggFovB5/OpzI7MIXQ6nVCr1TTrSRxOoVCI/v37g8/nQygUQigUumRSCJi8bcz3wgQ5DjmuyWTCsWPHMHz4cCiVSnC5XJcGcZ0ZLEcbhq+vLx544AF88skn6Nu3L3r06EGDIg1du6feBUybQmxZQEAAAgICEB0d7eIkOhwO1NTUwGg0Qq/XIysrCwUFBVQRcfToURQXF0On0wEArc1kcpTJU3eOisViSKVSF44SGS4ABAYGwtfXl0qRuVwugoKCEBMTA4VCAZVKRbnOHFXlriaqT4LsKXhEnFMSFKusrMSGDRuQmJgIrVaL4OBgeHl5NeO32nHAcrRukBKstLQ0rFq1Co888kinvdaOgvz8fDz22GO4fv1613JKi4qK8OCDD9IH95w5czB58mT07NkT8+bNwxtvvIG+ffvikUceAQA88sgjeOCBBxATEwMfHx+sW7eu1S+irSEUCpGUlIQJEyZg586ddNBwS+u7PW2MORwOdTKJnIdE8sjoGiK/8CS5Y/6fFEoz6zmZ81SJYWfWtxBHlRnJrqysRGVlJd1McLlcelxmHR8xonfycGNKkHg8HjQaDYKCgjBr1iyXDXZXAMvRhsHj8dCjRw8MHjwYe/bswfz582nDrPrQGDmMu2yVWadGZIUksqxSqRAUFORyfDKCgPCB8Ja5ySXSHMJTEhDj8XgQCAT0nid1rszsKcnkkOslGZjKykqXZ4G7A8oMFjUV7t+Jw+FAZmYmLBYL5s+f7xIc6wpgOdowSJOxPn36YOPGjXj22Wfh7e3doJ2oT+ngCczgKPBn0EQikVAe9OjRg57P4XBQ59RqtQK4fV+TZjjExpLXHQ4HrFYr7f1AHFGRSEQ5ygzKkjIT4nSSdVksFurUEt4ya9WZCqLGlre4v0a+Iz6fD4vFgp07d+L69et47bXXoFarO/WYJnewHG0YVqsVn3zyCSZP/n/t/XmYXNV954+/695b+17dXb2qJbVaAq0ISYCwDWYPmMUheME2gRg7njjPeBx7JnGe+SaP4xkneMZjPzhOMhPH5DFO7GCDY7ANhoDZQbKQkABJILS1eu+u7tr3usvvD/3O4dTtW9VV1V1LV5/X8/Sj7qq693zq6n7uOZ/13NL2ja9aGVVV8eqrr2J+fh4WiwWZTKbZIi0bJq0FkpD37NmDgwcPNluMJZHJZDAyMoK//uu/Rjqdpht71wN9bWilEcVqa0rZvT9ZFjs+HA4jEomUjT4BoHvRlZKz1Fj6OrZsNotwOIy/+Zu/wY4dO2jaFql/Wym0sh60smyVkslkcPbsWXznO9/Bpk2b8P73v78owlANpVIJy6WuElg9XMzo07+3mA6XSqXVPyPm5+cRCoUMU/tKyW70PcrJQRbciqJgYmICTz31FL785S9jz549EEVxRXbcbWU9aGXZKmV+fh7pdBrf/OY3cemll9JmWGzKqVFpSbUYRVXLzTX6v/XysMdWet5yfwOghq0+q8joGDb9lvxdqg6XvM8+9xRFwRtvvIH/8T/+Bz796U/jAx/4AOx2O5xO54pz8LayHrRDdNFsNuOuu+7C/fffv2qy0VqNhx56CJ///OdpBhZxlq0kSj2362M1rUKSySSCwSDuuusuzM7OIp1OA1g4cSyHD0A/0VX6oKs2Kkm8r2x0s5bFe6ljjWrlFjNIyWdMJhPds3R8fBySJCEQCKC/v582rOBwWGRZhtlsxkc/+lHs27cP586dA1D9QqGWiI0+O4F9vdwxlcpTjW7qF6TsOYw+S95n/63EEUYM0ng8jpdeegnpdBp+vx/d3d0r0iDl1B9RFJFOp3HrrbfiySefxNGjR4syc4D3UgmXMpdW62hlP6dPJ17MQaTX/1KOK/0PWxPKlrkYyV/KuctmKrA/ev0dHx/HAw88gPn5eerU9Xg8K84g5dQfURTx9NNP46mnnlqW9Synen784x/TsryVaJCWgxuly0ihUMDFF1+MO++8E2fPnqU3i1Fks10hW79Ug5EhutgiwWQyQZZljI2N0fSnQqHAC/A5JclkMhBFERdccAGuvfZa/PrXv0Y0GqXv11MvjRadtXjNqz3OaBGsaRoKhUJVhm+5BXWpz5O0x6eeegqxWAwOh6MolZnD0aMoCt3D9v3vfz9+/OMfY3p6usiwAiqbH6rRs8WMRqNzlzIuSfp8pTLoo7/AQodwJfIb/c6e0wjS8Oz+++/H2NgYOjo64HA4VlXaLqd6crkcvvWtb7VsRLrdWapTrpXhRuky4XQ60dHRgc7OTtx1113YtWsXRkdHDdPh2iGFwwgyucqyDKD2VJVKIlGFQgEzMzMoFAoYGhqCxWKBoigIh8M1jclpf+x2O/r7+2G323HjjTciGAzimWeeQS6XK6p/rmQRWQ+qNfyMjtP/GC2KNe18c7SlfI9KdDubzeLll19GOp3GzTffjN7eXqiqikgkUvO4nPZGEARccskl2Lx5M6655hpYLBb89Kc/RSwWo5+pxCAl/1aTPcD+lIvGLqajpRxQ5SKq7LYz+vOXSslfTC4jJzh7LkEQEIvF8KMf/QjJZBJ/+qd/ig0bNizozMvhsJhMJkQiEZw8eRL/8A//QJt/cRrHnj172jYbkBuly4Tdbqddal0uF770pS/B4XBQLy8x1NoVMomRxg+lPrNcKcyRSATxeBxr1qyByWRCMpnExMRE2xr8nKVD6ow7OzvR1dWFu+++G5OTk3j55ZdpIzCje7TWdHmWUkYjWfjWaxFotEAnDc2AhWl/RI5a5SHHqaqKAwcO4MSJE/id3/kd9Pb2IplMYmpqatXsS8qpHr/fT7c56e3txT333INjx47hscceQzqdrigVthLDshqqOb7W7Ad2+xt2XL0zqZrmiezn9QaqpmlIp9P48Y9/jH379uGP//iPsW3bNuRyObqVFDdMOUaQLQjD4TB+9rOf4W//9m+Xvaknpzyf/exn2zabgRuly4S+FqS/vx9/8id/gkQiQbdmaGfIpEcKr8t9rhrvNXtuYjSEw2HMzs5iYGCAbpWTz+cRiUSQzWb5A5KzKJp2fv/SP/iDP8Abb7yBo0eP0tdL3aMrNctBL3M6nV5QWqD/bDU1dux5TCYTFEXB/v378fbbb+P666+n3YYFQUA0Gi3aKofDKYXZbEZXVxd+//d/Hy+++CJeeukluvXBUlLgjSiVdlst5erHyx2jd04t5hyq1fgl/2YyGfzrv/4rnn/+eXzmM5/Btm3bYLVaYbfbEY/HaRdhDqcc+XweP/nJT/Czn/0MuVyu2eKsKsqts1cy3ChdZtgJbdeuXfijP/ojnD59GqlUqtmiNYRyramrqak1mpTz+TxisRgmJiYwODgIp9NJt8cge8PyyZRTCRaLBT6fD9u3b8fHPvYx/OIXv8C7774LwLjGqxT6BWWpn1I0w8hNJpPL6iRj9VpVVRw6dAiHDh3C1VdfjY0bN9LFfjAYpM3JuI5yymEynW9k5/F4sHv3btx+++3453/+Zxw5cqSm8pBao5211nAbRWsXk4E4xEiDMH234UplLyezpmlIpVL4t3/7N/ziF7/AZz/7WVx99dWwWCyQJAkDAwOGUVsOx4h8Po9Tp07hy1/+Mh5//PFmi8NpA7hRWgfIhOp2u7Fnzx4MDg7it7/9bVH6EaFdIqiapiGbzS7bfklkcta09zb2jsfjmJiYwPr16+mecmQfSLvdjlgsRveLI5uSczhGWK1WeL1eBINBrFu3Dm63G//4j/9I0+2B8oveSgzXZum2flw2pTaTydDO4Ms1FpslsW/fPhw+fBg33XQTNm3aRLMbJEmCz+dDJBKh+7JyHeWUw2w2w+FwwOv1YmhoCGazGd/4xjdw8uTJqktBqm121Ej0hiQpJWDrTPWfLycjexzblEnTNMzPz+Of//mf8fTTT+MLX/gCrrvuOjqXiqKIYDCIRCIBm81GO2dzOKUgaeDj4+O477772mY9uxKw2+0QRbHtOmRzo7TOiKKIzs5OBAIBnD17lnpOyY20EtMBjdA0DbFYrKKo0GKNG9jFAdkOYHZ2FnNzc1izZg1cLleRImra+W6iZ8+ehSRJiEajyOfz3NPLWRSTyYTu7m4EAgF4vV68+uqr0DStbLOPWibe5ei8u1SIjpbTi2oMbPY1WZaxf/9+vPPOO7jhhhuwYcOGou9JokUjIyPQNA2RSITrKKdi/H4/gsEgnE4nnn/++WUv06gly2G5YDMNNE0rarxWTT273tmtTwcOh8P40Y9+hIMHD+Lzn/88rrjiCpjNZpq5QBa4Z8+eRS6X4zrKqQreK6BxiKIIh8NR0nG1kpGaLUC7o6oqnE4nurq6sG7dOqiq2pbd7VKpFI0E1xI5IvsmsteGREgnJiaQz+exYcMGajCQiZKMJ4oiJiYmAACdnZ2wWCxtp6yc+mA2m+HxeLBjxw7cdNNNEEVxwf1VKruh3CJxsfrMxSIetWLU8RsAEonEoo6jSs8JgDqGIpEInnrqKciyjN/93d9FR0dH0XFkcUx0VFVVdHZ2QhRFrqOcijh79iwcDgcuu+wyfOpTn4LNZlt0Hq00BZ+lmhKT5TqWnTM17fyWSUbbJi12XqJrxAFEDE1VVXHq1Cl897vfhaZp+MpXvkLT6onj12q10jp70tW+o6MDkiRxHeVUxMzMTLNFWDWYTCb4fD5MTU21XS0vN0rrTCAQwJo1a3DmzJmiDevbwfvIpgVGo9Gi70fer2RBYDKZDK9NJpPB7OwsAGBwcJB2NzZabJB9SslEzCdSTqU4HA4MDg5icnKStlln77NSzYBWAqyDJxKJGBrZRp/Xo08DBM7r6eTkJF588UXYbDZcd911CAQC9PP6c3q9Xrpg5jrKqYbe3l4MDg6iUCjAbrcvaH5nRKP1tBYnE2tImkwm5HI52lXT6HzlnkX6CK8oiigUCjh06BB+8IMfwOfz4d5778WGDRuKMrXYrCOfzwfgfCo+11FONSSTSUSjUfj9/maL0vbIsty2W/HwJ06dURQFDocD2WyWpuS0E2TfwXw+D6D6hhL6xYWiKDCbzYhEIhgZGYHH48H69ethNpsNUxXIccRzrqoqCoXCstW2ctofTdPgcrmQSCQW/VwtEZRKjqk0tbeW9F9FUTA3N4dsNrvAobNYun0pufL5PA4fPownnngCg4ODuO222xAIBAxr5okh7PF44HQ6qZ62+zZZnOVDkiS4XC7EYrGyGQhLTbltRk0pIZ/Pw2KxFDl/2MinHqMyGFZXo9Eofvazn+G73/0udu7cib/4i7+gEVIyBjFKiSPY7/fD5XIhk8m0heOc0zhCoRB++MMfNluMVYHNZkNPTw/NvGwneKS0zsTjcYiiiJmZGWzYsKGt2jirqop4PE4X86XSBgnlojRk8iXRl2w2i8HBQbjd7qLIjH5xzC6yFUWhabvtVvzNqR+kQRbJZiiVFrgUh5I+i6AWajleVVXEYjG6LZXeGDU652IGayQSwSuvvIJoNIqrrroKQ0NDEEWx6JzsWMQIJV1FFUVpWl0tZ2Xy8ssvY2ZmBqdPny7bzbbSe8poDmkG5HvIsgxBEGA2m+n3K5eebKSjrLPn1KlT+Ld/+zdMT0/j05/+NC6//HJag0Yyk4gesuexWq2QJAkWiwWyLBumEXM4Rmiatmp2mWg2HR0duOmmm7Bv3762KwVsLxO7Benr60NHRwdkWaY3Tzt4NjRNQyKRQCQSKZrcyqFP/2ONTeC8AX/mzBlIkoShoSG4XK4FXQiNFtPk93w+j4mJCUxNTfHJlFMxvb29CAaDSKfTSzKUFotillpE1zpmufGIkycajWJubo529KwWdhGbyWRw+PBhPPbYY7DZbPjwhz9MUwGNam7ZKClxGqXTaUxNTSESibTFc5DTGO644w643W4aKS0VPawGvf4s9Xy1yETmRGKUsnKVM0j1ukX0PRwO46GHHsJ9990Hh8OB/+//+/9w1VVXwW63F2VqmUzndwggkHOpqopUKoVjx47h+PHjNV4JzmpEVdWie4pTP0wmE1wuFxwOR9sZpfwOqjOFQgEbNmyAz+ejnsyVmhbDTlyxWKyojrRSxWAXACRykslkEA6Hoaoq+vr6qKIttmhlIzJk0ZxMJrF169Ylf1fO6iGTyeDCCy+E2+2mNcn1aELUiMggkVmWZUSjUUQiEWqQVlrjzTp+SDr82NgYDhw4AEEQcOWVV2LdunVFaX+Vks/nUSgU4Ha7q/9ynFVLJpPBJZdcgpdffhmFQoE24FlOHW1U5J41JguFAgDQOlmjCHCpbAbyWeLsOXz4MB555BFomoa7774bl19+eVH9rd4ZzJ6XXEuyxZrNZsPw8HBdvj+nPSH7CnMagyAIbVmmxo3SOjM9PQ2HwwHg/MRKmvWsRMgkGo1GkUwmK0pJZI1GEvUkk2k+n8fs7CySySS6urrg8XioIcouOMpNymQMSZIgiiJyuRxtVsPhVMIbb7yB4eFhFAoFxGIxWhtZyjCt5J6v9pjlgujo3Nwc4vF4Uc1JNfVy5LipqSm89tprCIVC2Lp1Ky666CL6PCPnZJ8DRhkMZEy73Q6fz4dEIsE96pyqeOWVV7B161YUCgWEw2H09/c3W6SK0deIkrmtUCjQOZE4w1gd1esSq7tsCvPhw4fx05/+FJOTk/jgBz+ID33oQ+jp6SmaS0k2U6l6b4Lb7UZPTw/m5+d5thGnKiwWC1wuV7PFWDXk8/m2Kgck8JVBnbHb7Uin08jn84jH40XbJTSaSiMlRseRtJ5YLEabGlUKWbSqqop8Pk8jo7Isw+v14oILLqBNT8qlJOoXvvpJ1mKxIJfLIZfL8QmVUzHbt29HNptFoVBAKBRCR0dHzRGYpURujGqmqz0+lUohHA4jnU5XLJO+FjSbzWJqagpvvvkmYrEYNmzYgCuuuAI+n29BxJXVV3Yco3pySZLgcDigqirS6TSPlnIqZvfu3SgUCsjlcpicnER/f/+So6T6yGG90Pc9IPuCms1maoiyqb9GukOcRCRzIZlM4q233sLjjz+OUCiEPXv20M66bF0qmXdLNQgk5yfGsc1mg9PphNfrbcsFL6d+OBwOfs80EJvNBkmSaLZFu8CN0jrjdDqRTqdht9ubnrZb7WKXTFq5XA7RaBSZTKbooVNpswhRFGk64fz8PADA4/HA5XLBarUW1SKQc5JrVS5iahTN0jQNoVCIe+w4FeNwOJBIJGA2m5FKpRZdrJZy7iy16ydQvvFQOfL5PKLRKE2DJyyW4shGM7PZLE6cOIGjR48in89j48aNuOqqq2gGgz7Sysq1WNYEqWcTRRHZbBZvvPEG3v/+96/YrBFOY+ns7MT09DREUUQ8Hl/y+RpRh2U0PxYKBZjNZlit1kV1ndVjVVWRy+WQz+fx5JNP4tlnn0UsFsPll1+Oz3/+8+jv7180C4stidGvRchxVqsVNpsN8Xgchw8fxpVXXlnDN+esRhKJBCYnJ5stxqqhHTvvAtworTtkU+qBgQHq0SAez1ZCP0krioJ8Pk+jo2x6kVFjCH0dGunul06nkUwmkUqlIIoiOjs7aYSE1O4RWAPTZDLBYrHA6XTS8Y3kZWvostksZFlGV1cXba/P4VRCoVDAmjVrAFS2YK3HotYo9dVoXKIniqIgl8shlUrR+m42QsJGNfW6KggCCoUC0uk0JicncebMGYyNjcHn82Hbtm3YsGEDnE5nUd0oGx0l49hsNrjdblq7qp8k9cY2iXbt2LGDPlM4nMUQRRFmsxl9fX0oFAororkH0UeTyUTrusnWZuR9oLRzVVEUZLNZzM/P4/jx49i3bx/eeustDAwM4IYbbsDevXvR1dVFI6NGGQuKohT1b7DZbEVj6lOLiW7ncjls374diqJwHeVURDqdxsTEBC+hahDEjqhH/4tmwo3SOkOiA8FgECMjIy1njOoxmUxIp9OIx+MLIqPkd6IEoijSVF7SIKFQKCCRSCCbzVIj0e12Y3BwEBaLhSrPYum1oijC7/fD4XDQdCWCkQKS18gk2urXmdM6kK0YiDMDqD3VvVr093Kl4xJnUSqVogtPfeo7SRckUUqSOphKpTA6OoqRkRHMz89DVVVs2LABN954I7q7u4uiOEZ6RCZCSZLQ2dkJl8tF63GNFtjkXGQxrigKddZxOJViMpkQCASQy+Xoc345u+cuB+y9T9J0yfNFHwVls4HIa7lcDtlsFnNzc3jjjTdw+PBhnDhxAgDwgQ98AF/5ylewadMm+Hw+OufqIyasvusdP6yDiWQ/sNeQHCtJEux2e0tcU87KwGQy4bnnnsP4+Dg2bNjQbHHaHuLg4kYppypSqRT1ksZiMVqv1mppa+yNTSKkrPeUTGyqqiISicBms0EQBGSzWaiqirm5OVrTaTab4fP54Pf7qWfWqNNfKYhB6nQ6YTKZ4HA4kE6nK1I8sljhUVJOpaiqCo/HA0VRMD09vaQ9RWtNka/2/Pl8HolEoshoZLtxvvnmm/B6vfB6vYhGo0in0xgZGUE6nUYikYDH48Hw8DAuueQSdHV1LchaWOwZRQxS0m2RpEAbGbH685DnIW92xKkUEjUk0RjWQWpEsxZp+mZGmqZRZyyrG7lcDr/61a/g9/vR39+PmZkZzM7O4q233kIoFMLc3By6urqwd+9efPSjH8XQ0BAsFkvRQlS/jYz+e8uyDFEUiz5Djlks7Y84s7iOcipFFEXMzc21ZUfYVsRqtbZk1uVS4U+cOkO8pJqmFTUfaUXYuhJSB6o3JsleaIqiwGw2Q5Zl2Gw2+Hw+Wnhtt9vp+YzSfUst+slk7vP54Ha76WeIAVxur0XSAII8ENs1355THyRJovc2yQIAqlvcLpejqZIaUKJr+Xx+gX4pioLXXnsN+XweHR0dKBQK6OjoQE9PD4LBIHw+X1Gna33jolL1ZgRJktDR0QGv10tfczgcMJvNyGazC9II9QvlbDa7YFwOZzEKhQLy+TztS6C/d4x6DjQa9t4nc5ZRR91UKoWf/OQnyOVyWLNmDfL5PHp7ezE0NIQbbrgBAwMD6OvrgyAIRRFhNhOBvM5GZMn3zufzCwxS8jqJgLKp/gRNO79nai6XM4zCcjilICVX7RS1a2U8Hg8sFkvbOQG4UVpnnE4notEoBEGgC8hWXYixqbVms5mmBbJ7NwLnF71dXV3wer1Fnhp9+iB5jf1dXzejryMNBAJFjVVIRMVsNht2GSPHks/Pzc0hEonQ+lUOZzFEUcT09DQ0TUMulwPQ/FTAco2PNO18J1uLxUK3lWANQLLY3L59Oy6//HLaAIXVYaOFMnm9VA0qcF7POjs7i/ZdJrVyJJ2wlNwkUkMiQX6/nzqwOJxykAZZ5F+gcdsslcLoXmd1h41I6ucpUhd71VVX4fd///fhcrnoop58zigtT6+rZAySIUH0mui8fj5mt53Rp+6S1wqFAmZnZxGLxSBJEgKBwHJfOk4bks/nqVOXU3/WrVsHv9+PbDZL1y3tAHeBNQCXy7UiHuxkchJFkUaK2NoydtIj75HFrlFKkNHDqVT9D4m+eDwew4lXn17Ino9EdyRJQiQSQTKZpGnFHE4lEB3Vp9k1i3LOK+Ko0afWkToxsidhIBCgEVV26wl2+4nFFhBsdoMkSdQZZVQ3qu/+aSS/xWKhnby5jnIqxWQywev1Lmm7puVmMQczO9cRfSHzKNl+Zc2aNejs7ITdbi9qDsPOs/rXyPmMymDYhkdGGUlkDi+H2WxGJBJBNBqlUVgOpxLy+XzL6Ge74/F44PP52u56c6O0zkQiEUxMTNBQu9Fk08oYpd9aLJYFqbRs+p8+yrLYd7ZYLDStkHiI2XMCKFvbwnqhc7kcBEHA5OQk9ahzOOVgddRuty+IMhj9GMHe66zxV+7HiHLjlopuslgsFprFsJjxWW5RzUZS7HY7ent7qY4ayapv5qKXT9M0uped1WrF9PQ011FORUQiEbz55pu0ppLoVzkdawb6uY816oj+apoGp9OJ7u7uBbpEnE3sPAhgwffVn09RFGQyGVoHSpy5+ucVuXb687MQp9O7776L48ePcx3lVARxlHAag8fjWXH2RCXw9N06k8lk0NvbizVr1tCIX6vCenRtNhtSqRSAYo8viZiQNCOjujAjo5Idg/2c0+lEIBCgRqf+fGwNndEYLMSY8Pl88Pl8cDgc1V0AzqqE6Ojg4CCOHDlS9F4rP/DJfoKs0UcWo0u994l+CYIAj8eDjo6OIp1nP8PKQzAyhslzRVVV+Hw+DAwMLElGzuohk8ng8ssvhyAIeOGFF4rSW5eio0bz11LQp8SyzlS2vlMQBLo1GpGfZAMZpdCTTAf284RsNkt1np172XMRSFkOQf/dNU2D3W6HyWTC5ZdfDq/Xy5sdcSqC3NfNTqtfLcTjcaRSqbbLZOBujTrT29sLWZbh8XiQyWRa8gbSe16B89EWI+OQeGKJN7facdiUX7/fT/dZM6qfYSHpSEaecDbtWNM0uFwu+P3+qmTjrF76+vogyzKcTicikUjRtjCExaKkBKNarWoplbZH5Cilo2RcURRhs9mKFp+1jE067JJtYtj3jRxPlRgJxCnHu2NzqoHoqNvtRiKRgCzLNZ/LaO6oB5qmGTqhybPBarUa9klgjzeKPrFp+qSWjERHjTI69JFao4gra1BYLBaoqgq3280NUk7FkNT0VlzjtiOyLEOW5Zrm+VaGG6V1JhKJwOPxQBRFzM/P03qSVqJUraZRkwViHLJdPyuBnQDtdju6u7vh9/sNJ1yjY8li2+g9MvmTiXkpCxbO6sNkMtHmWuPj44t6HxerI6vUcK3kM+XSb/WGIZvRQBrC1BJFIlGc/v5+dHZ2FjVHYcfRy0t0tJSDiej+YltCcTh6stksHA4HVFXFyMgIzRCoxagsNd+Rvghs2utSjFZiABo5mcgY7P7b5D3yr965xcpCOhFLkkT3FWYdxaXkL/c6cF73iQOKOOc4nEqQJAmyLOM73/lOs0VZFZDmgu1Ga1lHbUhnZyeSySRyuRwymQydqOrBctTTsAtb/WtkwiOTXyXjsPJIkgS/349gMEhThCqt1WObHZVKESFjkS0DOJxKIIvDXC6HaDRa5NRY6sK0HJXqaanP6RewbPquKIo0CrPY8SxWqxVdXV3o7e1dkAJc6lqw6Ydms5l+Vm/EEtmIU4vDqRSHw4Fz587R7uqL3dvVUsp4qxQjB67+vOxrZKs4ogf6+m/iWGJfJxHOfD5Py2iIEc02GStldLJNkFgnr954Jr0vIpFIxd+fw5FlGZIkYXp6utmirApyuVxblqi1n5ndYsiyjFQqZdh0YLlZrnPr0/CMatYW27ycPZcoinC5XPB4PEWL1mrkIQttoyhova8rp71hdZR0rgVq06dKoqSVnJc15PQpuuT9ctFLVkcXG8NkOt+kyO12w+/3G+roYtFhdhGth0dFOUtFlmUkEgn6O9tZtlwWgRH1uB9LRV9ZPdWPS/ZGNoqkkuPZdFtZlqkxK4pikZFZrazLXUvL4QiCALvdXjYlncNZDG6U1hniydTXdbT6hEBkNJr82cW7UdSXfF4URTidTrhcLlit1iXVoLb69eKsXNi9/pZCNcYmYbEF9WKL61Jp9qIoIp/Pl9Q5cqzZbKYOI5K9UAuljtM/QzicWmDnAGKUlvss+y9LKR2vNHvJyEFU7rN65xE5ThRFWK3WouwpvbzEEFUUpWQWgv67VVsWUKthz+HoUVUVuVyO3qccTi1wo7TOCIKAYDCIs2fPLrkBSiPRR2rI4pJ4aEvtR0VSiZxOJ5xOJ613WYoMBL0xbyRjqeYSHE4piI5OTEzUbYxSi75KjFT9MQS2fkyvA4Ig0JpSvcFNdNTtdsPj8VSko6XkKqWj+vR/ve5yHeVUgyiKGBoawuzsbEUOpHrMsXpjt5wMRuUvpJ8E0QVJkpBKpYoaGrHGMYk4sVstsTquN5AruSbE+CXPhVKyC4IAl8tV9nwcjp58Ps+3EGog7dgwkBuldSYWixU1TlkpqWz6CZhdQJN0IvY90vGTGKLsXo/LKVOpVCd2UU4as6wE45/TfGRZxvj4OE13bZSOGt2jy3HPEj3Qfx+z2Qy73Q632w2r1Vq02C3XxKgayKK7VIMm8ncsFsO7776LnTt3Lmk8zuogkUjg3XffLeqMXSpiWC/YMSvVk1JpvURuWZaLakbJ36Io0h4K5BhiRJbSqUrlYQ3fUt9lpTjPOa0DKd9ox+Y7rUo7Xuv2+0YthqIo6OnpwcjICI0OkM2rK2G5Fou1wHpu2QmZyG+z2agxarfb6SRaLy91qegKO7GaTCZkMhkkk0m6DxyHUw5JkrB+/XqEw2H6WrkFL3uP69PyqqFSPSn1DDBKD9RHI51OJywWC2w2GxwOh6EhulwOHLbhCpGJvVbsglgQBKxbt27JY3JWB263G3v37sX+/fsriurXy1hdqjHM6pqmaXRbF6OGRewx7L/LgVFaMYGU5oRCIXi93mUbk9PeaJqGQqHAs2AahNVqhSzLDXfO1RtulNaZQCBAo4qlGoGUo9HGqFGKrNEC3OFwoKenZ0FHv3rBeopLRUyJgnZ0dPDUI05VkPuJjfCXetAvdQKoxAgsVzOml09vGJP3HQ4Hent7DfcUNsrcWKr+Eh01MpCJvLlcDhaLBQ6HgzuNOFVBUl7NZnPDt1Vj58BK6jbLpfiSc5DmfWxmkdFnS52nGvQ6WaqDPQC696nH4+EZR5yKIXMK2VKIU19sNhuSyWRbGaQA3xKmIczPzyOXyzU0JWY5btRyUVri1W1EV2EyHjuRlhuPPxQ51TI9PY1sNlu02F2ue5p12pRLw6vlvKXq1ImziDVI9QZoNXqr/w5Gx+r3eDSCNKmx2WzVfFUOB+FwmHagBVZOKYzRPMoat+VqZJdrbmVlMHI6s6U5hUIBqqrC5/Nxg5RTFZIkwW63N1uMVYGiKIa7Uax0uFHaQBrhdSxXz7Uc59Ev2htpaOv3ctPLkc/nYTKZMDMz0xB5OO0D2x1a36GynuijnIuNW2phu1gacT1SAI0oZzCYTCbaBGNkZKSucnDaD0VRoChK0TYq5Yw54iRhf2qdq5byPCgnK9uVn2A0py73HKuXieitqqqIRCJQFAXpdHpZx+S0P+2WStrKkCyLdoOn7zaIUh32Sn1Wz1IaK1SL3uBjJzA2hbbSNvr1QL84B0Abu/AoDKcW9PUZpWq7loNyNV3ljmHl0Ne3sfKyzqPFGqMsZ0SY/d1o4Uui0X6/f1nG5Kwe5ubmEIvF6N+NWgBX60xmdbtcNLRUim+9vxPpoq9/jWRXEMdROzZR4dQfkv7NqS9sf4h2gj91msBK8iTp036MJrRGUC4iSxYBqVQKAHhzBk5DaVbdlb6hEPsaaUbWKjVhrI6qqsp1lLMslLu39brRaBaLdhInL5vyXirNlj2G/bdWefR1r+y4mUyGp9hzOC1ONptty+13ePpuAylXo1mOpaQc1fJ5o7oT9jMmk6nhE9ZiCwwiu91uRyqVaktl5dSPXC5HI+2Ecimx+hrRUjWX5XSXTTGs5BijyGopPVVVFQ6HY/EvvoxU8rwhi91oNMp1lFM1+uyccjrHGnBLScmvtkTFaJ4qlbrrcDiqjsJWg5HsxGlVqkEa0dFkMsl1lFM17Vjn2Ipks1nDJoYrnfb6Ni3I/Pw8FEWB2WwGYNz1Uk+li9rFWMoEZlS7RiYsspBeLiqtpWP3QNQb+KqqQpIkBAIBSJLEJ1NOxRQKBaTTaVitVsNUunqlu7JjVPKa/plQKl2W/G6xWJYsay3PoFLyCYIAs9mMQCAAl8vVlvUwnPpA5lDW0dLqGUd641Qf5VRVFVartaRjqVIqcX6xzwdikJYa12KxwO/3w2q1wmKxVC0PZ3VisVhq2mGCUxtjY2OIRqPNFmPZ4XdPnbHb7fB4PEUpr62SUlcpRgvhSutNKvFOV2KAL3bNRFEsmkx9Pl9F8nE4oiiir68PkiRV5DRqBJUYg6XS+0h9WLULylLfuZprUa52jsjk9/tLboHB4RhhMpnQ399fdE83qhkZGatS2LmSOGP05yLnq1YPlvJ9F8v8IHIS5y43MDjVQPbc5QGBxhCPx2mqfTvBa0rrjMPhgKZpRV0DV8KDvlRqD1uvttTzk/NVMimXSkNir6ckSbDZbPRa80gMpxIEQYDT6Sxq9mEU7SMYRepLfbZWKjFK2cmI/Z3o6FIblegbKulfJ3JWIjP73DCKSHM45RAEAQ6HA+l0mqYH6tN0WRp1f5WTgf2MUSZDNpuF2+2uei7Uj1vpdyXHlJu7Tabz20jxuZNTLaT8hfT24NSXRCKxoDljO8CN0gZAbh6y6G1Uo6Baa1gBFNXX6ZsikMVlJR6axaKftUAMUf3imOydupRzc1YniUSC6idLM++jxcZWFKXkglyW5ZpS7/TOKH3K4WJpgvpzGS3a+YKXUy2apmFiYgLpdHqBk7RchH85HEVGi77FxiYQJxc5RhAEalTn8/kFulBJVlEpaonmljq2Gc0MOSsfURThdDqbLcaqgARf2g1ulDYAoyYqjWApE7JR0xc2ElLpgrfUYnY5o0qsoU9SjngtDKcacrmc4QO+VKS01HvVUquXk2RfGMlEar/LGX+VRj6NPlOLrOR7CoIAm822IrJFOK2DyWRCOp2uKt21Xunh1ZxXURRIkrQgGkocR+V01Egv6+UkYw14URThdru5YcqpGkEQ+H3TIEjmZbsFYLhR2iBW0s2jaRry+bzh6yRS2oyFwWI1bxaLBZIkNcUBwFn5VNvQqFxaq55yaa21NlLK5/MLUgLJORVFKWn46c9fbk/Tail3PIlEk6ZvHE41eL1emvptZKTpHTzVOI9K6Yo+W6BaJ1KhUFhgSBP9zOfzZccllPpetVBu/ibvka6eiqJwA4NTNYVCodkirApkWV4xNkU1cHd1A7DZbPThvlj6TSvcZCTSwv5N5FYUBbIsN8Xw0y/A9VEdEpEeHx9vuGyclY3NZqP3fKl0PT3VNiip5KdSjHRUFEX6eiaTqXhBWalc1chp1PFTURRks1lEo1Fed8SpGqfTCbvdXmSQlsrAqWdEcbFzk8+USjEmRmkqlap4XWD0e7mx2R/WCCXPDLaTPbslVSqVQjwehyzLOH36dPmLweHoUBSFBwUaRDVz/EqCR0obgM1mo9GBamqymg3rGWYn2Ww2W3VjhuVGX6dDFuKSJPGaBk7VsDpqRK3RzEpZyvn0C19VVZFMJutab2Kk+4vV3eXzeSSTSfj9fhw7dgyiKOKyyy6rm4yc9oHcy6wRVy6CuFijMqPXKnU86Q3fcnpQSg5N05BKpSo2niv9XKVRYf11I9c1Ho9jbm4OkiS15XYTnPrSjjWOrQq7W0A7wY3SOhOLxTA7O0ubkpCUmFYzQPUYpRWRiYykHjUTNnoDvJca6PP50Nvb20zROCsMoqP62uRqoy2V6nQtacJGnyuV+qcoChKJBH3mLNezZrHz6DMXyNjEaVQoFJBIJGC323H55Ze3/DOQ0zqcPHkSv/71r7F+/fpF65FL1UUD5UtA9HXZ+nOUS9UvF6HVHycIAvL5PEKh0LJFlfQysyz2nVmncyaTQSwWg91ux6WXXrossnFWB6SXx1K7vnMqI5VKteX2Ozx9t85YrVZ4PB6YzWbD6GIrpOvqMZpw9ZN0NXWl9ZJLj9VqhaIoGB0dRTweb5BUnJUOq6OVpMPUct+XSn2tVYf05yqV0ljvdMZS5zb6roIgwG63QxAEzM7O1k0eTvvR09ODD33oQ+jo6KB6Wqr7NFDZlkrl0OtrrefTp+ey+snW3jVyHcA2SNGnGJMO9olEAmNjY8jlcg2Ti7OyIUGXdevWNVuUVQHZuqndUni5S6PO2Gw2+rvL5aKpM+XSi5oNqUMhvwML9zhrdPdMfbMJAtvV0263w+v1IhgMwm63N1Q+zsqF6KimafD7/TCbzUX1pfWmlg68ZAFAfmfPZbQA1jvC6vG9jLbUYeUTBAFutxtutxter3fZx+e0L6TJ0fz8PAKBwKLd1Zdyjy+ngWiUZszWgy/VeK5FHmBht272OeF2uxEIBNDZ2cm3b+JUDLmnbrjhhiZLsjowmUwoFAptl8LLjdIGkEwmkUgk4PP5aFOBSvf5bCRseq5RWpHJZGpqaobRQoPs+0YavXi9Xr7dBKdqkskkkskkBgYG4HA4FiwcgYULueWkkjRDdnxZlul+h/rPaJoGSZLK6upyR2bKNYAhektKFzo6OniKF6dqYrEYEokEBgYG4HQ6y6ar1uLoKUWp8xjNM/rmXuRzJDpJzifLMiRJakonakEQ6A95lhEZSddun8/XdhEYTmPYuHFjs0VYFTTaodUo+MqgzpDFWjqdLoqaNtsgLde5EMCCzp4sFoulKR5U1uvMenbJJsLEKOULXk61kMYjLperaF9B8t5yj7Vc5yFZAgCKFr52ux0Oh6NkPWql5zeK9OgpdW7969lsFqqqwul08gUvp2pisRjm5+fhdrsX6Kie5dAxVncqTbtnDTy9fGyDIZI14HK56Fi1LjArrfVmo6Lsgpad6xOJBFRVrSgazeEYwYMC9SeRSODll19uuh1RD/jdU2dGR0cRi8UQDoepsrZCHeliE1mpBgyqqsJms8Hj8TTte7CyK4pC0xiA96LSHE412O12xONxGj1YTpaiJ6UWkgAM03fJ3x6PBz6fr6bzsp8h5zP6fKXXiXwumUwil8shn883vVEaZ2URjUZhNpuRTCaLdLTVIgX6jAH970SXVFWF2+1GR0fHsoxZiUx6J5ZR6m4sFkMqlYIsy8hkMkuWjbN6sNlsZTMYOMtHOp3G0aNH29K5y43SOkPSYEKhUNFm982kXKpduc+qqko7rDXai8rWuRKIV1oQBGQyGRotnZ+fb0sPEqc+kPt7bm6ObkjNGmRGRl81P3qWY9I2WuwSSAoem5lRyfhGKcTVPK+IjpJ/2YYqwPlIaS6Xg9lsxpkzZ/DLX/6y4nNzVjdkyyaio0BxRKYe8+piHW3JPa7/KRVhZXWBOJRI7wN9NLNaFpOnXNMmttFRLBZDOp2GKIp46623uI5yKkZRFNrQk1NfyA4Ypeb4lQw3SuuM2WyGoih0Q2rStbaZKQ6LTbZslFSfwpjP55HL5Rqez65v7ML+kBRekgrldDpx4sQJpNPphsnHWbnIsgyLxUJ1lKVe9/li52Xrz4yMQ9bpwuoByRpIJpM0jX0paYF643yxH/2inP0uJDpkMpkQCASwZs0arqOcijCZTHC5XEin04Yp6a2yEDYqiSHzFpvam8vlirKnANQlS0N/bhKlNTKYVVWFLMvUAeB2u9HV1cV1lFMRqqoim822ROBltSDLclPq0usJL75rALIsL1DWVo7kGe1vSP7O5/NIJpNNkYttPMMuxDVNg8ViQTAYhMViQWdnJ+2iyuEshqqqSKVSNJOh1SdV0iiFXeyyZLNZRCKRpsmlfw14b0He3d0NURTR1dUFn8/HdZRTEYqiIBaLFXWbbEU9NZrjjTIQkskkZmZmGiobGdsovZh1lPf09EAQBFx44YXUYcfhVEK5bZo4y4fJZEIul0M2m20Zh9xyUXG4TlEUXHzxxbjlllsAAGfPnsVll12G4eFhfPzjH6c1QrlcDh//+McxPDyMyy67DCMjI3URfKVgNpshSRJEUYQkSXWNkC6WNljJ8QCK0n70hqmiKHRB3MiHjz41Si+zIAhYt24dkskkCoUCrFbrqiu45zpaG5Ik0Q7OZAFWro6y3I8RlXyGva/JArHccez2K0YNmUgaspGOVpNqXA2keycrEztmOp3GunXrqGHBdZTraKVYLBaqB41oslcqbb/a4430ncyj2Wy2qPlRI2BlYlPtiXM3HA5jcHCQ1pXabLZVpaNcP2uH9BtZTfdLMyGla+3mBKj47vnOd76DzZs307+/8pWv4Etf+hJOnToFv9+PBx54AADwwAMPwO/349SpU/jSl76Er3zlK8sv9QrCZDLBbDZD0zQaFajXjVRLExL98QT9hErOSQzrZkR6jTzkRMZsNgufz1dyIbAa4DpaG2SPWwCwWq013z+VGnZ6HWVTdSsZw+h3FuIEa4QuGD1vjH5XFAXRaBR+vx8Oh6MtGzRUAtfR2mAdNfo6zGqpRkerOYY9lv1dn25MvguZS8vVr9cDMp7eeJBlGaFQCD6fD1ardVV2sef6WTuiKMLpdDZbjFWBoihIpVJtZ5ACFRql4+PjePzxx/HZz34WwPmH57PPPouPfOQjAIB77rkHjz76KADgsccewz333AMA+MhHPoLf/OY3bXnhKkXTNORyOQBYsP/hSkPTznfuE0WxrvUvpdA3gyA/giDQWiMyoa42uI4ujXw+D0EQEAgEGl4rTahkXCNHkf59TdOox7pZDhp99FVRFEQikZJdvVcDXEdrh6SGS5KEQCBAnS6NvibVGqelZFRVlc5VRnXb9cYo80KWZdpIym63rzrHEdfPpUGy53hJRmPI5XJtec9VZJT+yZ/8Cf73//7f1LM2Pz8Pn89HPWkDAwOYmJgAAExMTGDNmjUAznvsvV4v5ufnF5zze9/7Hvbs2YM9e/YgFAoty5dpRUwmE2w2G2KxWJEXSd9ooJUgKSr6CVIQBOTzeXi93oY/eEotrtk0YkmSqBd9tcF1tHYURUEmk0EqlSraoqFa/SyX0lsqXZZ1rFST4ZDL5Uo2FYpGowgEAnA4HFXJv1wYPTdIAyaj91cLXEdrh6TWJ5NJdHZ21myUlorsEx3U/xg5Qhc7Pwtx4gLvda8XBAGRSASdnZ1Nn6/Y70Seg6zMq4l66CdQrKPtjCAIuPbaa9HT09NsUdoe0iytHVnUKP3Vr36FYDCI3bt3L+vAn/vc53Dw4EEcPHgQXV1dy3ruVkNRFMzOzsJmsy1rx8DlXtiRSZ4sHo3qwhrtRWUXHqXqc8j2F2RiWG3RGK6jS6dQKGBmZqYocrHUFHhgcQOsllR7TdOK9vnUjxGPx+H1ehvWoISMr6+D1eN0OuHxeDA7O7tis0Vqhevo0hEEAaFQCHa7nRoO+j03F4MYn3qdXK6MAlYXjdLnVVVFoVDA7Ows3G53w3VU78jSO8fNZjNcLhdmZ2dX1TxaL/0EinW0ndE0DUNDQ/B6vc0Wpe0hZQztWKq2aNHAK6+8gl/84hd44oknkM1mEY/H8cUvfhHRaJSm04yPj6O/vx8A0N/fj7GxMQwMDECWZcRisWXZIHqlIggCrFYrwuFwXfYUqjb9rxysx9To/IIgIJlMwuPxLGmcpaKf7FVVhSRJ6O/vhyzLSCaTcLlcq6Ymhuvo0hBFEWazGZFIxLDBV72odQxBEKAoSlF0lD1XKBSC2+1umWgHaewiiiLXUa6jNUEcHtFodNkbqRD9Kef8rBS2PKdQKECSJHp+0ouhUCjg7NmzsFqtDe9sq8/iYJulkc7Z5J5bTTrK9XPpqKqKTCbTbDFWBc8//3xbGqRABZHS++67D+Pj4xgZGcFDDz2Ea665Bj/60Y9w9dVX45FHHgEAPPjgg/jwhz8MALjtttvw4IMPAgAeeeQRXHPNNW178Sphfn4esVgMsiyjUCjQCXU5opxLbWykh13clkpvItHSRkc6ykVMidyKomDDhg2QJIlGe1cDXEeXRjKZRDweRy6XowszNqpQzY8eo9TAUvpaSToim/LLjsG+n81mad23EaXSjMv9VIJRd2xWrmQyyXWU62hNzM/PIx6PF90z+qhkrXOq0XxSqtt7qeOJbpPjy2X1SJKEdDoNs9lsmDJc71rwUnXp+XweoVAIsiyvOh3l+rl0LBYL3z6oQfzwhz9EPB5ftrV/K1Gzy/F//a//hW9/+9sYHh7G/Pw8PvOZzwAAPvOZz2B+fh7Dw8P49re/jW984xvLJuxKpFAo0PpLURRL7l3WKui3etHLaTabG1YPq1+A6xcgbBOVVCqFnp4emEznN1lvdq1OK8B1tDJyuRzduomkxBjddyylDNBSlDJcF2tuYvReuS2Z9AvkemNU02p0HWRZxuzsLLq7u7mOMnAdrQyz2Yzp6WkIgkDTA2vJBCila0sxaPULQ+K81W/ZQAxdYnSW68JfD2czm67LzqVEjlwuh7GxMa6jDFw/K2c1d1VvNKR8p1LH2UqiqryMq666CldddRUAYGhoCAcOHFjwGZvNhocffnhZhGsH8vk8VFWl+5TWi+VKOSwUCiW9o8SD7HK5GpbeyBqe7H5q7L8mk2mBV7dRKZitBtfR6kmn07DZbLBYLLQZGZva1mz093E+ny+royaTCU6nsyE6wOqoPpuBHV8URZhMJq6j4DpaC9FolNZJezyemu+bUgZpKQeUURS11HnJe4Ig0IyLcjIs9j2WSz/0Okpg9ykl7+llX406yvWzNhRF4fWkDcLtdjdbhLrR/sUCTcZqtWJ8fBy5XK6uezjV0izF6Dg2ZVH/nqIoUBQFfr+/4RNVqfRdTdMgSRJ6e3vhcrkaKhOnPVAUBeFwGIqiIBAIFNWAGVHJwnS59MPoPMRBYwQxWHt7e8vKsdzeVVI3ytajs2MXCgX09/e39WTKqR+kzg8Ard2rxz1sRLmMCfb1xY4npNNpRCIR7Ny5c9HI7XJ+R7bZEXGQs5ka+Xyez6OcmmGzGDj1pZ0dRY3J8VrFyLKM8fFxZLPZujQ6Wgr6G9soXYidFEnaYCNTevQGqB5BEJBIJNDR0UEX4hxONfj9fpw4cQLZbJY28SqXFlMura7eNR7EWC6lu4VCAdlsdsHigP0uy72YZxftpYzlubk5dHZ28u0CODUhSRKOHj1KtyQDUJQKu1QqNShLHaePQJJjjUphstksYrEYjZRWUpteK+zzyKgMhmViYoLPo5yaIfvccupPNBpttgh1gxuldUaWZaTTaciy3LA6r0qodCJnJzKyj1mjIRM3u+BlI1KZTAZms5nXM3BqQpIk2oxMkqSGNg+oZaxy0VhVVZFMJun7lTSDqUSGUg2QjGpKjeSdmZnhOsqpmTNnzuAXv/hFUZSvEVRiIBoZnuUye/L5PJLJJDWqGw2ZR8m/oihCURScPn267mVGnPZFluW2NpY4jaF1rKQ2xWq1UqO0lYuSySSay+VKNmMhi0p2O4pGy6iHdDN0OBx44IEHlj19ktP+5PN5zM/PQ5blsk2+6kk1Y5E69XLnKXe+Up11a/m+RpkVRsZvJpOB1WrF97//fa6jnKrZuHHjgs7Vjbh/iDO00rmbLXthjTtSrwmA1mw2qlNpqWwj8jrp1RCNRmG32/FP//RPXEc5VdOoXiOc9oYbpXVGVVXYbDZYrVYArf2Q1zSNLsz1ExmZpJoZ7dAvoMlCwWw2o7+/H5/85Cdb+vpyWhNN09DT0wOv11uyq22t52X/LfUZvRG32Of1Rikbscxms7BarfB6vUvShVqvgb4BGZHBYrFgYGAAn/rUp7iOcqomk8ng9ttvL2oORLrGtpKjlxixesct+1zJZDKQJIl2uW2ETGwTJmIc65uRCYKA3t5ePo9yakJV1abvYb8aiEQiyGazzRajbnCjtM4EAgHk83nYbLaW6ea5WAqffkIiHupsNguz2Yyurq6GyFkOtgNvMplEV1cXTx3h1ITdbkehUIDH46nbArfa8y72eaNFo6ZpSKVSsFqt6O/vb+pinR27UCggkUjA6XTymiNOTXR2dtbc3dMoK8CI5dAXtkGakRMVAGKxGCwWCwYHB5c83mKUcnixsgmCgEKhgGg0CpvNhlAoVHe5OO2H3W7HXXfd1Wwx2p7nn38eIyMjzRajbnCjtM4IgoCxsTHaMXC5qMeC06hRiclkol5eRVGQzWaXNZq0mDzkx6jFvqZptLGLqqp17W7MaV9EUcTU1BT6+/srrvEyWuTq02L16YblzlMqpRYoXlga6SibGhiPx5FMJosWxuXOzZ5/qTpN9k7Tn5vsUZpMJnm9GqcmXC4XJicni3S0mvu1EsN0OaODRqnx5O/x8XHE4/GGpe/q5SL7pbMy5XI5nDt3DkB7bzfBqR8k+s+pL+FwmHYib0e4UVpnpqamEIlEaMrrcqUbLWUCLXWsqqqGxh+b8kNSkxoBKyfZ35D19BKZJElCT08PgsFgQ+TitBeJRAKRSAQ2m63qxkOVRmFq0VejKIeqqigUCiXTfdk9Bys5t/5zrEFdrZx6uUh6Pdn7cGhoCAMDAxWfl8MhhEIhzM/Pw+VyFc0/i3XINmo8VG/0TiN9PSpJvVvKM6GW78M6tIhRKggCrZlNp9Po6+vj3Xc5NUHmT059URTF0AHcLnCjtM7ob6BGdvasFlKvpo/MkDRZWZbhcrnohNZIiFFq1JhFkiR0dna2dZ49p36Q+77UHptLpdS5qh2DpAAaOWjY/YWXWk9aK0YOLeC8nHa7HYFAALlcrsFScdqFXC5Hs3QqiXgaGaWNyvCRZblIRhKdJO93dHQs+j2MEAQBoijSn2pha13ZJk6yLMNiscDhcCCRSFR9Xg6nlXaXaGfYIFE7wnOp6ogsyxBFEdlsFoVCYUEL+FbscKevhyGRDk3TkM1msWbNmoY2Olrs2pDFeGdnZ4Mk4rQTZMumXC5X1DCIUKr+uhS11IJWiv55YZTmOz8/jy1bttDvstxNm4xgu3gaLbQjkQhSqRT6+/t5+i6nasj+h4VCARaLZdEFWSUNxuoFMYRFUTTseqsoCsbHx3HBBRcUNRiqhlq+F6uX+hIDVVUxOTmJSCQCj8fDdZRTE/y+qT/xeBz/9E//1Gwx6kr7mtstQDKZRCqVwvz8PMxmc8katFbBaLIjC1uy/yHpItzImtJy7ymKglwuB4vFwvdA5FRNMpnE3NwcIpEI3G634UKyXI2n/nUjKk3xrZRS46iqinA4DIfD0bAFuZGBrP89lUohFoshHA7DbDY3RC5O+5BMJpFOpxGJROD3+yuqKa3FIVNJfXc152H/BkDT2CcmJuByuYreq5Zqvh/7Ob2+krr3SCSCeDwOh8PRUmsSzspAEAQ4HI5mi9H2FAoFTExMtPValxuldURVVeTzeUxPTyMYDNLUo1YNvRvVlBp16dO/Xi/I5F5uuwxBENDR0QGTyYRDhw7VXSZOe6GqKqxWK6anp9HX11dxl85S9ZiLfX4pNWGk6Zg+NVC/0DRqsFLJT7nvthj6xins76qqoqOjA6qq4vDhw1Wdl8MhW03Mzc2hr6+v4gyjauYotinZUp1IbA2pPkJJ5lhJkhpm/JXSS1bGQqGAzs5OuFwuHDhwoCFycdqLoaGhZouwKmhUo9Fm0ZrWURuhKAoikQhGR0dpPRUx7FoNEnnUvwacr4mx2WwQRbFhRjUZW5Zl2kRF3300l8th586dCAQCSCaTDZGL015ks1nMz8/j9ddfx8TEBK0BN0rlXSw6Uy3VGquldJQseEVRrHlrm6UskguFQtFzjTVIM5kMLrnkEgwODvJtmzg1oaoqZmZm8NJLL+HEiRNIp9NQFMWwEzVQ3LCrkp9anUZGWRRGv5O/FUWBxWJBb28vrTMt57RaijNLL5ssy3QfcnJNyU8sFsPWrVuRTqcxOTlZ0fk5HJZwONxsEVYN7ZzNwJPA60A6naapDGTBGAqFcPbsWfT09KC3txfBYHBBJJCE5Ju1nymJwLCTNKk5MZlMSCQScLlc1KvcqC68ZDInC29VVWE2m5FOpxGNRtHZ2QlRFHHttdc2RB7OyofVUbPZDE3TcPr0aRw+fBgXXHAB9uzZg82bN8Nut0PTtKIFJIAiHQHqM0kY1bgS54xRNDSbzWJubq5oH+FyKcW1yEPOqU9zJs1d2NdIOvGJEyewe/durFmzpiF7M3LaA1ZHFUWBIAg4evQo9u/fjx07duCKK67ApZdeCr/fDwA0+kj0ptT9ChTf//ruuNXC6ikZi503CZqmIR6P061tyGfrHfUg6wlRFJHL5YpKX7LZLM6dO4cXX3wRXV1d2LRpE7Zs2VJXeTjtA3v/8q2E6o+mnd+LvFRTwXaAG6XLDFvXBZyPwlgsFuzatQvZbBajo6N46623YLVaEQwG0d/fT+s49Ns56NNs2NfqQaFQoHKQiZWMaTKZ6ITWKIWQJKnIMJZlGYIgIJfLYXZ2FuFwGKqqwmKxIJlM8poGTkXodTSVSiEYDOLuu+9GoVDAK6+8gp/85CdwOp248MILsXfvXgSDQVq3bKSD9VhYGkVaSEMm/euqqiKbzSKRSMBqtZZ9Tiyljo0cz8rGbjNBShYmJyfx9ttvY2RkBOFwGJdccgnGx8e5UcqpCL2OZjIZ9Pf348tf/jIA4PHHH8f//b//Fw899BB27NiB6667DuvXr4fNZivqL2BkkJLXARQZkNVERvVGKDsGaXDIfg44n9UzMzODubk56girp1OrVKZHJpNBIpHAO++8g+effx5vvvkmzp49izvuuANzc3Po6elZdlk47YkgCDQ48bGPfaytI3itAEm1b+f0XW6ULjMmk4l6jCwWC06dOgWn0wmHwwGn04mOjg4oioKZmRnMzMzgwIEDMJvN8Hq96OjoQCAQgNVqNZzU6q3w+Xy+KAVPEAQkk0lEo1EUCgUoioJ0Og2/31+2NrZamdmFA9uhmGxPE4/HEY1GEYvFEI/H6cJjw4YNyGazWL9+PSwWC7LZLG0gweGUwkhHu7q6EAwG4XQ6sXHjRiQSCRw9ehRHjx7FP/zDP0CSJGzcuBGbN2/G8PAw3G43JEky1AFitBlNHJXqsH7xS85JshlIpIMsdE+fPo1z584hl8thfHwcXV1dsFgstLFQuYhMNemArNOKbE8jyzLGxsZw5MgRnD59GqOjo7BYLFi3bh0+9KEP4d1338WFF14Iv99PO6hyOOXQ6+iZM2fQ19eHoaEhBINB7Nq1C7Ozszhw4AD27duHr33ta5AkCdu2bcPu3buxfft2dHV1wW63L5hL9bpVaTmK3vhkDVP2X2KUEidSNBrFO++8gwMHDuCtt97C/Pw8Tp48icHBQVitVupE0stR7Xxv5DQiMqTTaZw5c4Y+044fPw6r1YqLLroIn/vc5/Dss89i8+bNyOfzSCQS6OjoqGpszuqEdUjy/W3rTy6XoyUHzcqorDfcKF1mTCYTvF4vAMDlciGVSi2IroiiiN7eXnR3dyOXyyESidA0N1VV4XA4EAgE4Ha7EQgEIAgCrFYrFEWhi0z2YcB2I2SNO7auhrymb0hCIpCKolDDMx6PI51OI5vNwmw2w2q1wu12IxqN4u2338bp06dht9vh8XgAAF1dXXA6nVBVFZIkQRRFmm5rFFEhEMUiEzgp4J6dnUU8Hqf1uGQh7nQ6qQFKvncikYDf74fL5eKdPTkVodfReDwOq9VKW9qbTCZ4PB68733vw+7duxGNRjEyMoJjx47h0UcfBQAEAgEMDg5i7dq1GBoaogagIAh0E3G944YYqqUWm0bNhoiOZLNZaJqGWCyGqakpnDlzBqFQCKFQCCaTCWvWrMHatWsxNTWFRx99FE899RQ8Hg+VbWhoCF1dXTCZTLBYLNQwLCeTfvFOnFaFQgEjIyOYnp7G7OwsxsbGUCgUIAgCent7ccstt6Cjo4MaFW+99RacTiecTmfLNnnjtBZGOkqckSaTCVarFQMDA+jv78f111+PmZkZvP322zhy5Aj+7d/+DT/4wQ/g9/uxefNmXHDBBdi0aRM8Hg+cTidMJhPsdrthszA9+khoqRpWRVGQyWSgqipCoRDC4TAOHTqEkZERjI+PQxAEXHjhhVi7di2OHj2KH/7wh3jkkUfg9/uxadMmuN1ubNq0Cb29vbBYLLBarbDb7VQ2famPkZzA+ZTndDqNTCaDd999F6OjoxgfH8epU6cgCAK8Xi82bdqEL3/5y1i/fj16e3uhKAqeeuopFAoF9Pf3c6cRp2LaOWLXivzgBz9ALpdrW4MU4EZpQ2EXfybT+b3MHA4HrFYrenp6sH37dhqZjEQimJiYoAs6m80GRVHQ29uLQqEAs9lMF5ks7Ma67I1Lfie1oOFwmKbhjo+PQ5IkRCIRSJIEi8UCj8dDJ8hCoYC5uTkMDg7igx/8IObn5xGNRmE2m2mUJpfLIZPJUAOWNKEgzRX09acmkwmSJNHxkskkIpEIvF4vjXaS2tvu7m6cO3cOhUKBpvRKkgSr1YqzZ88COJ+CGQgE6vC/xlktEIcNq6dWqxXd3d3o6enB3r17oSgKpqamMDo6ipGREezfvx8PP/wwXC4Xvf82bdoESZLgcDiwdu1aWK1Wuuk9qcdmW7oTZwxpQkLqt0nkM5vN4p133oEkSRgZGYHNZkNXVxfWrl2LK664Ah0dHRAEAS+99BJ27tyJL3zhC5ifn8f4+Djy+TxOnTqF8fFxxGIxzM3Nwefzoauriy6kiaFppKM2mw02mw2CICAUCmFmZgaBQAA9PT2w2WzYvHkzLr30UmzatAlTU1MLOgNmMhmcO3cOgiAglUpRRxaHUw2CINBt1fTdbF0uF9xuN4aHh3HTTTfRyP3bb7+NY8eO4de//jW+973vweVywev1QpIkbN26FTabDX6/Hxs2bIDL5aLzEXEiEycn0U12LtM0DdFoFGfPnkU8Hkc8Hsdbb70FTdMwMTGBYDCIDRs2YM+ePfjDP/xD9PX1wWw248EHH8T73vc+/MVf/AXC4TDOnTuHZDJJZSVzv9vtRjAYpOnwZK9ztrkTmUOJEQsAMzMzmJqaQjAYRG9vLxwOBy666CLccMMN2LNnDyRJgs1mK8rymJycxIkTJzAwMECvNYfDaT1Onz7dsF4uzYIbpXUknU4jFostWuvILlBJRIGkQpAaskQigVgsBuD8IpZEKNgoLJlM2A3G2U6i7ISqaRoCgQC8Xi+tl/P5fAs2QCZbZpAFdT6fh9PphNvthqZpCAaDdP810l1YFEVkMhnkcjn6uqIoRcpEFrxOpxNmsxk2m41GPy0WS1HDiEwmQxf15HsSg7ezsxNerxepVAoul4tOzhxOJaTTaSQSCQwMDBTtJcxGJVjHjyRJGBgYwMDAAC677DIoioJUKoV8Po+5uTnMzMwAACKRCI4dO4aXX36Z6g4blSR6RmpE2EiIIAjIZrNQFAWDg4Po7u7Grl274PP5cPnll8NsNsNisdCFJckyyGQyVPf7+/vR19cHQRCwd+9eAOfTCtPpNM1OiMfjiMViSKVSSCaTRbUqREaHwwGXywW/3w+3202fB6yhLYoi0uk0rS/S16V7vV709fXBZrM17P+V0z4QHTWK4pH7n+iO2WyG2WzGxo0bsWHDBtx4440oFAo0+2diYgLj4+NQFAWhUAivv/46fvnLX0IQhCJDjURjic7qGwQB7zUdW7duHQYHB3H11VdjYGAAPT09CAQCcDqdVB9NJhNkWaZ7gXo8HgSDQWzdupWeX1VV5HI52shEURREo1HE43Ekk0nEYjGavkeeSWazmepoR0cHPB4PRFGE3W6H2+2GKIq0xpbMmeRaER0tFApwuVy45pprEAqF0NfXt2AdwOGUw+fz0cg+p36QMr9wONy2UWr+5KkzZ86coWlrlYTcyYKOGGBE0e12O4LBYNFnyYKQTGqkBlOfpkvSlcikq6oq7WZIZIpGowiHw3TCZevHiCFL0vHYhQCZHImXmWCz2coqjV4+glE9Konosgt7ksrc1dUFr9eLzs5ObpByauLs2bMYHBykzUfKpfWxdWhkIUvuu+7ubmzdurXosyQqSozXVCqFQqFA9YoYf2azGR6PB1arlWYnkIwIcq5wOIxQKLQgJZ6tN+3v7y9y3gCgC3mLxQKn00mP7+joMOyka/S99ddAf0w+n4csy9SxxKb+dnd3w2638/R6Ts2cOXMGu3fvph122c62+uwGVu+Ik5PMXRs2bFigP8QRJMsyddBks1lqGJIorcVigdfrpWnEZCwyDtFpAEXOYjJnFQoFZDIZDA4O0rmbzGnEcc1mXJTqzVBJrTpbU8o2JyTjkmtI5tLu7m709/cXlTFwOJWybds29PX1NVuMtkeWZSSTybY1SAFulNadqampogmgkuYFbPpMuc+T6COZVBeLRLCpdWQyIhM6qVkrlboTj8cxODhIU2crSSEoNVGSCEq5OjZyzYjcRvWopCGD1WrlURhOzczMzGD9+vWG75W6h1ljsBxsrTTJgiDnZaMVLCQCQyK3+miN0Rj5fB7RaBSXXnopTXE3et7oj1/seWRkpBodQ76jXn/JnofxeLzI2cbhVMPMzExRBhCwsKGYkRGnn8+IEaj/mziYbDYbAoHAgmZB+vOyTlm9TrHOYnKMyWRCKpXC6Ogorr/+evpdjMbQj1XL66yhrq9RB1A094+NjSGXy8Fms9E6Xg6nGjZu3LggaMJZfkZHR2lGYrvCjdI6oSgKYrFYxYtXlkqNV4Lei1ruWNa40zc7KnUs8Zzq68WqpZLGEvrPk73UWMg1TafT2LBhA98KhlMTrI4CC3WnnNOk1N9GC17yu9G5SjmB9DqtKArNhDCSQVVVZDKZomMqrQ0rZehW+gwiXYCNjo9Go/B4PNiyZQuvVeNUDdFR4gxdyj1NMDLe9K+zBl25ZwL5DHHSskYm63AikdJkMllUW15KTn0GEStXpXOw/vyyLNNmbKxcMzMztESnmnUHh0Ow2Wzc4dgAVsMc2v7fsEnIsoxYLIZCoQCPx1NykjFiKRNDLWOQZgqs55ddTJMJlzRCaFTqAJGHrXUjSlkoFJDP53HhhReis7OzrdMZOPVBlmVEo1FomkZTWQnLcT9VkgprBJvWzi5ySYdbo8+RPXzJPqCVREAXW+Dqr0epHzI++7emaUgkErQWcGZmhusop2qIjgKg6YF6A7Ac5e5b/Tn0+lDKWcPqtf7z+r3GCaReVBAEDA8P09eqpdw6gn0ekB/WAGXlJR29R0dHcfbsWQwPD8PhcFRl9HI4AIqyCzj148iRIzh27Fizxag7PFJaJ0iXzkQigTVr1lQd/WwUbHohu70MWeQCQDabRT6fh9frRTKZbKh8pLaORIOi0SiSySTS6TSCwSC2bdtW1KCGw6kURVEwPT2NbDZLO9i2Gmw2A9t1U59GHIlEkEql0NXVVZdFZbmIMMlmUFUV6XQaIyMjOHnyJCYmJuB0OnHzzTcvOcuCszoh82gul6Pbo1WSgl6pwVoN5XSANQTJe0RnyeempqYQj8fR19dXVXbTYjKVyp7QPyPYbvuHDh3Ca6+9hjfffBOKouCLX/xiSz7/OCsDfTYbZ/k5ceIERkZGmi1G3eFGaZ1IpVIIhUJIJBLIZrOw2+1QFKUlU2RIPaksy8hmsxAEAclkkqYL5nI5+Hw+2vyhnvLrvdCpVArz8/O0UyiJyKiqis7OThw/fhyBQADr1q2Dx+Oh28lwOIvB6ujs7CyCwSBtWlRuoVjtYnapxpimaXQPxGw2i2g0img0iunpabqfbyKRoJ2wSzVVq1WOcovxQqGA0dFRHDhwAO+++y5OnTqFTCZD9XRwcJA2knr77bcRDAZ57RGnYlKpFObm5hCLxTA6Oor169fTumygtFEG1CejhzU6WQRBoDXfc3NzGB0dxfT0NEZHRzE3N4dMJoOpqSl0dnYuMF5LUeo9fa0qgdV5NhKczWZx9uxZ7Nu3D2+99Rb2799PnXGkU/fRo0cRCASwa9cu3p+BUzV8O776c/311+OrX/0qHnvsMRw8eLDZ4tQNbpTWAU0735FvYmICiUQC+/fvx/r16zE0NFS2yQ9Lpd16a5WPoKoqCoUCZmZmaNt88jo72Xd2diKbzdKalGoaN5WTg40EEU+tpmmYnJzExMQE5ubmaLcx1vsriiJGR0dx//334+c//zn27t2Lj3/849A0DRdeeCF8Ph9MJhNisRhcLhevd+AUwero7Owsvve972Hv3r24+eab4fP5ihqVsJRqblIp+sWokcHHpqoTZ1EoFMIrr7yCd955B6FQCOl0mu5bSOrtPvjBDyKVSlHHFztWudq4UpEnfWoiyVbI5/PIZDI4fvw4XnvtNZw4cQIzMzO0BIA0egGAiYkJfOc738Gjjz6KTZs24Z577sHp06exadMm+P1+CILAdZRjCKuj09PT+J//83/i9ddfxyc+8QmsWbMGFouF6mIlc+pyyMP+Tn5Iau7IyAheeOEFvPDCCzh37hw1RklXapvNhg9/+MOIx+NF28Ww51zMWCV6rW+Qxq4VCoUCcrkcIpEIDh48iGeffRZvvfUWxsbGkEqlFjx7xsfHqY7+zu/8Du68804MDw8XdcvmOsopRU9PD+6+++5mi9H2BAIB/MVf/AV+//d/Hw888AD+3//7f4hEIjQDol3gRmkdSCQSmJmZwdNPPw273Q6n04mxsTGMjIxg7dq16Ovrg9frpROSfoIhk85yoF+QkkmNRFwmJycxOjqKfD4PQRBQKBRoYyNWprNnzyIajWLbtm3o7e2t2SA1mmxJm+v5+XnMz88jFAohk8kUpUARQ1i/mC4UCjh16hROnz6NJ554Ap/85CfhdDqRzWbp9hqtFpnmNJ9IJILJyUk899xzdI+/l19+Ga+++iquuuoqXH755UV7lxrVoNVCuTpTVkdVVUUsFsM777yD/fv347e//S0SiURRcySTqXi/0xdffBFjY2P4yEc+gksuuYTu91tOjsVkJHqeSqUwMTGBkydP4p133sHx48cRDochyzLdpoMdT58+eObMGZw5cwb79u3DnXfeCVEUEQwG4fF4uI5yDCEZDM8++ywcDgccDgceeeQR/PKXv8Ttt9+OG2+8ERs3boTL5SpKba8Xep0he50eOnQIzzzzDJ599lnMz8/TzrZsCQyZWx999FGcOnUK9957L2688UZ4PJ6qHNCsw4o8J8ixkUgEZ8+exRtvvIFDhw7RiCjbxJB1VrH9I2RZxunTp/EP//AP+PGPf4y7774bn/jEJ9DT00O7ZnMd5eixWCzo7+9HT09Ps0VZNaxduxZ/9Vd/hbvvvhsPPPAAHnjgAUQikaJnwUrGpLVAoc+ePXvaKhwdjUZx9OhR/MEf/AHsdjtddOVyORr16+7uxpo1a2hUhnggySRRS30Ha+QS2EUi8ejOzMzg5MmTdJsGtpmRvlsw64XWNA0WiwWbN2/G8PAwLBZLUc0MGWexSTafz9M93c6dO4dIJIJ4PI5CoQC73Q6Hw0GvVTqdLuk9ZuVk92TcunUr7r33XuzevRtWqxXBYJDuK9fKnt5W1oNWlq0WpqenceLECfzRH/0ROjs74Xa7oaoq3aTeZrNh+/btuOSSSzA8PAyn01m01YpRbVs1sPc0uzgsFAqIxWJ4/fXX8eqrr+L06dO0jpvVw3IRVq/Xi5tuugnXX3/9ggZO5aKgwHvPjkwmg2w2i9nZWbz55ps4ffo0xsfHkc1mYbPZ4Ha7oSgKotEoEolE0R6lern0f0uShC1btuCee+7Bnj17YLVa0d3dDUmSoKpqS+9n2sp60Mqy1UIoFMLbb7+Nz33uc/D5fHSv0WQyiXg8Dr/fj/e973249tprceGFF6Krq6vIiWRkgJHfgcUdTKUaGaXTaep0fvbZZ3Hs2DHE43GqA+Sz+igoe97e3l7cdddd+OhHP0r3FjaS20h/iByxWAyxWAxjY2M4cOAAjh49itOnTyMajcJms8HlcqFQKNDyF3b/8lJyESwWC7Zt24ZPf/rT2LNnD2w2G4LBINfRJdJuhr0kSfjHf/xHfPrTn26777YSyOVyePXVV/HXf/3XOHr0KObm5irarrEVKPX85ZHSOiAIAt5++21kMhl4vV6YzWYoigKbzQar1YpcLofZ2VmMjo7C5/Ohs7MTXV1dcLvdcDqdC9JzjCZUdiwyERIDUe8VTSaTNCoaCoWQz+epkQYU7wOqj9KSCZAsiGVZxhtvvIGJiQmsW7cOHR0dtMU9iUwSmWRZRj6fh6IoKBQK1JszOTlJDQCLxQKHwwGfz0eNXAB0w/NsNot4PI5MJkMbHpHrwV4j8ns+n8frr7+OEydO4Pd+7/dwzz33IJ/Pw+12w2azwefz1ec/nbOicDqdOHXqFPL5PKxWKwRBgCiK8Pl88Hg8SKfTeO211/Dcc89h/fr12LJlCzZt2oSBgQEEg0GYzeYFGQhGD1lWF/VZC+TziqIgEong9OnTeO2113D8+HFEIhEIgoBMJlMywqHPriDni8Vi+MlPfoJ33nkHH/jABzAwMEAjTWzaoKqqSKVSSKfTyOfzSKfTGB0dRTgcxjvvvINYLIb5+XmYzWZ4vV74/X5YLJYiB5rb7UYqlUI4HKbGKfvdiGwsiqLgyJEjOHHiBG6//Xbcc889AEAXur29vUv83+W0A1arFe+++y51hJD7iPQOyGQy+OUvf4l///d/x/DwMPbs2YO9e/dieHgYPT09sFqtNIpv5Hhh0TtUWH0l8xdx0PzmN7/B4cOHMT09DZPJRO979j432vKFOGw1TcP4+Djuv/9+HDx4EB/60IcwPDwMt9sNl8sFv98Ph8NBo6vEUZZOpxGPx3H69GnMzMzg8OHDmJmZwfT0NARBoGuNNWvW0PFUVYXL5aI6Spy/QHkdLRQKOHToEE6cOIE77rgD9957LwDQ68kjYxzg/P2wdu1abpA2CavViquvvhpbt27FN77xDTz88MNIpVJFc/FKgxuldcBkMuH111+nxhrxXJCFoM1mo2l3+Xweo6OjGBkZgSRJcLlcsFgsGBoagqIocDqdMJvNdNIknmCyiGZrW8j5SJ1WLpfD6OgoMpkMMpkMzGYzPB4PJEmCKIrIZDL0c2Sy1E/Y+mYKZKz5+XmEw2FYrVaYTCbYbDa68CVykMUu+e4kEgqcbyOu39uKpD2xkM9ls1nEYjFkMpmynTzJ4iObzeLhhx/GuXPn8Cd/8idYu3YtBEFAPB6Hx+Op+f+W0x6YTCYcOnQIZrOZ6iJ5XRAEOBwO2O12FAoFpFIpPP/883juuedgt9vR1dWFjo4OXHzxxXA6nejo6KD3lCRJRUYuuzgtFAqQZZnWgk5OTmJubg6HDh3C5OQkotEoRFGE1+tFIBCAKIpIJpOYm5tDKpUq0g+jSCn7HVRVxcGDB/HGG2/A4/HAarXC7XbD6/XCbrdDEATk83kkEomiurd8Pg+HwwFRFOFwOODxeEqm7pFr5XQ64XA4kEwmqXFqpMvkGBJFyuVyePjhhzEyMoIvfelLWLduHaxWK9dRDoD35lH93ppGOjo/P4+HH34Yjz76KPx+P9auXYtgMIhLLrkEXq8Xvb29VKcsFgudg/XRTLLnbiqVovPnxMQEXnrpJYyMjGB6ehqqqsLj8aC/v582BZybm6ONAMul+hPnqSiKyOfzeOGFF/Dqq69SQ9vv96Ojo4M27CNzdCKRQC6Xo83ObDYbBEGg6ZNGxjfwnnHs8Xhgt9vh9/sxNzdHdbQU5DzpdBoPPfQQzp49iy9/+ctYu3YtbDYb11EOp4UIBoP4+te/juuuuw5f+cpXcPLkSTrHrzS4UbrMaNr5jrGTk5N0cQoUb+kAgKYCEkNOlmXa/TadTuPll1+GyWSim1origKXy0WNVD0krSgej8NmsyEWi9EFt8PhgMvlWrCgdTgcsNlsSKfT1OBjmw2x30kf4SFGcjqdLppESWou+Y4WiwWSJEGSpKJJ0GjBqk/7Zf8mUeZUKoVoNIpsNlt2YU6ivy+88AKmp6fxl3/5l9i7dy/i8Tjcbjf37K1iNO18h8zp6WlqoOmjjkQ/JUmC3W5HR0cH8vk8CoUCQqEQxsfH8corr0AURbhcLpjNZoiiiEAgAJ/PB4fDQfWPGInZbBbhcBjhcBiCICAUCgE4f287nU66uGTl8Pl8cLlciMfjCIfDNP3fKFLKRmaIQSzLMuLxOHp6emA2m5HP55HL5YqiRsQINXqu6McxSh0mzwyv10tlnZ2dRSaTMbz+7PGqquLVV19FKBTCV7/6VezZs4frKIfOo1NTU0VOXPIe8N59R5y1fr+f7l/9xhtvQFVVPPbYYzCbzTRTxmw2IxgMIhAIwO12Fzl5gfc6cs/OzkKWZUxOTgJ4zznq8/nonEz00O/3w+12I5FI0MZ8wMJeEUblJ6SkJhwOw2KxIJfLYXp6usiwJV37ydxPorL6EgByzlJIkgSPxwOHw4F4PE57NxBZS/0/FAoFvPTSSwiFQvjLv/xLXHLJJVxHOQCAnTt3YtOmTc0Wg4Pz6/kPfehDMJvN+MIXvkCbD640uFG6zJB02XA4DKD8BtnsA50YbqQdu8/no54OVVVhsViQz+cxPz+PXC5XdA4SpQTO35gWi4Uag4shCAJcLhccDgc1TsmNbFTPwo5LosCkhoXIwBqlBP0EbYT+WhlFbV0uF/XUJhKJopRlvZzk33fffRf//b//d3zrW9/Cpk2baGSYTWHmrB5ImjeJTBrVbxstIK1WK6xWK5xOZ1EtNdkKwmQyIR6PY2pqqmgyMJlMsNvt1DFkFOEohyRJdOEbi8UQCoXovnBGximLKIpQVRXz8/PUsUMiNQDoFjjlrtVif7OlBZIkIRAIwOl0IhQKIRwOo1AoLEhnZM8jiiJOnTqFP//zP8c3v/lNDA8Pcx1d5bBlJ6X6K7A6yvYUsFgscLlcRZk/REdVVcW5c+fwzjvvFM2jAKiDmDhDzWYzrXXW3/ds7SgAahSzOkoim2zduF5uIjvRUbvdDq/XuyDFn5zDqG57seeHft42m80IBAJwuVyYm5ujOlou+wg4v0/in//5n+Nb3/oWNm7cyHWUg+HhYZouzmkNrr/+etx///344he/SB1kKymVlxuly4ymaRgdHUU0Gi2a4KqF7Ddos9no8VarFTabzXDBTCCGYLWNkohxarPZaPMSo6gIgXTsI4vbUCiErq4ualSX+95GEVGgvAHPQha+drsd0WiU1t0ZGdFE/rGxMXzrW9/CX/3VX9EIFJ9MVyekpotszVCtt5+NrBBDjEDqo8l7ZDy2LrsWyDh+vx8ul4safCSVvVSqLCGbzWJiYoLWnpH3Sy1EjerhyHcpNw7522q1ore3Fy6XC9PT0yWjpkR2QRAwPj6Ob37zm/ja177GdXSVo59Ha9UbonPEYQqcN1w9Hs8CYxGovhGNUYZFIBCAw+HA3NwcotFoUfdbI0g6ez6fx+TkJE23Jecsp9+V6qheVtIDIhgMwm63IxQKIZVKGR7P1sVPTEzg29/+Nr761a9yHeW0dOPI1cyNN96Ij33sY/i7v/s75HK5FWWUVt/ilVMSkhqXz+ehaRqtBa0VfcovmVRIt159vedyIEkSOjo6aKMIoLizpxEmk4k2giBNFBb73sToJgZqLdfJZrOhs7OTesVLGevkvYMHD+K73/0u0uk0FEVZkakNnKWRTCaRTCahKAoURVk0UrgYRvecUWqdvi7TKLK/GMR4s9ls6O3txdq1a+mCnegQW2PORiVJDef4+Djdi3ixcdnvstgzgIV8ljSOIg3RjIxg/aL+yJEjXEdXOURHiTFXDx0FUORYMppLa9VRkr3U29uLwcFBmh7PjkN0kugE0d10Oo3x8fGSBmKp8WrRUeB8hNfn82FgYGBRHSXPmNdeew1/+7d/y3V0FUMcMENDQ80WhVOCL33pS7j88ssX1M63OitH0hUAeWinUim68K3nOPWCpBv29PQUeWz1P0QW0tSENJwgXplSikDkX+r3IA/Grq6uon1fjdKkyML9hRdewCuvvLJoowdOeyLLMmZnZ2lH51qjJKUWskafW+z1ascFzjuP3G431qxZA7/fv2Bhql+gkkVwNpvF5OQkstls2QVsqfPUAlmgd3R0LCgp0BvOmnZ+v9VXX32V6+gqRZZlJBIJxONxpFKpBQ6WSllMRysx+Ix+r3RcvY4SI5SVST+XAuebG01NTTVMR8l839vbi66urpI6Ssbh8ygHAFwuF+68885mi8EpQSAQwNe+9jVs2rSJG6WrFdIMYXZ2FolEotniLBlJktDZ2VnSg0ogXl5BEGijCPI6YSn7rpaDTOqdnZ0IBoOGezmycqdSKfzLv/wLZmdnEY1G+YS6yvD5fPB6vZidnaX1FoSlGl+NhnTIHRgYQG9vL23aUgpi+MXjcYyPjxd1CiXvV0slRjdw/lnS09ODnp6eopQv/cLfZDrfOftHP/oRQqEQ4vE419FVBtmWiTQNYvsRrBQdZaOhdrsdfX196OrqWtAx3yg112Q6v80MaXhUq3Fc6TFETlEU0d3djd7e3qJtn4x0NJ1O83l0FUPui76+vmaLwinDrl27cN1117X0vsJ6uFFaB0hjj3bB6/Wiq6uLRjKMojDsBJtOpxcY5bVERKs9xuVyoaOjY8G11y8ATpw4gbfeegsAeOrRKiQQCCzYV3ClQjqPdnV1obe3l6bq6CNEbGQGAN2DlKWWBX81aY2kNCAYDJZswkbkfvfdd3Hs2DEAXEdXIw6Hg86jK3kuJfKLoohgMIi+vj567xtFONloZCQSwdzc3IJ9w6ulkmNIiQGpiSV7MZdzOr377rs4evQoAK6jq5GVVKe4WhFFEZ/73OfQ19e3YtY7K/dp38Jomka76ZajkRPuUsYSBAFut5t6evXo02VNJhPC4XDDJypN0+DxeODz+Yoiu/ooby6Xw+OPP073jeSsPoiOLtaooR5128s5FrmvSROkvr4+upgslb5I9CEUCtH6UiNZlgtW9wRBQGdnJzo7O6mTy2jsfD6PX/3qV8jn81xHVyntoKPk/iZbLgUCAfT399PmQOUMU0VRMDs7i3Q6XVGDsaXAzpWkJKazs7Oo87A+zTifz+Pxxx9HLpejvSQ4HE5r4ff7sWPHjop242gFuFFaJyoxAOtdG7ocY7Hfg0QijRa5BBKNJFtuNNLLTdKQfD4f3G73gno1lrGxMaTTabjd7obJx2kt9M2HjFiOmspKWWysxWrIRFGE3+9Hd3d3RQv5XC6HUChkmHq3nN9ZH7El+7myW18YHTM1NYVkMkn3QOasPkiUsRwrSUcFQYDf76fZAkapsewP2QaulPFaD9isBrZTt9HYpIs511EOpzU5duwYfvvb364YxxE3SusE2aphpaNPHXK5XLSxihEk9UgURdqdr5GQ+iO/3w+LxUKNZNYw9fl8uO2223jnuFWOoigNcwotB+V0jo3I+P3+klkN5DzkXPF4vCijoRHPLDYaY7fb6bjsj9frxe23347169evmLQjzvJDGumtdPTNmhbTUVYPiY42uq6W9JQw2oZOFEV0dHTgjjvuwNDQ0IpOseZw2pVQKIS///u/x/T0dLNFqRj+JKkDJpMJsiy3xWTKQhazPp+P7vvGTpT6iUtVVcRisYbLCZxvdd/R0bGgFf/69evxn//zf8add97J91dbxZB9AUmTrpVCuZRc9veOjg7aObvU9zOZznfMJo1KjJqu1AtRFOmWTmytuslkwoYNG/CFL3wBt956K933mLP6IDq6khy8i6XNk3+JwUdKTYzOQygUCojFYvRZ1QgdZZs0dXZ2UuOZZDoMDw/ji1/8Ij72sY/xKCmH04JEIhH84z/+I5566qkV5XxfGUnGK4h0Og2v17sgf5vsx7lcEM9kM242sugtFAolUwJI3Voul2uwdO/hcrmQSqVoTc7ll1+Oe++9F8PDw+jt7W2aXJzmkk6n4fF4IEmSYcOu5aJZHUPJs6G7uxvZbBaZTKbofVYeTdPo+42OSJJadafTiVgsBk3TsGvXLtx7773YvHkzBgYGGioPp3VgdVS/V3c76Chw3jHT1dWFVCq1QAf1/RCaoaPEsPZ6vYjH40gkEjCZTNi5cyc+85nP4KKLLkJXV1fD5OG0Fjw63pqoqop///d/x8MPP4wnn3wS8Xi82SJVBb+rlpFkMomxsbGiWgzCchuPjaxHNcJsNtO914DSDSByuVxTGpXIsox4PA6TyYSBgQHs2LEDl156KWZnZ7Fx40YegVmlEB0NBAJFe/ACy78wLVd/Vu9FsCiKsFgsCAaDi9bkpdNp5PP5usvEPh8URUE2m6X7Gvf392Pbtm247LLLMDk5iaGhIVit1rrKw2lNjHSU0E46ajKZYLFY0N3dDYvFUtbgzGQyDa8JU1WVZlIAwODgIC666CJcccUVmJubw7p167iOrlJMJhMURcFTTz3VbFE4/38KhQIOHjyIT3ziE/jsZz+Ln/3sZyvOIAV4pHRZUVUVsizDbDYXdddr15ooEolMpVIAir/rci70K40yk8hsMpmEoijwer246qqrcPHFF+Oiiy5CKBTCN7/5TXzyk5/kk+kqheioxWJZdCFYDjZiU4uO1/OZQGQTBAEejwculwvRaJS+zo7diPRl9vyyLCOTySASidBo2O/8zu9g586d2LlzJ86ePYu/+Zu/wR/8wR9wHV2lsPPoUvbXW2pUtd46Cpx3HpFIZDQaLUpj13e1J8ctl74ajUGMjUwmQ2tZ3W43brrpJuzatQu7du3C+Pg47rvvPtx9991cR1cxhUIBL774Iu64445mi7KqUVUVBw8exEMPPYQf//jHmJmZWdFRbG6ULiOSJMHpdMJkMsFqtVZdU8oaX61mzJYyDL1eL7LZ7IK9WRVFgSiKcLvdS1KQcgYpiRarqop0Og1VVZHL5bB9+3bcfffd2L59O0KhEMxmM53s77vvPjidzprl4axsJEmC3W7H3NxckeOI1DUutugzmUxFOkpeawX02yAB76UIkmgo8F7WhqqqdCuZWtvF6ztvs78T3VQUBfl8HvF4HLIsIxqNYmhoCJ/61KdwySWXwGaz0aZkZrMZ3/72t7mOrmKIjkaj0aKMlkoNMvK5pTiN6oVeR4lcHR0dSKVStKER+ywym81FJUHVGqbldFTTNMiyTP9NJpOQZRmxWAwbNmzALbfcgj179sBmsxUZoHwe5SiKsmA/ek5jUFUVJ0+exIkTJ/D9738f+/fvx/z8/IK1yUqEG6XLiMPhwPr166FpGq666io8+uijsNvtFaeKqqpKmztkMhm6rUmrTKhG2Gw2OJ1OmuJDJkybzYZAIEC7a9YKa5AKgkAbSJEJnHTq9Pl80DQNd911F221n06nizztU1NTsNlsLX09OfXF4XBgw4YNkCQJR44cwRNPPEG3ECL1a+W2KSEPe5Ih4PV6a464NkK3TSYTHA4HvF4v5ubmitL+XS4Xurq64PP5IIoi7ZptJCc5V6n3gPOLFEEQUCgUoCgKYrEYstksstksPB4PLBYLJEnCF7/4RQiCgLVr16Kjo6OoydL8/DzsdjvX0VUM0VGr1YpDhw7hl7/8JbxeL3VwLqY35J7MZrNIpVK0NrXae6oRTicyhsPhgMfjQTgcLhrX5XIhGAzC7XZT3TRacFaqo+TaER0l0VBFUeB2u2Gz2aCqKu69914aJSU6SiAOPa6jqxfixIhGo5ifn0dHR0ezRWpryPXOZrP4+c9/jv379+O5557DmTNnihxL7OdXKtworQNWqxX/6T/9J6xduxY//elPMT4+DpfLVZFxmsvlMDMzg3w+j1QqRTewXipLaYxkFK0kXlZJkuBwOGiXXYfDAafTSbvz6o8BFnp6jfZAk2WZTp7AezU1drsdqqpi48aNGB4ehqZpuOWWW2CxWCDLMvWwT01N0UUykX3z5s3YtGlT1d+f016YTCb09vbij/7oj7BmzRr8/Oc/x+TkJDweT9HiTw+557PZLM6dO4dUKgW/34/BwUHq/KhmoVaqO2ctE4o+KqQ/h9Vqpe+53W4Eg0Fa9y4IAh2b6Ayw+LOCTITZbJZmK2SzWWrcb9iwAb29vVBVFddeey36+/uhqipcLheVRZ9Nsm3bNqxbt67q789pP8xmc5GOTk9Pw+PxVBShy+VyGB0dpSni/f39NDOiUh0t1xW31kWfPj2XjegSZ4wgCHRPcI/Hs6CbL2uUl5ODpEGTshaiq7lcjmZyDQ8PY+3atZBlGddddx2CwSDVUZLar38ObNu2DYODgzV9f0578Zvf/AZ33HEH/s//+T/YuXPnsqxVOeeRZRmhUAgHDx7E2bNn8eSTT+L48eOYnp4u6gGx3M3fmg2/g+qALMuQJAl33HEHdu/ejf/4j//AM888g6mpKbhcLjo5smmtZAKIxWLI5XJ0n89oNIqOjo4leyWX0hRJX3dGZMnlcgiHw7BardiwYQNmZ2chSRIKhQLC4TAA0Nq9ct2IyWRJFrQk3Y80ahEEAV1dXchms3C73fj4xz+OjRs3wuv10s66AGh6USAQQCAQoK+T6yyK4pJqlDjtgaZpmJqagslkwh133IFLL70UTz/9NJ5//nlMTEzA5/PB6XQaRiZUVUUkEkEmk4HJZEIkEoEkSRgYGKg5vY6Va6nfi/xL0mZJ10wA6Ovrw9zcHCRJQjKZRDKZhCAIRTpKdFv/bCKNidLpNARBoH+T9F9Sv6ppGrq7u3HXXXdh06ZNC/R+sZpzSZL4Vk0cAOcjnURH9+7di6effprOo16vFw6Hw3BeVFUV8/PzSCaTMJlMiMVikCQJvb29S37+L6eOAu+lQCaTSYiiiHXr1mFubg5msxnpdBqpVIo2RGLnUbbBIJsqT+ZR4vAh86jP56O6Go/HEQwGcffdd2Pjxo1wOp0LFrkASkZmuY5yCLlcDkePHsU999yDT3ziE/izP/uztr03NE1DKpWCpmkQRZE6c5dSV030jgRiVFXFM888g+eeew4zMzMYGxvDa6+9Vrb3QzsZpAA3SuuC3W6HKIqwWq1Yt24d7r33Xtx888146qmn8PTTT2N8fBwOh6MockqMNDKRAucnh3g8DqvVCrfb3ayvQ2WRZRn5fJ4uTG02G2644Qa43W7ceOON2LdvH+bn53HmzBls2LCBfo/Z2Vm8/PLLMJvNRfudEUX0+/246qqrkMvl4HK5MDc3B7vdDqfTiY6ODqTTaaTTadxyyy3QNI0+BNLpNI20kAdEOQVdycXfnOWF1dGdO3dieHgYN998M5555hk888wzGBsbg9frhdPpLFrIkgUvy/z8PBwOB90Xt1mThKqqNMMikUhAURRIkoQrr7wSsizjggsuwMjICPL5PI4fP45LLrkEmqbBYrFgdnYWzz//PK2JZ8lmswgEAnj/+99PU/oikQjMZjMEQYDX66WR0o985CNFEzWpwWWfaYvV7HI4QLGO7tixA0NDQ7jpppvwH//xH3j66acxMTEBt9sNu91e5PxQFAXhcJjedyQtnN0XtxTLkVJf6hzkvs/lcshms0gmk1BVFVarFddddx1kWcaePXswOjqK+fl5nDx5EhdddBGt/Z6dncVLL71UZIyTf7PZLHw+H6699lrk83k4HA5MT08jHo/TuZH0ffjGN74BAHT9USgUFjQp5DrKqQSyF304HMb999+PWCxGt/RqFxRFwfHjx/HCCy/g+9//PiYnJ7F582bY7Xb4/X7ceOONNHsjm83CbrfD5XLBarXCbrcX6XuhUEBHRwcikQji8Tief/55ZDIZKIqCt99+G9lsFtFoFPF4vO2MzUrhRukyYzKZ0N3dTf8mDTw6OzvR3d2Na665Bvv27cOTTz6JM2fOwGw2w2q1wmKx0JuTTCJkQRePx4sm3uXe87QcZC/SVCoFWZbhdrtx4YUX4tprr0VPTw+NEAmCgFtvvRWxWAyzs7NYv349nfTC4TDe9773wWq1QhAEWhdE0oscDge2b99Ot445d+4cYrEYTpw4gfXr12NwcBD79u1b4IEjDWrYv0shSRLcbveCrXo4qw+9jgLn9dTlcqGvrw8f/OAH8eqrr+Kpp57C6OgoHA4HnWRIJgOB3MfEkULqwPXjkc8utqBjU/vKLWyJ/pOIZS6XQyKRQC6Xg91uRzAYxC233IL+/n4MDg7SGrBCoYBcLod//ud/xu/93u8hEAjAYrEgHA7j/e9/P2w2G/UCk++Wy+WojiqKApPJhH379uHAgQNIJBK44oorcPHFF9Ou10bfRy+/EaIowul0Nt0Bx2k+5XS0t7cXV111FdXRc+fOwWq1wul0wmq1IpFI0IZBwHv3YDQahcvlgsPhKKlflRhcleoxgUQwSWf4QqEAp9OJ/v5+3HzzzRgYGMCaNWuojl5++eWIRqN49dVXcc0118DlckEURUQiEVxxxRWw2+0L5tF8Pg+73Y6LLrqIzqOnTp3CE088geeffx5/+qd/il27diGfzy+I7NSioy6Xa9HrxGl/2G2KIpEI/vZv/xZPPPEEPvrRj+Lee+9Fd3d3VZFE0iCz2aTTaSSTSfzmN7/Bv/zLv+DkyZM4e/Ysnd/m5ubo+vOnP/0pdVwXCgVYLBbY7Xa6ti8UCrRPjCzL8Hg8SCaTyOVyNF2frPetVisymcyqNUgBwKS1wLffs2cPDh482Gwx6k44HEY0GoUoishkMjhy5Aj27duHY8eO4dSpUwBAt1cxmUzw+/20AUE6nYbb7V42L6V+IpJlmXpMSf1JJpOB0+mEzWbDtddeSyeiu+66C7FYbEHHXUIwGIQkSZiamlq05sXoeIfDgc7OTkQiEXR3d2N+fh5//dd/jdtuuw0DAwNVf1er1YpNmza1/GK3lfWglWVbTpLJJCKRCIDzE9Obb76J3/72tzh27BidlMgm8sD5rpmklllVVbrnIFBZ/ZlRPbV+gUgMULKdColK5vN5JJNJOBwOiKKI66+/Hl6vF5lMBrfeemvR4lsf/XjzzTcRCAQW1adSC3CbzYbe3l44nU7qlPrFL34Bq9WKrq6usuc0wmKxYN26dS2/2G1lPWhl2ZYToqNkjnrjjTewf/9+HD9+HKdPn4aqqnQeBYDOzk4oioJgMIhYLIZAIFCy8ZGR/i2mo+Q14D0dJal+siwjnU7D5XLBbDbjmmuuoR3rP/zhD1PHrZGOGmH0mXI6unbtWprRYDKZcODAAaTTafj9/rLjGGGxWLB27VrDfhGtRCvrwWqJMttsNvT09OCmm27ClVdeiQsuuAA7duxYkBLOZtO99NJLNNLaDMLhMI4ePYoTJ07g17/+NV599VUkk0k65xpBjMpqd9pgIc4lck0kSaKOpXam1LOOR0obiNfrpd3tJEnCunXrcOmll9L0h3w+jyeeeILWqD3yyCO46KKLcOTIEWQyGUSjUdjtdsiyTNOa2IWvkeIQjyqpC8vlcpBlmb6ezWZpUyFFUWCxWLB582aYzWb84R/+IY2U9vX10XOSetFSaVDz8/MYHh5GNBpFOp0ueT1KHe9yuWC32+Hz+TA6Oor/9t/+G06fPo01a9agr6+vqBGL0TlIRHbt2rWwWCwQRXHJXYA5qwMShVBVFV1dXVi3bh12795NF8K5XA6PPvoorFYrBgcH8cgjj+Diiy/GwYMHkUqlaL0bcH7Cstls9B7V15MRyERNMgcymQyt1wTea/IFgNaIXXDBBbBYLPjMZz4DRVGgKAr6+/uLakLNZjPdBkY/5pYtW/Diiy8iEAiUXWSWWkT5/X7asVjTNBw6dAi/+tWvsH37dnR2di66+CKG+5o1a+iiudIu5ZzVDaujkiRh7dq12LNnD9XRTCaDRx99FBaLBVarFc888wyuvvpqHDlyBIqiIBQKFTXbMurITlJ/WacOWXySLpiFQoG+ns1mkc/nIYoi3WOV6OhnP/tZqKpK51HyPCD13KV01Aijz5TSNZ/Pt0CnXnrpJdpxuxIdNZlM6OvrgyRJdM3B4SwGaTT2ve99D//6r/+Kjo4OrF+/HsPDw9i5cydOnTqFUCiEQqGAubk5zM3N4ezZsxBFEfl8Hvfee2/dalNJr5ZCoYCxsTEcOXIE+/fvx+TkJN5++226Fq8E1pisFXbdTraVTCQSDcuGbDV4pLTBkLpMi8UCRVHoQ54sQrPZLJ0IRVFEoVBAJBLBCy+8gFAoBFEUMTo6isOHD9OmJeS8hGQySX8niz3SnZYsbknzhA0bNuCCCy7Av//7v8Nut2PXrl34xCc+UTTxk/MAxWmDJHqrNwz1x5RCr3RkO5xwOIyrrroKDocDd911F372s5/B4XBgy5Yt+NrXvgaPx7PgXB6Ph3p/e3p6VmRDo1bWg1aWbbnR6yhJwY/H43C73chkMgCKdYKk201PT0MQBDrZzc3NFTUjIZBUfXIeku5Dmh2QhbAkSdiyZQt27tyJH/zgB9i6dSu2bNmCK6+8smxU0WQyobOzk9ay6GEn00pqrVnPttlsxtatW4sanr322mt47rnnMDc3h49+9KO0xoaN4pBtL4Dz0Suuo8tLK8u23BjNoyTLx2w2Ux0F3ttKLB6PY9++fZienobJZCrSURI5ZefRVCpFGwgJggCHw0GdMCSFX5KkIh198MEHsWXLFmzbtg1XXnllUXaOUUSzo6ODpvUuFfb8FosFF1544YLxnnrqKbz88su4+eabDR21DoeDyrxcnf8bTSvrwWqJlBJYh44++seuL0maq6qqsNls+O53v4s1a9bQz4qiSNecgiBg3bp12LJli+EcMjY2hmPHjtF9jh0OB8LhMEZGRiDLMk6fPo39+/djZmYG0Wi0ZVJlRVGEKIo082g5ngmtDI+UtghkEiO/E4hHU7/QJPuc3nDDDTSikkgkoGka9TJls1k8/PDD+N3f/d2iiVUURbz99tuIRCIQBAHf/va3i5qOqKqKc+fO4bXXXsP4+Dj6+vqwd+9eapAC7z049FFJstF2qRpN0i2sXH2A0dYTnZ2dGBgYgMViwY9+9CM8+eST6OvrQzAYhCzLOHjwID784Q/Tz7vdbvT29kKSpBW5yOW0HkY6ajKZ4PP5ACzUUeD89hVXXHEFLBYLbU5mMpmQSCQwPz9fFOkEQLMTTCYT3nnnHUSjUbr1RSgUop1x0+k0Tpw4gZGRETgcDtx2223Yu3cvzVYg6NN0SSdvr9eLZDJpOAEcPnwYNpsNW7duNbwOpdIC2WZI6XQab7/9NqxWK973vvfh5z//OU6cOIEPfOADdEyn04murq6i68rhLIVSOlpqHgXOz7Ef+MAHYLFYEIvFYDabYTabkUwmqY4+9NBDdB4l/R0EQcDx48cRjUbR19eHf/mXf6GGpNfrRSgUwrvvvovR0VG43W7cfvvtuOyyy2gZQCk0TUM4HC7pFNI0DW+88QbsdjsuvPBCw/eNXhMEAT09PYa6u2vXLrz55psYGxvDRRddRF93OBzo6uqii2IOZzkgc5FR1I99je3TAAB/9md/Rucz4HyWIdkX1eVy0dpwh8MBRVGok9dkMiGTySCdTtNdLEj0lW2MSda0lRqktXbULwdrlJPvSbKeiJOsVQzmRsKfPisAi8WCnp4eAMA777yD7u5umM1mjI6Ooru7G729vdi7dy/OnDlT5OkktZSyLGN8fBzA+VqyaDSKPXv2wO/3Y2ZmBpqmwePxYOvWrbjiiisALNwSgrxWKkWYRVVV2O12aJpWURoEe34S4TGZTLj44otx3333Ye/evbjkkkvwwgsvYPfu3S1fd8ZZfVitVqqjv/3tb7F3714EAgF0dXVhYGCA3uP5fJ4am2azGZIkUR2dn5/H3NwcJicnaeTUZrNhdnYWwPmoytDQEOx2O/r7+yuWjU29ZyF6Violr1SqIJsSSOpovV4v3G43uru7MTw8zFNxOS0HO48++OCD+OQnP4menh7kcjn09PRAkiTs2rUL8Xi8aN9hm82G4eFhyLKMubk53HTTTXTbFbKYJE4ikvJvt9vpHKhfXBotNkvVt1aj52w2Q6m9XLu6uvDxj38cPT09bbt1B2dlw25rRFLm2Y73DocD6XQakUgEfr8fuVwOs7OzNDuCHMfqXqnSmUqph3HIrqU1TSuqS11KjepKh6fvrjDIRvUAaJdMMoGS90iHvVwuB7fbjV/+8pdIJpO46aabcOTIEQDA1q1bab0b6bjZCl3PVjOtrAetLFurweqovl6TZDikUinYbLYiHY1Go7j11lsxNTUFVVURCARo5022Ky6nebSyHrSybK1GOByGxWKhabksJFqRTqepjrpcLjzxxBOIRqO46aabEI/HYbFY6HZI7DzKdbS5tLIerLb03aWyWLNAtoeCkSHHbhW4Wms0WxWevtsmlItAkPfIJEtqRn73d3+XfmZwcBCAcRMEDoezdMrpFanlJlEKIx0lUZfOzk6uoxxOHQgEAiXfIw5aoqNEB2+99Vb6GdJQiesoh1M/FouZkfdLRRa5Mbry4EbpKmPjxo3NFoHD4ZSB6yiH09pwHeVwWp8WSATlVAnPM+FwOBwOh8PhcDgcTtNoiZpSl8tl2F2ukYRCoZo2fefjt48MzR5/ZGQEc3NzTRu/HFxH+fitIEOzx+c6Wp5m//+s9vFbQYZmj891tDTN/r9pBRmaPX4ryNDs8cvqqNYC7N69u9kiNF2G1T5+K8jQ7PFbmVa4Ns2WYbWP3woyNHv8VqYVrk2zZVjt47eCDM0ev5Vp9rVp9vitIEOzx28FGZo9fjl4+i6Hw+FwOBwOh8PhcJoGN0o5HA6Hw+FwOBwOh9M0WsIo/dznPtdsEZouw2ofvxVkaPb4rUwrXJtmy7Dax28FGZo9fivTCtem2TKs9vFbQYZmj9/KNPvaNHv8VpCh2eO3ggzNHr8cLdHoiMPhcDgcDofD4XA4q5OWiJRyOBwOh8PhcDgcDmd10nSj9Mknn8QFF1yA4eFhfOMb32jImOvWrcP27duxc+dO7NmzBwAQDodx/fXXY+PGjbj++usRiUSWdcx7770XwWAQ27Zto6+VGlPTNPyX//JfMDw8jB07duD111+vy/h/9Vd/hf7+fuzcuRM7d+7EE088Qd+77777MDw8jAsuuABPPfXUkscfGxvD1VdfjS1btmDr1q34zne+A6Bx16DU+I28BisVrqNcR7mOtjZcR7mOch1tbVaDjjZbP0vJwHV0Belos9r+apqmybKsDQ0NaadPn9ZyuZy2Y8cO7dixY3Ufd+3atVooFCp67U//9E+1++67T9M0Tbvvvvu0P/uzP1vWMV944QXt0KFD2tatWxcd8/HHH9duvPFGTVVVbd++fdqll15al/G/+tWvat/85jcXfPbYsWPajh07tGw2q505c0YbGhrSZFle0viTk5PaoUOHNE3TtHg8rm3cuFE7duxYw65BqfEbeQ1WIlxHuY5yHW1tuI5yHeU62tqsFh1ttn6WkoHr6MrR0aZGSg8cOIDh4WEMDQ3BYrHgzjvvxGOPPdYUWR577DHcc889AIB77rkHjz766LKe/8orr0QgEKhozMceewx33303TCYT9u7di2g0iqmpqWUfvxSPPfYY7rzzTlitVqxfvx7Dw8M4cODAksbv7e3Frl27AAButxubN2/GxMREw65BqfFLUY9rsBLhOsp1lOtoa8N1lOso19HWZrXoaLP1s5QMpeA62no62lSjdGJiAmvWrKF/DwwMlL14y4XJZMINN9yA3bt343vf+x4AYGZmBr29vQCAnp4ezMzM1F2OUmM28rr83d/9HXbs2IF7772XphPUe/yRkREcPnwYl112WVOuATs+0JxrsFLgOsp1lOtoa8N1lOso19HWZjXraCvoJ8B1FFgZOtr0mtJm8PLLL+P111/Hr3/9a/z93/89XnzxxaL3TSYTTCZTQ2Vqxpif//zncfr0aRw5cgS9vb34r//1v9Z9zGQyiTvuuAP3338/PB5P0XuNuAb68ZtxDTiLw3X0PFxHuY62KlxHz8N1lOtoq9JqOtoM/QS4jq4kHW2qUdrf34+xsTH69/j4OPr7+xsyLgAEg0HcfvvtOHDgALq7u2nIfGpqCsFgsO5ylBqzUdelu7sboihCEAT84R/+IQ3Z12v8QqGAO+64A5/61Kfwe7/3e1SGRl2DUuM38hqsNLiOch3lOtracB3lOsp1tLVZzTrabP0kMnAdXRk62lSj9JJLLsHJkydx9uxZ5PN5PPTQQ7jtttvqOmYqlUIikaC//8d//Ae2bduG2267DQ8++CAA4MEHH8SHP/zhusoBoOSYt912G374wx9C0zTs378fXq+Xhv2XEzZv/ec//zntVnbbbbfhoYceQi6Xw9mzZ3Hy5ElceumlSxpL0zR85jOfwebNm/HlL3+Zvt6oa1Bq/EZeg5UI11Guo1xHWxuuo1xHuY62NqtZR5utnwDXUWAF6WjjeysV8/jjj2sbN27UhoaGtK9//et1H+/06dPajh07tB07dmhbtmyhY87NzWnXXHONNjw8rF177bXa/Pz8so575513aj09PZokSVp/f7/2/e9/v+SYqqpqf/zHf6wNDQ1p27Zt01577bW6jH/XXXdp27Zt07Zv367deuut2uTkJP3817/+dW1oaEjbtGmT9sQTTyx5/JdeekkDoG3fvl276KKLtIsuukh7/PHHG3YNSo3fyGuwUuE6ynWU62hrw3WU6yjX0dZmNehos/WzlAxcR1eOjpo0TdOaZxJzOBwOh8PhcDgcDmc1syobHXE4HA6Hw+FwOBwOpzXgRimHw+FwOBwOh8PhcJoGN0o5HA6Hw+FwOBwOh9M0uFHK4XA4HA6Hw+FwOJymwY1SDofD4XA4HA6Hw+E0DW6UcjgcDofD4XA4HA6naXCjlMPhcDgcDofD4XA4TYMbpRwOh8PhcDgcDofDaRr/P1YhO+UPMHXIAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "filenames": { "image/png": "/sdf/home/l/ldomine/lartpc_mlreco3d_tutorials/book/_build/jupyter_execute/Prerequisites/Python-04-ScientificPython_7_0.png" } }, "output_type": "display_data" } ], "source": [ "fig,axes=plt.subplots(1,data.shape[2],figsize=(16,8),facecolor='w')\n", "for ch in range(data.shape[2]):\n", " axes[ch].imshow(data[:,:,ch],cmap='gray')\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "116facf8", "metadata": {}, "source": [ "If you miss `ROOT` and in particular a _typical HEP color scale_ (i.e. dark blue, cyan, green, yellow, dark red respecitvely for increasing intensity), probably the easiest is to use `cmap='jet'`." ] }, { "cell_type": "code", "execution_count": 5, "id": "2e6d6486", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6UAAAFmCAYAAACVwjx1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydeVjV1faH3y0gIAJeUDBBxQET59TEUn9ynTXHLM3UslLTstLsZmolVlp207Qsx1KvpplpOc9euOpNTE1zTFQgwASDK5OAcNy/P/b5cg6IiYqcA+73ec5zpu+wUT6svfZaey0hpZRoNBqNRqPRaDQajUZjA8rZegAajUaj0Wg0Go1Go7l/0U6pRqPRaDQajUaj0WhshnZKNRqNRqPRaDQajUZjM7RTqtFoNBqNRqPRaDQam6GdUo1Go9FoNBqNRqPR2AztlGo0Go1Go9FoNBqNxmbcE6d027ZtPPjgg9StW5ePPvroXtxCo9HcBVqjGo19ozWq0dg3WqMaTfEiirtPqclkol69euzcuRN/f38efvhhVq1aRYMGDYrzNhqN5g7RGtVo7ButUY3GvtEa1WiKn2KPlB48eJC6detSu3Ztypcvz1NPPcX69euL+zYajeYO0RrVaOwbrVGNxr7RGtVoih/H4r5gfHw81atXz3vv7+9PRETEX55TQQgqFfdANJpSxhXgavEmLhSK1qhGc2dcQWtUo7FnrmC/GhWiAmiVau57riDl1UK/KXantKgsXLiQhQsXAlAeGGmrgWg0dsJCWw+gAFqjGk1+tEY1GvvGnjWqVarRwF+ptNjTd/38/IiNjc17HxcXh5+f3w3HjRw5kkOHDnHo0CEqFPcgSgmhs+FxwMvWA9HcV2iNFh2tUY0t0BotOlqjGltwJxrlvlUpgAfgZOtBaOycYndKH374YSIjI4mKiuLatWt8++239O7du7hvU+qpC3R97UeaDIPhbjAcZVR9gdedIcB8TLD582fNz9rwau4WrdGioTWqsRVao0VDa1RjK7RGi4oTSpE+QGMgCGgOhELlUPXsEgpMMR/na4tBauyEYk/fdXR0ZO7cuXTt2hWTycTzzz9Pw4YNi/s2pZ40YI1LXwgCJ0fwnwQjJ8FnbmN4FVW9rRbRPMq/6D75EmyBoKNK3hFApu2GrinlaI0WDa1Rja3QGi0aWqMaW6E1WlQcgVaAK7RuwMKfhjIicQWzfCHzT/MhWTC5A7yx+31mireBMOAIkGqjMWtsRbG3hLkTqglx32TZ+6EMYTAQ3B54EwJ6nCYmvD6D2n/NBD6i6ReRkAKXJ1XkH3zMsojRdAlez/YpfTn1nkqC2Gq+XjLasJYVFgIXbS/HQrkfNRoEdG4GTIU6vU9wIbyh1uh9jtaofVCYRgN6azuqsW+NClGN+2dPqROQAwTAkGHI9gI+hmmRKqPBtxfM2/As1fiDPgN2kLoB1mXDsJaQswvKV0oBdgJnzNfRlB0WIuXFQr8p9vRdTeG4otKIRtSHV6tDcA94J2wiYqdkOIuRSwXPiRfYJCIJHQOhk2GhSCdEvIScIRjKckQ9iZS18Q+G4V4w0FknOmg0xUU+jVaDzo3gg1/GI37SGtVo7IHCNDr1lzcRe4um0WEsyafREV1gRButUY2m+HBCJch3AoIJkk2QRwWhI2BpJDjJMVQdLhEbp/CSCKCveASxZgqevSSJcgy4wbRKIL/zhLf6o1J+A2z482hKEptV371fGAD8AEyoBkkJcOoMNOgBLTbv5cjmtshWAoJg6RlIIP96UA4QD6RuAX+xFjlX4JCQzvoDvenpt4fMZHjcGT7P1utIGs2dcjONPrp5Nz/t7oCsLKAGLI29M436AdFY1o01Gs3tcTONBm8O4+D29si6AuqpSe/NNHp1B1QX65FzBSI+kx8P9KHPczuQG9QOt+iS/7E0mjKEFyrnoCYQDJUCqfm/M2wWQXwGTEmCci9LEDOA0BtP/z6UCaIBE5DI7wQ7B4B8USCGSVh6FTiISuvVlGW0U3qP+cF44QDeXSFrsxeuKZFkuXoRlHmEeTzLaMdlDHgOkjPgGyxpREadslnZ6rXjGDAdrYgYI0mMdweRjoc3NL+osu+tDXEQcLpEfkKNpnRTUKM5mz1xz4gk3b0KzdP2sa1je7p5hvP4GDiSDfuxaK0oGjV2xRR0SLVGNZqi8Vd2tGnmAdbQkye9NvH4UKXRCCC3wDU+zlAaDRgD8qgrYrgkZXF5PKrl0KQWhEWpParajmo0d0Iy4AohQzj97wACMmJwqafcz7rA715VCFsVzPJVQ/lKvAlM50armACEIgbsZYA8T7wYhpwvEN9LSHdFLfHGFzjHA733tOygndJ7gAcwzgtEEJAN9INek75j09onoTNQCVZm9qUBpxjDF7xUeyksgLcHT+L96R/y62TYaL5WDmr/aSQQ7AlcgJ+aNsNnThpyroDT0D0Xuruo767uUQUfUtPB16Qk3t0Z3N3g82T1Z6O7+XrnSvafRaOxG/JpNAOl0Xe/Y9P6J6EXUAl2pz1KY47zPF/TvV0YfAPT+49j8ojZbF2sFoJAabQxEINFowebNsbnizTkfEH/7dA/G8gCHCFptzov16TSERNQmvTz0hrVaAxu0OiTZju6/kklkEqwI7MdzTjK83zNgCYbYRm8P/AN3v5hJjnPwecp6lr9UM04dgL+LYFI+Cm4GZ4LriGnCTgBr6YAnsBFuLoFXJ2VRo+kwK+oVHx3N5ifbNGs1qjm/sYVaKJeVu7O2cvVSRZv8a2wHBH6MspATrnM9fcu04SDXPd6hZZJezkiAoF5VtdrAwGd4QPYkvEgg4F5o+A72YsveJkkmnHi5AhwkZAloBmQ+ytKkamokE4uynHVeUmlEe2U3gMaA8INSAK5H8ptlAzia+TfBGKUZGP/jvSst4ewSPgHXfjRAbwvQvmkFD7wnE6idGeSdzoAojekLnZipcMXzKcFp7c3h6+AOHAPTaSe229kUoHT8Q0g14EuNbfQjKPMiAgl5D3UMm8G4Kic262oJAtX2/zTaDR2gbVG2Q1ir+QF5iKF0ujuxx6lsviJVUB/BvAZUOt3cM9IZFLLT0mf60D31tchBWgDOXPhdc8ZtOZRjmxuC3OAMyBGSVyeSgYgK84LKmXR3W8L7djLxD2z6f0ukAiRkSC0RjWaPPJpNBzETskQFiFdzRrt8yiXxU8sB3obGr0ArilJvJP4CXFXvHn94WTkBRCr4OcujfiRCXxCXY6tbg0jgMUgekpoBLgDlYBB0P67bXRiF28fmknwx+bFpuMgI1Ud0W1ojWo0aumoPjxRCzlaECpUEaPQYRC6FEIHgVgr4YvVQBDMboIMEqzoCr1EOw4fB9FYwreQNNAVr8gsGAHThiiX0lj4TRCbCGETAP3Nnw0AGqwDqgMuIJZJ+EQCu1AOarL5SL1xpjShq+/eA3yBwc6QnVURnzlppI9ywK33dZK3u+C9ORP5pWDRFksSgitqT0vnYJh34FlearcUr7B4kuf6QS54jrlEJ+ddzGUMVVelQCxwCLVMmwV4A61RM1ofmNf+Wb7kZU7ENCOw5il+yW6O2/DrsAPmJaot4xEl/q+iuRX2XDWwrGo0N8sF7y8yuT5IINqgJr9REtlb8FmixaxZa3TRgSGM7LycoJ1HOP1Vc4gD+oJ/00gmMY2HOApAA9MpPBJykC7wPy8XzlOX33iQK1TiM14hMqIpXIKafc5wJiMIl1HAIVh0BvzRGrVHtEZLjoJ2NHO4wKU3pO5wwvPANTK6CuZnWLa7OKJ0OhDYIIcwsvtyam49Q8xX9eFt4NJV4DiqX2IyFnUnmM80Jq9pqDhoAuAOzWrBpizSK7vh1vs6HNV21J6xZ42Wveq7HjDkdWRLwayx8HoPEM0la9/vQU2xlf7yNDFiBxatATSGsf2ZM1uQhrKrSdx9xkFj4HEvqJF0ljgRAMwyf6PratsfN6++q53Se0AIEPIuiHqS84MfoGrFS8RnwBT5Fb4k0EdMytsDOtpZnePREs7sq0nQ6mj4ER5ZtYc9GR1xmQAJX6i0IwPrvTKu5ocHauXWHWVa/X2AQRAzuwoDWMPBmEdZXnMQQ4LWAhB3Blwd4HPTvfyX0NwO9mxMy7pG3cQl4oCFcjbVuMjfxMf59nbXBXoPgjMraxK0NhrmQs1/n+FbnqL1lmOwAbVI5IgSqAvgYH52A6oBNYAHgHrqsxwP2Ov5CD/Ql7nxr0KcCwuDhzIiaAUAW89A92oQWvjfbo0N0BotOUKwaPT04ADq147hVBR8KBcSQBR/Ex8CSnK9UPGRET0gfrMX/uuToC+oFaMELE5ojvm54I5TI+ZpqD4Hi6PqjnKRO8N8WPriQJ4N+o7UKEjN1nbU3rBnjZY9p9SP3XIJP4mfmDwExAkJcSCrCmgDYsFy1MaWHKAN0BmOgjwumDb03sQvOwFtl8OEIaF8LEaZ730aVQ1CYx9op7REaQNMk1vxJYHVvsOYlQjdgIbnriPdy7HWFxJRE93OQ2DV8j48/cWP0BbONq1OYMc4wvaoaoB/tX3bqZDPDPPpizLWHoCvJzjNg5BBWwn/rRvSXcBDkJMN01LUMX7ogg62xp6NaZnWaNdhzNihYiNN4zKRV135rJ46LgDoPRzWL+pC3wXboS6s7NiXQYvXwwrU3DYXMCalDlavjfdg2SjhiArU1ELthwlS73PcYKXnAIbFrIA/nbhWV+BUD+ISYTFao/aC1mjJUVCjs3aoCWfT6GvIa+WZUc9qwagXbNvQnu7jwmB2AsoZNZzPOPNzJjdOg43oqLU1NcRqOK5GVVE/890CYK53XnZF5BlVoFBr1D6wZ42WOac0JBT5p4BkEB0krAiFuqFMOScIHQZi6UJU5sE4QuVbTGn8MZ+dyB83vVe4AhNOg8Pf0rleVQAfW32jo6e25eZOqd5TWsx4AZ0/gS7buyG/EixKVL/+DZ6EchWvwhfQ3wcIgm1h7RHrw/DMvoQMFvAkbIhURa9zUaYyl5v/JxW2ypSM+hMQj8VBTU0Bj6chbFZ35HYoL1OYnzCK5zuuovseVcRB1y7T3C8U1OjqHUpnTdqAS8Wr8L4q3RDSEvb93Byx9jCclyS+6E6VKekw2XwhEzc6oQUjJgXfZwO/AxdRKfjVgLbgFAzP+nzHE1W/57Oar1I+XDIz4SVerzeP7pFao5r7i8I0mgk06QdOFTNhrJpavtoBft7dCDHzuPog6ypqJ5oRHbWegBqW1NoJzbF6zrU6zvp7I2qaar52GozxodxsycTId5ne9n2679ca1dxveDDo318zTUAL2R7EIvVxI+AcHFsSCEtHQHQO8h/lmCUKbQRzz8gEQoMg0aEilU9IaNQG1VamYJaExp7QTmkxM8wZ1o/vwiC+JqKbiojWB2gP18PclK1cB8JFUjHjMrKSINJF1R8zTF9agWtam8q/wnBgDTOaibq/IyoVKuEQ5HjDtWGe1Flygm92P83ux3oR/DusPnFjoW2NpizSC9g0vgMDWEZcN7WXpS5AF8gK84IoCFkHooHEKSmVzG4Cl6FYAi+Go5lb4BluLtKCjqsJ5aBmoNJ+w9XA3FpeZ6LbbDq130WriONsP9uV7SF9CTb3ZvyuOP4BNBo7ZyDKjhoajQbagyoqts8DEuHVdSB8JAxCiTjrV27sY2i9dJuJcjYLyzEq7HNH88OwyF7kK79yLoYPxTtslL04/lgrgh3g2IZA0kQku+7op9ZoShOjGCrc8AOain8DUwHXPBv4Cf9AjhdMCyhZZ7Qgn5tgRyPBp3ItW8XTwEobjkZzK8rZegBlCT/Aoxr0Pb+NlYkvkIwyY94AB4BoGDh/KSJLEtfCm2Q/HzaEKDNqmM6CSQWOVo9bYX2MEWk1nNNdWHqZnloK54c2woQjfTevhBrQy02lH2k0ZZ1EoFf8ZlYnDiMZ5ZAOrIZyEs/BsO1fIqpJzj5YnWvPeOISYj4pixsdUWMlqKgiLYjhoF4AVgFr1L2apZwgOtiHXQmd6BG2FsbffDqt0ZQlXFF2qm/MJlakKI12AtoaKzJxZo0ekfCn+bNDG1B1q8GSqnunGJbTyM03Pks1j85wTiOB05wQD9Ng82GYDE0XRBJ9F3fWaEoHruBfgavAr7I/qh61K1AX2qojXhQjCZ1pH3Vv9wPjRH+c/vSGqpPRs137RTulxUg8cDURXCr/D0YpJ7AVyoTRDAiF784/g5wlOCWS+SZFBU5v13xam8qbUXBXDCgTegb1pyNqBYR17c4pGvD05q+oUE2Xt9fcH/gAnpWvwHDVD3iAFyoNtwYQCiuTBiOnCQIqxamygA4oh/V2KIpIrY/NQDm+O4Cl4BQJNRMv87tvDbaGP87w4Z/nFTXTaMoyRjyzYuUrOA1VGm3RBpiO2o/yBix7cjQubyTDB8C3Sylank9RI6QFPzPSfTNRRVtSUZNaJ9Ry705OCz+eCF6OnHRjppNGU/bIhG5KEUNXf4+qQ90ceBz5pGpSam/ZAvuB9ZU9afTHz+gkUftFO6XFSBBQoSW4e6oeo44oh7TJEhDNJGRJ1tZ5jJ3mdjBGNmDBR3FhHcwxzGo0qii+ExC5A86Oasaq+KfZebYto5tBaH143bkYB6HR2Bm1fMDdOQ2qweRPQHgD74KoKyFdstn7MYgAp/rmE7KxpO2auDcidTFfOwOVVbEU+B38EpP5qX0zvlo/hhOyPa83g9A2am6u0ZRFvADf+lDRzazR11CFwd4E8TepMhbaQlaIFxxahHISU8nvSBqvrSOddxqzKVgEKQ01HTfSI+KBONaKIexKaksPWYVXHCC02h3eTqOxe1w5sagOMfk+68xP8iHm+dloSEUgAlgnWkHdV9FLvPaJdkqLkXMAKZCWUhFiVTpvrakg3CV9Oq6ivdzOU0nfquJD5nMKi5LeKhvwdtJ5rY81zHICyjEFiFoA8r+udDm2F4ZDwhmIvN2okEZTSnAC8IK0bHfYAiwAPgHxgGRQx695RP6bLuf/o0p/Qv4IqfWqUXGL1BoTcBT4AUiG4ORj/NinK92/CYNhgKc5+0KjKYOkAbjAlZRKsAUi5gCBIMpJOAG8AYwFjkaZj86lZBLbjQiqkWCcbPX6CBBHl3Z7qTnnMt5zIEG3ctKUWTKpk3HBapkngB2yHdvEMRJsOKqi8A3wU2QzIBi9Icb+0E5pMeIHkAsVKmZCLRjSD0QLyZv9p/Ivl6cJW9GdnO89aLLu5ms0BeenxR09Na6ZgFrfzQWSBsHhpg1o/PJBfAMhwNzGwgOdea8pWzgCSZHmSGlroB8IZ8mbj03lU/EC/13RERYLcpYUOKng416Tgco32gAiA/ok7qD/4BUEvHYaLliSFbVGNWWNmgBu5oyj1hD8MoiaEi5BlwnrVX81TmFxEK25mbW8lzuyM1HOcQTsi0L0vQaJlrhsc/NDoyk7eOF6Tqo5bwAslLs5J/bZeExFx1ccg7AQzCUONXaEdkqLEcM8Ju/yI3WVE+7LE6n52Bk+qBTKhmyIGgovvDiXJ/otJ7DAuSU11zVSeTNRe0xdgVwTNK93GgdMZBwvh7cvDJb+DEYnOGjKFoYDFxcRSOoqJ7ynxxHU9QijRKgqULIc2n+4jdaee9Xm06KI8l6sHIEllfc4kA3zGE3M+QchHF6vDn+XrbRGNWWKPDfTEy6H1yB1lROu05JgHwx4bRm7EjpBpzjz0ZkU/tufU8ijMIpyzK1GauwgdUUtFcVDIyeSp7rg/yT8n3yE3j3MC9YaTZkhE4Yoe7o3uAVpYoXdR0itWQbIFQJV51tbUHtC7/YtRqKBpSfgy67D8HznGtSFtH0+bEhR4t0FLK7xCgyH1QXO/at+pPfiP8kww0dQSQwJkXB0xyN4d4wjqYU/gQ/HEUHJNDnWaEqKVGCdCZYGD8RzxjXwh6SV/mwAetcCMiDsje7wlPngorR7uRcCNa6ZCOwBqkEVh3RW1umHiLmGbFye9gMOchitUU3ZIQe1DWbpFli4eSieU6/BPmi7cye7TJ24XtUN+BcqwhFs07FalnghXx/T9AC8v8lEego6PPwTvx6yv6IvGs3dkQknInAFjosjpbI/77TFUFue5ILohUpL0k0R7QEdKS1GclETxNFRy+BHOPxsA7YuVt8ZE8fPYmHpFPKtKt1qa9rN7nUnwRnr6zmhZJgAuDoDQ+HvDv/mzIaaRB66seObRlPaMTT67NHv4Fs4O7g6G7ZAd09UZDQXFZ0cjYpUGthq+S4bFSk9AZigX8Z6AGI2V2HrGj3Z1ZQ9DI2OSFwBK4DFObiTRvJTfqgKYKAs11IKX5JxKuRRGEU5pigY7WOMa0TAEEn8Ii/WHrI0qtFoyhan6X2BUhUhtSYHOD+mEappo3ZI7QXtlBYTTqh5a3Ogca2DcAWmM4lWDirJKNPqOFuvKhWs1/Kr+XVSEny/eCiPsZnANnofjKbs4YiKrzRr9hNcgYl8SO9q4NTI6qCMws+9bYorrTcFCAeSwCUFttbsTP2UM3Svf6sTNZrShZEU2xgI9glT6UffOrF1++Pw/VqU9cxEOaP2UKTEaNSUCrijxqbSeP1XJ9E/UNUm02jKHIuHsaG2rQdxd0z7ArrL/ejSgfaDdkqLkTZAyHY4sflhfoptxtpxQ/A+evM+pHezj7Q4zjUSj9Kwqrj7HgQQRWq4E02AXtiH6ddoioMgIGQ3HNvdmtNRAax9bghZZwE38wEFK0/bSqQO5geoarwXgdNANnRLDCfrz79x4XTVvNqfGk1ZwBFlczrvg4PPtafilcvwFjAElLPnRP49oLbcgeRK/ihrLpb9afvhKcg4Xg7f9TDhXZsMUKO5R/RCthAcsfUw7pIcYAIzUEtHutGaPaCd0mKiOdC2FpRvkcLhxxpQQRxj4adDcaiSTnvMBYWwvwmkEciJBlJN8Gss7D7Ri4ccfsHLU6Ue2duYNZo7Idj8EA9mcrpjAFEihuVLnsD1gARPlENaUhXHiorhmCahtr2YmV1nFK2JYLibLtOgKTs0AQK7QPn6KTAchrktgbnAnwmooiQ5WH7jjbRZe8HoPA4qchpHxaMmcp6BRe/ZcFgaTbHiAUdbMO0hW4+jeDglDsI5d0pvInLZQjulxUQCwBbI2edB84dOcwQYVmkFpmMV89Z2Mym5jmpFxVhzTkZFTB0B3oUL5xvg9BoE2HBsGk1xkgD47gZOuPCgdwwJwJCQtUR39AFn80HONz/fJphQfzRMwO+oiCnQiw1cXlaDCqPs6++JRnM3XAWYDznDPejTZhVX+Bt8C/kLCoH6rb9ZDlJJYVjPTCyJx8aKVhpwHFqD02tao5qyhDsyS5SZYEUCIE+WA0JsPBINaKe02PADOtbfyPt93mDrUWWqwlJgRVcVbTTMpz2l21lvectFRUs9gKs7ILTOW7wzdaKOwmjKDK5A1w4/MqPrKyxONu8iyYCaD12GMyiH1F4CLybzw5pE8qKltWMvEfTsET7+ZIzWqKZMMADoPx461toIY6ESV9hOV9gXBmxE1aw3LKkjtnf1Cm4aNxxUV/PzVSCOV6bOoLENRqfR3BuCOdza1mMoZqYAbUNsPQoN2iktFroDnavBnu09eXvFTCJRzl0CKgJp6/Xcm2GdqWjsMc0E4jNgyv6P+eDYdHp3sL3p12julu7AAC/YEd6HN2fOJROrLABH7C9Cao11OvFxVMTUAd7gEyYc+5zRPjYal0ZTjDR4ETKmlWPP1J4EtVe71S5/UQNlSY3+TEa+EdhXnr01hmOaBiQwd/WbtNBFyTRlAg8Wyn+WuarvoUehz95V6Nmu7dFOaTEQDTANqKiejUq8hjNqpOzaqwkFSz3DvMrAo4BLwHRVCVFLVVOaiQbEDKAyyOnq9znIE0tBoQwKj07aEyZUtDRSvX3C9D38CCxRDrbWqKY0s3QBuC2+DuegMce5hjN8AKrAkZFjZF1UyF7SGgysix45oiyqB4wBNqhCiK5onWpKM4705Ue7DbTcDbWIRpVZ09gS7ZQWE3OGjcSrdTwbzqjC8AUNT06BZ3vDGG805jEmwgtd5/Jo8G56T4LJ1VR6lUZTGnEE5gwfSVDDIyxONmvUC4sjas8rRtZkoFKNTeCRlIPnW5do0WMvw8bD5A4QGmzrAWo0d4Yf8M7LE6Ey1OE8p2gAl66Sv6mavWNdfMnccO1PaBx4kM5vwoQOMLmNDYen0dwVHlRKSbf1IO4J/cUk5O9NoVkoeunIdmin9C6wXhONIJjnHJbk1d+zdj5Lw3zXWINOM79PTYHFY1+hHXsRNSSL4ofQoIcNB6jR3AGGRj2AvbRjKMtJw1wuxdhDam8Bl78iA/iFvIJHO507k0kFhLtk1u7RMNOWg9Nobh9Do3WBlQyG+pCJK8cTGmOJklofac9YjzEXOAf8ygnhhvjdrNEZNhqaRnPXJJPk6WnrQdwTdgGhNUAGCmCyrYdz36Kd0rtgnJvaq+YN+JLAG3ySty+zuPeS5hZ4wN3Npws7zxjvaSA6G+LmwAeVQpGNBCN3L+fI5iB6Aa87645OmtKBoVEnIIBoxmXMBsy/v44UbwuYggItzmsaOAN/AHOA/fBw1AlOJrfgqylPM37OlxxrE0gbSsf0XaMBi0ZjgE7sgraQhjvXT7gBEZSepFejGq8jllr2Xqjp7n749jDjhdJoCCqdV9tRTenAw/yoSdXEFFsP5p4ybQ3I2QIqhaIbrpU8pSGIZ7d8mqHSAF/tB7tJo+qJlLzC8EY5hpL8By44F77ZvXMLPBvHWqcYR6B6rzqlgHtXkMcFIlwipwlIBPc5uquTxv7J0+iTsJuruBxSv98ecG/FeTPx345IDYfZActeV+P5ArAGcAPRCJ5LXkX2a+Vp9s1Z5CDB/lV3N3yNpqSwtqPruYqLfzJpuEMcqOVde3dIrUVspO8anzmhfro01OYYf5q9chY5XCDXgWuytqOa0kAq6nc5GA7Yeiz3lhwgdCy4XEkmq5IfKttBU1LoSOldYPT3XPsDqiiDpzJFrljWV+5VZmBh1y1q4MfV6jh3wAe1n6c50ArwR03a483Hn8sAWkPT9gc4Oak2OVPVKq9GY+/kaXSNRaNglb5bnDhyowjv9A+AtYitiy89ANQC3FBVeHegUnqBZ7KXQ31IXe5EYyDoDm+t0ZQkhkZX/2D5zAET/Gm8s/f9pNZ7Xr1QFjXA/Nq6OFMicATmwoVFVZmWNJ7KsmZJD1ajuUNygP3Q0tbjKBkyQ7xRBvxO8xl0lPVO0JHSYsAJSMCHk9Vrk8uFe5LBV/A/qrCi+H+1nmx9DcMpDQaavAyr5vZhLb2JJoCrVMCXBOpwni+PjocvwGedOs+ZbH7hIRqOuVDmSoJryjaGRmOaVcGJyyVbcMxafEX9i2tERwOBF2FC+1AO0YI/qMb/qEQ1LlKZJN7gE6oTS0BGDCZHB3CE/zi0oy172HovfhaN5h7RHPiATmRdccfd06huYDRXM6ybodxbRU8LKtz6fKMWfkErav3eOD6T/I5lwXu4opxPP/P5NVHLuqkoVzsetVs2GRUpTQUOc5wmvF1jJltjb/FjaDR2RTyXqnkCZTuFF1BrSHkb8m4X7ZDeKTpSWgw4ASYcmWbeHJ2KxSTejdd/M+fWSBF2tXpd0GQWfG9tZv2AEeuhqzyPeEAyxvQFAUQziWm8yme4k8YWeiAWSESc5KmkpXAIDh5uz8CUtcxbYYmiajSlAS8gHXdm8BaOmO1NBkpgDnd58YIbvo1rOqCisY5Wr52t7ldwgzhW37lAxr5ylP88BbFL8j1P0JXtfM3zfMEYHuIosVSny4i9BD0Sjeul6/zL4Rk4AD0v7mEfOlKqKV3kTeN+dMKbJGgElihFca2fW1tM63ymgpbWiH4WdG6tV5fqonKGWkHPzlSRDXlffs1e+XfWypG8IP9DbVkD+gZCxWDgcVTLiSb0Tt7B2lhVv0GjKT3kkE15Ww+iZGgDaqaQeosDC8O6n7LmdtCR0mLgKvARb/F//If+KIfNy/zd3SQeWa/l5mJZk20F1KoFdEQZ7ovAHsiJhP0pVm1drJ4NMzzKC95LepMu4TNYSw8eP7aVMEf4FThrPvZRVvEC0L0H5HwL5bdLvlv8LDQDp/+pNV+NpjThBLzDewzhGx7Cysw4Uny9SY10YEdUiq03Kh2hNZCESrX9HYhFLTRb7xW1pgsMnbaQFdtHsLVrCN1OhrNPwH4gHHDiGA3YSn+gexdgLYgoySvDFkM3YA50doad2cX0c2k0JUAYsIcO+KSnUYGrUD8HZfHuZE9pYedYL80ay7qOqMimO8pax6MsqPHeqBBhnG/U1g8CGsMof9bO68HjQ7eyT8Bx4KD5yCZsZSDQuQvwG4hICd2cYBSIHmqXqb22iNNo7nde+m4mCC/U34M7Qav7TtCR0mLgOODXO5kLxxrSv5ZKOLIudnQ7GO23rYP/xprs6E8gSw6gdphEdJWIvhLRSCKeloi3JeVfkcyWK3k2CUZUsziixmNYP2iSdJD/0A45WRAntjJjjZrspqEm6sbjCDBjC8yqBGe7CQ6uaQzRsOmTDtRFJydoShdbgaYdIznx28MM9zI7pRlYIpp3ghFgMaKhJmAuTNgXiugpESaJ8JGIUxKRLRFNJaKKJHhzGAf2NVV7c5ytzvcARoH7pEQu8gDybcFZEU7oD8oZzUX9TTE0GgHM2AEz/OBkW8HevS0gGtbM6ImHp1480pQuzgFVHk+HP+E4jalS8w9UXo8rt29JjeoOjlavQTmbfqil3cZAMIwKho8awNwWENIbaIIKkwSZH9abxL3M33enlTyPPK7s6KwVyo4a+kw2P44As3bALD84FiLYm9kCrsD6A10IuIOfSqOxLZmk427rQZQIT4vx8OMw7L/QWtlCO6XFQBsAE1SsexmG37zoZlEMkFFU3lij9UNVJfyPfB9RVfI2HxDX3hv5gEC+LZBPC2QPgfxSICsJqvEH5WIlYp1k2AUY7KzM6LAO0GDdYd7lPZaJXszab2lbY9yz4DiMBKaNwG/iBPJFQa+1u6kqW+lCR5pSRQBAFFT0v4x4zhz7yCZ/pPR2N4Mbc1UX4E3o9fN3iGOSfzGUpIGuSA+BHCu4/ozgem+BnCWQToIWHOaRiKOIv0uO7QtU2Q7OwCBw6J7O127PK40esjiWhWkULBrdBkSLI8jhggFrN7In4RF639a/kEZje5I2AD3hFA2oRRQqimn9228ssf4VRgVcrJ7dUbtWB0On3lRMr8If8lHkm9WRhwTyC4GcLpAVBHL23xkpd8JHnYEQ83m+5ocf0I3l8gnWipA8O5qKxSG1xnoRaStwThxBvizou3Y71+UjNL/9fyKNxqb8m7/fF0GJXYD8SsBw3bO0JNHpu8WAIdDGbseJn+QFk9VU0oPbz0Z3wmJSnYCBy0FUkTRnHzJGsFXAWgqJwl4Exx3Q+I3xyOrj2fP7I4hpkmez5rH0uZdot2QH7dhLJbGJb6yuX5QEgxxUUtO8h0HuFohxEjlfsGvUbf5wGo2NiAb2RUEzt6Mkf+JC7swscjLA6W5DFW7AShAbzRr9XbBBwAosSX95t9gDjnug8RSl0X2/N6fZjLM0mv8zx+e0ot7wo7zEF1S8G422ttLoOkGbx1UER6MpDcSboFHHnzmXUodnPJdzsH57OHO7kVKjkBEoFfqh9nNWoLncx+H32rGzolrIuWF7zUVw3ALtxo5lgc9YwmUrQkZHwPwElGPrxAvyCwLE2tvWKKiSTQXtaIS2o5pSxCudF7ODr+4LuxK6EWSCQCyeyZ3tLdXcLtopLQZ2AX5bYBOP0ZCTrKEO0ShntSgpdEZxTsPsuqIiO+3SQZyTXAsQHBEwC0sE82aGMBmYEQu+4idkS0GDyYcRdSWsh71vd2EGll0xRcUYVzKwuiOEyWDcMxI5PcqHb7D/gv0ajcG27G40dD7JPII4nQJNbnc/qSEGZ8AT9m1vTrvww1x7ShBm1qjR0a1gnVAj3pOL0qiXOIKsL6g34SjiitLo2X80Y5rV8bc7LGuNuqYkkbncm84HIPSL2/w5NRobEIayowEfJeLwoQmGAG97oDaY3IrCKu7WBDrDsApcm22xo5kU3rXJujbvrETwEweRbQTu6Ymk168AY2Hxw68wi+Kzo2GjfNh4G9fRaGzKrig6D4f9i209kJJhny8Q9jqEhNp6KPcFOn23mPBwAK8vsrgUXpu2bZQJNXa0FAVrw+gBdN4Nruck8mfB4krKWBspQlC4MbRO/Y0GZh2CU34taDT5Z6gLUSeKbkhvVtU3Gni00kHSr7jjvx26F+3H02hsjivgNvM6MYfr072+uWl9uvnLWwViCvk+dYsT7SIOI08IllZS+8eMtVRrjRVMvTU0Gg/MOgNn/ZrRaIpZo5E3nn8zbqXRrPQKUB3ke3pXjKZ08GojqLnjMlSCq7jCsCzMyfdFwKnAsysQDEN8ke2VRsOwVMe3rq9rrVHju1RUddzP9kNaPR+CYo9AJ4g6VHhd3puN6FZ2tMV2FcfVaEoHxxm+6HNbD6LE2AX82L4rup59yaCd0mIiwVzk5JH2eziyLyivtEJRHFPrMgoewMB3QVyWyBzBohHKON5JlmEOMOsiHKnUCiplkS1rFnmLuhcwoR9MXgLj3PIXz5+XAgv9RjChS6g5oUmjsX9yAeZD2xY7iTldRWUxpKIKHRVFpAbOwHTwXHoNiWDeGBX9sEuNtg8l2vsOBqbR2IC1J4DXoOmEAyz7bTT9/b5HlbCGoruBhvVtA1UDkWMEnz1XtFhrYWSiNHqsUguorO2o5n6nMV/tH8NgWw+jBOmzYgcwwNbDuC/QTmkx4QpggnU8Tje28biDmu8WZUO4sZrqDjzuDCFTtzJ94Di2Pnznk12wrPbOSgEZ50rQ4WiGOd/qLDWe0f1A1JGI5zIYmP4d3bDMy9OAETtW8HH8BNWaRqMpBWQCp2JVCm97/kMrIOEit9cSxhGoBsEdwnj7hUlsaG0PGr3G0+krtUY1pR5fgMawjW6wAhwwwXCgUDewsPJfhgLqAr68/8cb7GxtiWzeiU6LS6PajmrKBuegbQ6B2209jpIjdCjQSNh6GPcF2iktJioAMgmqPpzC5d018F5uqaAL+YvSw42rosaxHkchfH03JtaYzWks6bZ30/EoF/i1NdRucRKPLbc+PgeQi4FPJJDApl5P0mCQxaDngMprOupCQpTuxqQpHQQBgZ7g1vY6MeH1qTXf3Lw+ncKjpbkFXpvbx1xYV5WDa9vzvt+H6nxsqVGAZNY/OYgGT2qNako3gQDhyo5SFSIIhtAslHqN6gvWybO5WBxWo9qCE+AHozx4u8ZMjmNpp2Q7jSawqd+TWqOaMoBaplnTped9UYU3jz9tPYD7A+2UFhMRgPCG1OMwo+MrPD3oK4ysOcMg3gxjBbcJ8Gj93czo8wpLY+9+omvNLuBnWjK1w5t4FOF4MQYYJYBa1Nx4hrhVBQ7IAFy0IdWUHiIAJx+zRtu/wosvzlZ7QK2L6jne4rUPtCaC6f3H8dnF2y928lfckUbHAi6+BK45RtyaAgdojWpKGUcAagApEPryBGK+qk9Pv41QuS0W59OYChs5RkbZIuPzIHBswPR541hhD3Z0DODoT+0fTmqNasoA54B4BvTbqGuKaIod7ZQWIzMi4fNseHPsXFatfp7uL6vPvczf/5XhcQWaNIKfXunAmx/PzeshejOcCnncDMMoe03PYgnP0akIP8usVSAPCORrgsOOQXxT4N7UAvzB36cIF9No7IQ8jY6Zy8LNr9G7H/xqpPCaI6F/SW24PKIGE2fOvmXV6TvV6L94puga3SWQzwr2iGZao5pST2NQKz39YMp7H8M5uEIlmA/qtzoXZS2NqKnx2og/OgI5UBUmzpxNIvfGjt6WRvcJ5IuC/4pGWqOaMoA7EAY/fsY/5UJbD6bkqGjrAdwf6JYwxcQRq9db50DP2Wv4eOAYHv1iLpA/GGOs51q3jHAE6AEkAltubkjNiUkM9lTvN6TAmaIOcj/ExAfQpDqsi/3rQzOB0KPgdLSQcQJZvWGM28ccTryzfqwaTUljrdF5X8Czc+cx97EXaCS+giSgGpBtPsCBwveadgHWAD/cPEp6pxrNBQiH6BduQ6MnwOmE1qimbLAY4Kh6BANt5U72be6Mf/9I4hgAfEP+1F3rhkvGZ17QCPih+O3oHWn0qLajmrJEfN6rFWI4chKETrfhcEqA0Jdh6hdanSWBjpTeAyKAjZMHMGHB57TtpT4zoqWFrcQaTmrqdCcYBUn7br5a4AgM2w3lR0jKPynpH6/WrW6V/pMLkALkOoDLrX+Gm10vF1WMorPbDt7lfQIcVEkJjaY0kQAsnfwSryxYTEgXSIgi377RfBjvTbC+RxcYBQn7i1+jACTD9dvUaMHrao1qygK/Anund4HFUIfzMNwbZUHTuLGRiweWWveuEApJB+6RRlNuX6MF0RrVlA0Wc2map60Hcc+JnOsP7EfXyL736EjpPSJhOnSX61j04hB8xYobaqY4on69jV5pjoDHhZy8/5GbVQn0Anp1+A46RgKOiCGShQicKIJB7QgccAKHG6Xliiol4QM09wJRA8iAfZFKirlWxw2bCuNNDahSI51pJr0fRlM6WWvW6LIXB1BTfIdvBuCJ+mU30nmto6UOUB1LaKRoGnW9PY12AA645NNoDpbdc3VREZ7mXmoPO1kQFqsWwrRGNWWJTID20H7SNsKPdVMFjxZ3AtaR3xk1ShhZJeFmQa7JEkst+Pt/VxrtyA0aNXBH1YbwAYK8QPgA2RAWlV+j7miNasoGDzx0hS8Rqu93GcQPGMEi4ICth3JfoCOl94ilwJbw/oz8ajm92yvT6YRKz3FEvfeyOt4JYDIwH7xbF75aYDixT/MNap21AqPbzypSVUFHUClN9SHnDzVxbQyMcoDJK6GdbMR0uYMB8gTlvpSIuhIxWDJR7mDCJDVWV6AbEPxuGAccWrPhojakmtLLOZRGhy1bTUgwyItYVoysHVJDjCZovuA0zAXfDkXVqMftabQZ0Aiuxqr3dYHRqD6HHWUgc+RGBsmjlPtMIoIl4mXJBBnGhNfURNgR6IXWqKZsMKMthIV3hw+gqd9RqBuIuU69+TkHi0U1KvMmwNvg276oGnUtkkaNhSGaAfUhNcq8iAs8C0xeDh1lbd6RO2j2ZwrlRkpEukS0l0ySu5nwmprgugKdgJB3t7LfoY3WqKZ0c3Qto8uwvzaiA4SLU7Yexn2DdkrvAUY5hn0h0OiFn5kX9izuKIMEygx2z3Vi4Gll0BxRvQ7ZD7RF7VvjxlXYHJQxbSnWIxM8SZIBfOQyvkhNwb2AcU9Oh4qS2CtVOSU/Z5w8QeU5ElFbspjhzGcU599rhPxIIM8JZJrgVT5DPC4ZHQavV4M18k0OxjxKYEgcx+/mH0mjsSHWGm367AG+PjCI5BSUI5oLuMCmnztw5uealpmtMxAJ1AdaF37dghpNz/ob7zsWTaMewIRBoVAxi0vpVYmRM/lQ/kTVuRLhLnmdWTzDcs7ub4Y8K5CBAtlY0I69iM6SEQfgdU9YKd/k4Pn/I7Ct1qim9GJoNCIE/NdEcmx1a1hhfOOIsp5tgBAsVXjNTumfQIfC+4QX1GhK7gNFtqOuwKQn36Fc5Qxis2pzSM5mUNYfVO8mEaMljcR59gk/cipHwkdbIW41LI3jJ1EZYZIM+wVe91F2NDw+hPqPx2iNako5xxG7JKNtPYx7hPj6Gnq3d8khpJTS1oOoJgQjbT2IYsQwmUFA7+UgkiRyg2DnHtWWrA3Qcp+E4SAXC9a2VfWNGgOfy6U8wff8ITblmdibXR/+uiWFdY3CN72g3A6Jf4tInuB7ynONN/iEKu+lEzlF7d9JJn9KoiNmB/oKlP9eKod5HxAH8rpg2nt6hbc4WQhctL0cC6VMa3QRCJPSKJGoFRxvEI9LeAsSL7tTpWu62pPtA8EbwviAtzkn9pHMzYsdWXMrjQJM8oJy30m8QuLp5LCLbMozjtm0jzgIM1ACzTIfbDjPjmq8B7Y35ZE5R6FvDsx3gisgnQXT5miNFidaoyWHodEmQPflIL6R1N56kgsiC9WcZQDgjVrOiUSt6uYAruA4hB9zupImdhBP4XbydjXqinIoxUIJfVNRCbmuWGKvjsBxLBNY62RgL2AghHioSsItgbYgKwumrdAaLU7sWaNCVIMypVIDL+T61wjtY+txFD9PyZoEiWG2HkYZYyFSXiz0G72n9B5glF9wApgJgb8c4+PXxlBfzM0r04ALMAzEFYmcKlg6RZmz1WuG4fB/6SQ6VGSx6cbagtbXvxXWRfMvJnnBYYgNqseGM+r87Vic3kyr463vEw/8Wgk6yE3s+aYnMl3QdcqPzGI0nd6bx9bb/cfRaOyAfBp9DwJ/P8acF0cyouJCKvignL+KwFjwmZOGfFfAeCAZ9mR3oOKlLC5RnqVW1yt4/aJgOKReQEKSJ+yGpPf84ZD5y2xUL8PCqgEbYk2G1k8fI3DlMSLHNWXjpx3pFb+ZOX4j6TRnodaoplSSz85Ngiq//86FrxpCT2DTcZRA3JVO0x2BVijHNBNyD9N32nYuIPgBi4Nr7ZwWRaOG/XU1P2ISqoAA5QQfJ/+Ob6PjeGEkA6chzAfqmzucbktmqnyTbis+1hrVlHIyEXUkHyDK3AJL/dYxqJCRzmkoCXT67j3kCEAinI1txoSZn9M72JJkhAv8OKErzR/bhxgoGeypjOapAfC070rW5w4iyOpad1Lzy9h582o/8N+cxPVagkVnIBrlbKZhcUah8BWKTPPPsXtDL6gM7IbtEX0ZHz8r355YjaY0cgSQGfBrRjPGfrOACr2xOIMu8NXkp6n62gVErlQpu47gNvQ67WvuZqfsn0+jt4sxUXYFRveDB9Zf4XTHALValIiKzGZhKbz0VyTA2cRm4AJ1Oc/nfmMYe3KB1qim1PMrQG34PaMmbAP6gioVlAqkQXoqUAGlqDYoRSXD27BZvkBd/tpdvBWGQzq6HwSMTgSiUDlP1ljfwbrjqfXr00AAqvb3aSCT0G9maI1qygCZ0CiJyftsPY7iJywCONTf1sO4b9BO6T2iOTC5JeAGtAavsfGsOdAzz0BSMYd2/IfDI9rBJXj7Sii9gYPA8qdH8sKxlfT+3VK8xKjWeyusm4C7AqMbQeN1B5n52Euc87a0Gc/FEiW17vBWsEpw3vMUYK76WVgMpLsQ+KJyejWa0oih0bQMcGkJNQefYdnKAfmOqcZF/lhRB6Lh6dlfqWb3iRC2qjtDN39P798tRcCKunBUcMr6enWovu4sY/p8TP3HYyypudmo19arRdYCtv4sA5gJfA8XqUY7/gNn0BrVlGqaAxNagjwOLpOh4tLLalWVYCzK+xUVuUwGAlGqOgfE8UqtxXkaNexoUbHW8+ha4DAvHeYbEdJELBbUKLBkHdstLF6UDI7CPM54dc4KrVFNaccPGA11vRnYZinNbT2cYiYMmNjiXVsP475BO6X3gOZA7+pAfRh3djoMgaRf/BmwYCNtG5kNUJYTJhxZvRhkrODjf0zBSbrgCqxdBdJBIK5KRvyu9tQYFGXia95mxuj20Pj4Qdqxl3He89hfyHHG9QquIlu/dwXlXFcELgIHwP/BSGgJw52LMCCNxs6w1uh7We9DR4jeH8SwBavV3mmAiuBKJiwB2VmwaujzhC9ppbSwGP54rBLiomT0WXU9wzEtqkb9gNc7QOPfD9KAU3z+9ASlr4IYfVJzCzxbX8yEWsGqCtcoT93s8yooozWqKaVYa/StpFDwgrQoH/geCPAn/9JOtPmM00B3lBp3QXQU4j3JiLPKjfWg6Iu7hkZf7QABF05zvaobljwj66Vi63yjgld3tPrcVWmSZPP4UuESWqOaUowr0Jva8k/kY4KX+JLe6209puLHnTQspUo19xLtlN4DPFApgTSD2UMnInpIcASnJ1KJP+6l0nXMNiwB2DoU9v6zBd7vZDLwNbUGG9YY5CmBOCL5r5zIhEaFVxK0xoiOBgHPpYN4RTKcxfxDjGdxsjKFhRVOAksaoTE0R6uHHxC+rxWkA+8CwyDuWCBEQGr2HfwDaTQ2xlqjM0e8jRiqNOo57BLbPmmvopQGGcAA+Gr504SMjoCXgWyo2juFzEYCcVASIcfzeqDS0F9lNVhrdFgCiOclIfyb7U/3hQtWBxYW0jEE6VLI9z7wzviJUBkiCObfziEqWKQ1qimlWGv046FTEI9JZRy3GVFIP/JtrGYdajk2E2iPilaegcVxiHqSTfJ9RjdSib/WGUUFsdbos0kgmktixN9QEdl4LKm61k6xo9WzMaZM1CYZY7zucC4J5ZkGqDu0RGtUU4rxAlJpzK+EzoED4qDKqitjXKM8d74BQHM76EJH9wBXIDoZan0BLIeFbYYifpN08V5PraQosr08ATCZQyCRwPCKR+iQvokHOM8f2+uw6AwkPA5yuKBrnx8RH0gO92lA85DT/BquzsnEEp0xjKj/emjRey999rdFPiKIEmobjnUy0c16t1l/Z5hXf6DzXBCrI8ARxBRVhTew6THYAF5u4JVhbmmj0ZQS8jQ6B9gIy5s+gYjPZIDzarrH7EQ+UB5yLRolF54fsYr3Fr2LOH8d2bEc7AaX3iBfEwRwmnfmfcKJjnVo2PYCp/bfuOusAqpcgv96aNb7J/qsbc3hwQ1oPuA0/I6KdjpYneBY4NnYV2p9jBtQG2IWVeGDEdMhDkIfmQFtofY/T8Kr4F8NXC/efEFKo7FH8mn0B1je4gkcEtLp4/s9668MggAB0UaDF1BW6Aiqu28AKnJ6BLX3NICZ4m1mjnqbn443o3XbY0TuV3HPZKv7OZnPDlwPlbr+QUr9qhCdYL5OktW9zJFOwOLeWltWa3fXSM5tjlopCgZOAf5UXXQBfMHVAVxNWqOa0kYaEEYsQTyMWiaaddS2IypuBgAN189A9aNKRav03qKd0ntANGpCejwKOrTZRA+2IMsJxBcSNoHYT94E0yg1/00G7G7cCzFfsuz0AALEd5wGFi2G6Yv7sn0uvMH7tJjxNlTNoUvNLQCU5xpXqIQJB36a04FywRnsoQPthx5kbdTNo6PWVX2NMWRCXtEFD6C7JzitB3FOgj/8+ENXttOVef94nchGTWEaVPgCBh6FpTe5j0Zjj0Rj1mgsdGm6nh5sRl52RWyTsBgywsqpzSQGJuAoRI8JQgRJJkwNZcbuUBVFnQXRK4JgGvTiOzZNfBLqS/rU+ZZrqLy8bMpzDWf2zewMvjCdcRw9+Ah8hMXJLKzCLuQvdORm9VwL6ALrenen/+gtEADNF+3jaMJDXB/uxoWIhqqVTDg0X8oN6fsajT0TjUWj3VusowebMcVWRGyScAWVMZDnDBoptNGoRmbHUcu051DRzVQgGebDI/N3A96wGFq9EE4lruCAiTTcuUg1LgxtCH0ADgMxqNYvuaj8eMMJtnY6jSVf60Zt1rlHRjk0J3AMhmbApQYQB5ciasN74DUJ2iRDOLo9jKY0oRoXHuk1gsPVgeWQ0boc/3S5buuBFRvfAfKSQARI8wLVYrRK7x23TN99/vnn8fHxoVGjRnmfJScn07lzZwIDA+ncuTP/+9//AJBS8uqrr1K3bl2aNGnCkSNH7t3I7ZjTKNN4DpjMdH6gHzwGSS+7giP0rb8SosEBE46oX+80YPUJkIcEz178jlQsu1UOAqvHQFfxDvJxgfywPNuP9mUcn/IM/+ID3ua/ER2RJwS5DSpyVRxkXhR5/dkKrjxYR0VdUelMXqi9q0Oqw5B+0Dseal85iwiTDHhhGRJBn8QdPMcSvvrn03g1ikcICW+Cby3LNeveq39UzU3RGr19rDU6iemsZiCRD4HsIMAFHnPeDHHmg60jlCdAthcMZzEY+8CyUHtBh8LGxwYgDwvkb+X4gjH0YAvt2Es/fmQNTyIDBXKVYGLX2WoGCpaCRsY9rJ+dUQ6oF/AAUB2VPrwEZs0djXCQ9B+0haB5Rzg6uR79+JEevltouvEAnFM9kmkPnbws8Rqt0ZJHa/T2sdboG3zCcp6BN+D0CwEQgiq6VwkskUp3lMU7jbJskeR3DqPNjzBgAwwP46CoyA7hz1bhwz7hwQXxP1ixAdWQ24i8GmUBY8z38SD/EqyRq2RUIHNHxYwCUNHRmkBjmB2IZ/ol6GT+qhnwhFr0FfOhbS3LSLVGSx6t0TvBXNxr0wwYA/tCoOIKEw/JLvjaemjFSOgokG8JqF+Wfir7REj5112G//Of/1CxYkWeeeYZTpw4AcCbb76Jl5cXb731Fh999BH/+9//mDFjBlu2bOHzzz9ny5YtRERE8NprrxEREXHLQZS1pt8GTsDkzdC4x0E2iFY4Af6/gxgp4QQkxbqyVmTlrfEapecdsaQUFeZUGscaazUe3LhuY32M0ZvNw3wtb6A+UKsW0AgIguQZLiznGaYxmcsLasA5aPvPnexJ6YLTBNSqdC7QGi4N8eQ4jfmCl1i/ehDSXxDVVjnWTbrA0h3mAoma2+JOm35rjd451hpdLFoRCQyJB/GyhDDY+r8Quj0UrhxD64ilc4H31ttNDMFap9kWRmHpul4orbmhAiwtgUYQ7+PFF7xMGCH8tLaDmleng/+SSOYxip5Re/L+WJysVZvFDOdXGrPn/GPwvUA2FkQ9pqbVIVqjd4zWaMnjBEzeDo27KI3GAf0TQHSUcCIKZS33oyxcKhbr50j+PZ3WKba5Vt8Xtgs8h/xVFox0Xes628a1jDyjJlg21UQDvcClAgyHih9dprpbLNk4404ax35rDbOx9CNuCbKf1mhxYM8aFaIalEmVgvxkKqFvwNSeEjYt4nrSSKZ623pUxUvoEhDPXQJ2mj+JQUdN74SFSFlYVccipO/+3//9H9HR0fk+W79+PWFhYQA8++yzhISEMGPGDNavX88zzzyDEILWrVtz5coV/vjjDx544IG7/hFKIzkAK+CEfJhaPjAvUVXEdfo5lZzZHniNysorl2A4jgV/vY2G34Ve23yudUsXV9QibIgP0BHoAXjAmd41eY93OU8dXMkkCW9ORDysFoRbAvtVqvE0JtP/xe/xWpMFk1G9Ek2oNEWAcKj6ewqVXtuHyc2BawOdEd9I5BJBzljgokqeir6rfznN7aA1eudYa7SVF0QkA22h4vHLpL9RhW57wpUDWrAQScH31kI15rsFU3EdrI71REVKWkJGj3IkOPuwhcf4lHFcONYQKmdRztHE9R/dYI352Fyo8vLvPNt/Ho/1VxHYqrEpKlJr3MsEDaMu8E6t91jAKKgDe4f/H2KpRC4SpI0AkrVGSxqt0TsnB2ApnMhRGt2fDLQGl1+SyarkgWUJNxlLoaGCkcy8K5mxdiitn61TcV1Rq0RGJDQT5fi6Y1lCNiKnrtDIfJ+ngGbBUF9Spc7vuJNmrt6psqMAGj34M9GfBJD+QRU4gMpqWCWRywXJQ4HftUZLGq3Ru0NUlXyAUPaIRMqtkRxDsM7WAytGQp8Dubwq4qSEjyKwFD7TFBd3tKc0ISEhT3xVq1YlISEBgPj4eKpXr553nL+/P/Hx8YUKdeHChSxcuBCAq3cyiNJCgvm5ByQvhRVRsMf77wx6/1sihfrKMIfGvLYwx9QaI0nI0erY9kCDGbDuze5M4g1+2t9BfXEIXHol8yj/xZ00urCdfvxIXdM5soOdqVQ/HacV6jiWmi9spCVmU3j7iShweQ+6jQnHobqJq4MrIMIlcpggdb7agaOxLVqjt4FZo6I3pC2Fz6LgglttAmdHwiiUw5dFfiHerDquNblWnzsD1YB34Z1GE1nOM8Ssr6+OeQsYBrWbngSgQ9NN9GYj1YnlyouV8CaJrhk7cIlFZSQWjLAWdH5zwSsqize8ZlPJ8384epvY0bc34pBEDhEQrjVqD2iN3gZWGs1cCoui4BfP5gRVjIb0c+aDDAHeLPpp/b6gYTMqKvhhSXR3B5pDZaEu1xa1OARQ1fw6C6gqKVfxKnV8T1GZJEw4cJUKXKUC7qThTDbZOONALg5W9w1wi+bKh1eImxEIPwInQDSSyCcFcrfWqD1Q3Bot0ypdYX4eC+zKgVGLcJC1QVz4i5NKH6FDQe4TiI/+BLbaejhljrsudCSEQAhx2+eNHDmSkSNVGkO1Ozi/tBC2B9ru3gkNwG+pqmg/5KEjxM0NJHAuRIyxOJjWHc8KRkgLmthc1ErqwPZwIKwpDeMPwCEXqvA7ixhB12YdcfkB5VhO58byuLkAOfl/A4yJd7b1MYWcl2u+3mLo/PI+8JlGRLNWNGh/mFNHW/B4OGxErx/ZC1qjf01BjSYAVWqnk7KkKkwCnkal0xpaKax9Q8E8ewcsizu9Yd6bz/LS9qWwGTDB200n0abPf2nGUSr0vYpHUg5EcWPE1RojYmu9KlUYJvVwSoThLOOapzO5dRzYs68n9ZYf5WzjZgyOVQUctEbtA63Rv8ZaozWXKjtaPygGhgOzg1B7P0H9RvtgFGD5666khlU18ovMBYmq+qr9qh+AU9VUKnlfwZ00HMilApmYcMiLeF7FFUfzawdMXKVC3tUrofYfGg5pQcqTrYosTThDDPWVY7oCvI/GkTTen8FztEbtieLQqErfLaNsU4qSOwWCD4B4pjCVjgzNi82UFda2Bb73hieCuLHOPli2EmhulzvqU+rr68sff/wBwB9//IGPjw8Afn5+xMbG5h0XFxeHn9/93XA2EniOJWyr1T5vj2fcUXihzVyGv/w5Q6bBsDAYMVu1/L4Zhkkz9oZ2AxrJ2oh3JI/8dpTlfkOQlQWJE2rSZ8QOXMYAu1FFCC+iHE7rh3FR4731RDiXwh1Sa7JQFfIXQzOOMtlzOqe/ak58mBdNGkGvov3zaO4RWqNFp6BGAaKi4Nn28+gRuBZmQ/IBF1gO1DAfYK2Pgk6kEcWsBl/vG4Twlry0fimju87i6IR6SC/B+5Ef0i0ynKqRKXhE5qhFnmxUmnzBDAWzk5nnDFu3QvwrTOD0BzxnWkIDTtHo2Z+JHNGUy8crEhisNWprtEaLjrVGjRoKYWdg0Kdfo8QwGOWM+qIczIL7PinkveGMtgIaQzdf2OWL04lUAn84RlDDIzzo/Ru+JFCJ/1HBnBLsYJWa4Mw1ynMNV3Ns1IiGlic7z1ktDMNJLU827qRRccxl1X+tKiQH+JE82wVHlJ3/K7dac2/RGr09vEDNOc06WyuCGXCr2gqlkOOAXCug5UAsPSus0b0o7pQ7ckp79+7NsmXLAFi2bBl9+vTJ+/xf//oXUkoOHDiAp6fnfZ1jD2pF9/nHV9FtQjjRKIfSvxYEEM1Xfx+DeDYTUTcT0UjyqDzBMHN0pbCsWcMhHfYuPCEP0+i385zuGIDcJhgyYq2qVJ2CZVL8V45lcfQBzgCioMridEL4Ny+8MBf/9UnQRq0dBd3qfM09Q2u06BSm0Vq1oAGn2Pr3xxFVr+Mdk4o4K3H4NF0VBzMoqCMHlFhnQKXlf/DC2pXMfuFFroUIvowcT9MzkRbH03A2C8N0i+9vA48LObzK59ThHOU+yMDnmzRopjVqa7RGi461Ro24RA7Qjv+AfwXo5AFD+kPdgag+oAFYKuJaY0RGvVBlcGtCpwZw1JvaW0/SqOPPPOT9C+6k4cpVHDDlOaGGw2n9KE92noOZW6CymfG+sCipNeXJJsAtWqXxuwBVwXtqJrVeNEeEb/+fS1NMaI3eDjMYGZfJtt3tyXPKnggkvhhsmD0yYxW8//MbqJR/1wLf6vyGO+WW1XcHDRpEWFgYf/75J76+vkydOpW+ffsyYMAAfv/9d2rWrMl3332Hl5cXUkrGjBnDtm3bqFChAkuWLKFly5a3HERZrRpoYKx0uqIKxMfJ/gyNWYW8Vh4eR1meGkA/iJtMoRvDnVC/+r0/AdFM0r/jCr7fMRQ2oCa4RvTTurjgvca4lycwCTb5dKDXst1sfLYjtcUefB3g8zL6B+lecKdVA7VG7x7ruEowZo3Gr0CmuaoU3hSgNjAIVTXzD5QDmk3+4Isb8AmIk5KgZ4+wiceoHXmpWJzL28ZI8TXPlecEjuR7nmDfK53Z+LnSqDcwzwZDK61ojdqOACy7UOoCrrItXcbthZ6oYkFxwCVUD9OwDagyQcamGGOS6Iq5CzfgC6Hg9XY81RxUJcjyZGPCERMOlC80T794MeGY57QmUZmYmfXhe+AMLP/fEwzxW0tqEsy690MpM9izRsty9d0baBSKRBB6wtYDuXeEBoNIkBC9FnOIWFMkbl5995ZOaUlQ1o2pgR8wYh+IPyVytWDrKmVHjZ0vBWsGGhjruo8nQblIyeHgBjR/77RKyy2Y6nezcr33CmNCHgQn36zNR7zFirUjkKGCfSdgVwkOpbRzp8a0JLhfNOoBvL4bRJpE/lvAdlRGoLHf2mgD48CNBYd8IHxDK0IWRDD7xRd5LWqhRYvWTqkDJeukmu8XU78KE/mI1QkDuf69G3K5YEOEZTee5tZojdqO0Ncgbo76fe39C4hpEoYAfSWwzHxUDsqapqIKHhmpdZlYei51B7zhEDRq8TMmHHC1KkBjMhu1W0U4iwPre6XhTnRSLXKGeCjHuhvIPwRJi/Xi7u1gzxq9f5xSX+Tslwgda+tx3Ft8gU/lUSJFDNqS3g43d0rvKH1Xc2cEAh3bbGRhn6FErFJ12IJQ3c2gcIfUA7XVpP8iKPeH2SEdexpisU30pSDG/tOLUC/lAn/n33AGWAJtvCx1DDWa0oA70LfDSkL7TIBwVAaDj/lhYO1UGq1fXIDFELI2goUvDuW1WHO1xWJKwb0rzM5zzYuXackhAnyjVWRpOXRy0xrVlA5mzVGupxfQoNlhZRifAvgGS2EjsDimjliKjeSgppAh4OIN+6BVi3Ag/x7Rksba8XXERF3vc2oj6Z+o7Thj4KBJ7yvVlDLqjyZ1gq0Hce9JAM6eaQaEoFVaPGintITwAtp4wlkeZMScFdR1gCbSn0HyLAvlV4xepBxU68x0Y/dL96kgqkhONwxQDmkKNxYoMijJKKk1KeC0BaoTi9OoVCa1fIdckyohodGUBjyAxx3gFA2YEvExBMGm7R0Qn2bSeMNBWIVKVTdwQOnNAZit+gx+3n84I2JXKG3eLOXOFnNgc6/hEMKoyznoCe8ETuR4htaopvRg1Ms9ff4h1cYsax9qQtjJ/GiCpaco5teGk9pGPe+DR9rsybumgzlh11ZYih5dUw5yTwmVARd4pdEMXDGnK6OnvZrSwfTT4+6flPN3gVCjf7HmbtFOaQmRBmRmQVy86m3lPQp+oC9xawP5O/9mzfCeBKEmxk5YtoM1Bx59dzcD+iyj/pQYVSTFXokAHxJ42vsbFphexNFBBZs0mtJAJpBrgtiU6sr5fB2mMxmWulCHc7xSfYbqTWg9fzUBtcHhgXSavnaAl5O/smuNNk45zQNcxLPvJT5JeQM/tEY1pYNUlEbdAQ4J2HfK/EkqEACOgajl3+Yo62m9xNse8IBQX2q2OJPXS1QVMsrNV6SoYD/RkkLd10TNOr+pPqiVYW7MOHyAc2iHVKOxRxatgf5TVqBm+Zq7RTulJUQO8Gs2NPI7Dp6w8wt403cuA/ovY1jKCiqKTezCsvPF1fwIuAI/xbRj9dJh8DuFR0fthRRoeiKShzhK8id+7E9qTmO0MdWUDnJQDesbeJ5SPUGnwH/XdMTrrXieYC2fD5gA+61OMDun+1Y253qYGzvpjEjCUgDJDnFKhU7spprzRbLe9uIP2UhrVFOqSAZonYN5qdf8iRPkXgV+RRUcKdjjzB+aeRA45RgVrPaP2sL5vBXupEFf1LCfcOKSfITGqL9Pd91YXqMpAZYwjLq2HkQJEQ98P3MofDvZ1kMpE2intIQJIJpNwzqQC2xNhG+Th7HSc0Be4N/YAeMI9HaGqhXj2FuztWUybOv9aTfDsP3boRO7GDlhDu1mHuZ3+QJveqqKphqNvZMJPMhZZtUarSKey2GZwzPspZ3qy5tB/uJG7aHdscOEDpxAldh0+9hDejNMQC78nX/TkV04habSavTxPI3eL5MITenmHNC+5m7Uhpdk1M6uKNT0MBdlRa2TXXsBvvC2pa9oNs75nNOiohJ9HfMKFBU3RrTUqWeqaj2VCx2D/kuUHMnjaI1qSgeRrk0ZXFj7zjJK6Btw6CkBJ0JRdcI1d4p2SksQL2DjoQEMyviW7oGqIfhpb3i293fEYyl3b+AxHpIvedN2hbmql60WdR0p+hLtCWi44ALv8h5Dxi/ilaGLcZqm65JpSgc5wModLzD+5JeqQWAq9By6hwWrxiqnzhn1bLRgGg5Ew4sssHxmC506kN9Zvhm54BeVzMt8yXPeS/CaG88r/Rbj9Ima0ms09k4bIOxod6jsgUrVTUNFR3/FnISPpQWMF+AIraFm/zN3fW/rHqW3y+04tA96/wZvS+WF+sPYoAUELlIOuUZj92RtQCyx9SBKlo2ArCDQlvTu0E5pCbINYAAMdFvN1LNv8motFQBdulGt9bpjqYTpCuyc1paefhvhKJYJr72TCxwHvxXJDOYbZVQ7qvl9wfbCGo094YRqGXyqK4xv+AHj5k+HLqhK13OwbPQG1Y/UGT6oP57afU5SNTbFcqHbWcQpaUxANtSPjWE4iwl2iFBjbaxaVulKvBp7xgnYChx+CPpfXoEqbOSFmgjGoJxRw9LkmL9zgp7gS0LeHtKC+0jvNbcTWTWipUF1foG3UPo8A7TUafaa0sIRhJ/kcVsPo6RpC/lL9WtuF+2UliCpQGQULO79Cj/QD7E3ky6yCsN6qM5pI96FYUuUGfUFPmICr/KZqrZrS4zU3II4cvMJeBKk4a6qCB6H/vVVjUSNxl7JMT8a1IdPQt7hP7RDtJesD+sCY1BR0vcgKwzwBnJhMcN5mm9sv2h0s7ThXArXbxZUw9wnrDJwSE3vm9/DIWo0d0sOluYv3y8eir+MRP3WBqGq7waiiho1R1lRP8CfcsMzSMPdZntIrSOsRRmD4ZiW88+ASqhV3UN6uqspRbS8Sj95gk62HkdJ8iTACNTfHc2doJ3SEiQACAyEhI1wtN4jXHd1pTM7Ea9L6nWTiCaSnH5qNTTEEw5mBNOCQ2rCazh/Jbe4WzSsJ7yOqAhSNuQMgwH7NxL08hGYCZhUurJGY8/4ArhAQjgcrtEOWU0wkQ8Rf5OIaxKxU7LSbZDSYWOIOVmflhxWJ5v3bNoVzhS+cGSCCILZOudxAucdQ74LTV5UC2IajT3jC7QNBGZCbFA95O/VqSJrwwfGskomyjm1dP729k0CyEugNV7D7UUx7wWFpfQa76+fc4N94HUinqtjLa62RmP/fMoFcYY+uXGE9iv7mXK9gGazfwL2YdmMp3MbbhftlJYgnQDcwNe83JlbG876NkN+JXh26zw+7z+c5EoqldepBaT/WIVrOFsiINYTXnsopmI9HhfUBLgGXFrkSfl9korNLnNqQgtkJOCm1rI1GnvGWNX1rQYshVO14VTXFshzgiF7F9Hhw008H75KVddtA6yAa5S3XMANy/5OYwHJlo6q8XfCakzSB1bV70P/r7ZQcfhlzr7RDNEMiLAUWtNo7BXDjpKMMioZkLinJvJ/gv5yA7g0QO0vTUbtN71KZoaaEl+lAtk4Y8KRq1QAwGTuVHoz7rXTWjBy6oiJq7hyKqEBfALlDmWQNMEfgAZtdF9hTWnBHThOsmMK4g/JB+mJ/CR/LJNFLwOAhulwTLTGkusIlr3tmqKindISZBmQdBx2JgIZ4OQFMhdS18HSoy8xgwmAeW3Fk/xVDYxoRxBcXl7RksdTnPaysBTAgu8dUQ6oo9VrT6Af7Jn/CJXG/4FfQjzRj/mQ9pgPOQtU70f5uy52pLF/8jR6EViuprRRO4CjsPyHkew51lPtMc0GanBj5ZFcyPGBZYEDLJkNJRmIcSjkYY6WxgRW4cPAsZSLkjx97EfOvlCdtJY+RM2EnMOw9Wj+jjcajT1iaDQsEeRiYBWwGGgE30cNVb2E8xy9TKyjFQ6YuEIlAE7ENMOEY94+03uF4dRaR2mtix5dwxmAazgTSw0OHmtP5IimXD/kxukfAjB1q8jhmXA8A1IPwcF7NlKNpjgxooXb4EAS6RUvsEPU4r9yok1HVZy4AqFT4bkzEteK11CLYYFoZ/TOsddyHGWSHOBzs5N3/KIl67w54DET4t4KxLcLsAPVesJfGVEcUCm8QTBw0lLScGeLW391TBb5oyF3ggnLBNb4jci1+tyF/Cm6zkB1NZ5LT3ryOrNYdf45avIbJ50b4vdKMhxQ5/+aouoiOqKKyGg09oy1RvcvVc9eQPBSCE4BXjR/kItqERNQ4HwfqO95AhMOPOv4nUU3DtxddoN1kSXr6xXUvCN598zxgVjPqvyXNkxnEqfDm1O1/QVOtwig/tMxSqO5qjzMdyn5a5ZqNPaKtUZ/9VYupxfQZhX490MVGznQHIjOO8fB0WQubFQeEw4cm9YaXMB5fDZXqYADuXnOY0EH9a8cVuXUFv698Z3xfRrulOcaFbjKFSrkFVpKw52kpMrk/OihFrlG5XBwUXMefvoEjANS1OJYGKrXecEq/RqNfZOKqk2bCbRiN53owoc2HtOd44RKkgp5EVrM38tb7m1hyinUclEmqtu5rsB7p+hIqY1IBU6jDEyAJ7AfOjTcROoW86ruCaBTDs6mbOUUugBD4bvuzypHdThQDRWlNFcCBSzRThNFW3IwnEwj8mnsETX2hxrX7gG8B0cWBfHK3BmIwdcRFyUPHLtCM35BbipHdL0g/Domc3gNHI6FuIvKmEajbK2e8GpKI0YnRHKhQ9dNhPdopTRxCHgCXI1+hw4Q5tmWCw81pBJX2Fm9bf5oqeFAOhR4fSuMaGfBc6zPNUF8oBd7aj3CnMCRtAvcQfkDkjoT/2BoxPcMZzFyh+A3lzrU/ziGw6vgcBTExarTM9H61JQ+DG2exhzlbwat/hmOSh10RKUUOVHe+RqOmHAnTdnPtyVUhoPxwZQnm0wqYDIL6hrONzysI5vWe0ANZzaTCuZrWKKfxnfXcCaTCpTnGrGm6vwU/yinDzcn8qumRPZryqXOtck56sGMF15BNhTIz5XjHLcKDkdCnNVqbjxap5rSSDRKrZn8tLYDr9hbbZQiEACEzoe+sjZ/ny8RC/7kiDgO6Z9hqfydgHZI7w4dKbUxCUBqOnh7wGSm86rDHIbzElsvQtOah/kP7ejpsAcc4VJ1T/gEDtECkSxxejWVl72/YCCraR1xTIUkU1DaT0E5l27kj3JaL+oajqcnysE1O6jxT3rxGw+ShDdTmMrp/c1VSfqFqIbe6ebzK4GcJ7i6AtZmqInt4xfV5MAV5ZBqNGWB3rWASHiX93mPd9jt1gsiwGt6PP+lDT1RGr1INXgbjp1sTZdte6E1tG2zk15soCvb8SWR8mTjlZilUoALUlhE1Rmy3CDBrQrOXMMBExvpRSzVuUIlZv82EU4Cm1GLWXVReq2rHvKAgCdhdaz6e9Nkgkoy0hrVlCXaAETCO7xHL75DxTRUk6PL+2vg2yaBNNzJpjwMF0or37pwxLEtdANag2ejS7g7p1GeazibBZpbyJ5TI/rpaN6R6oCJbMrzJ9UwmRxwd0gj5tjDcAWoCnwCXEK9PwP4o1q9NQLGglwj4BmIuKg06jfzGOvQGtWUJXKAc/CEB95LgOdsPZ7bY6I8z3NVasOo1cBS1L5RI29Bb04rLrRTagccN0GICTq89xPdXt7GFF7iCDCQ1SxmOD0r7oFcqBqZwvSG45g4ZzYEQmQLf6YxiUfO/wIuQtlgf6g6/gI1iMWVTNxJw500KnA1z7imUZFEfMmmPFf4GxciGsJ8dS59ga+ALKjy8u8EE0GvNht5sc18akdegkQIb9OKT3iDTaufhHD1M8Sj5Plxhi3+BTWae0tYFNQE2o84yJ43eqqWMMnQyWEXyxnKdN4HIIBoOvTfxO7YXlwa78kP9OVzXmXC9s/VjvF9QEXgqRw8q6qKoJWcr+BOGuXNk+BrOHOFSlzJqATA1fQKXN/kBt+ilmu7oVJvrwDDoWbDM1R/MJbnWEIDTuFOGq8zix0n+6icP29gFMRPVhkaYSXw76XRlDTnAL8t0HPyHtQSqRfKxfOFTR5ktymPM9eoQCb0hEf67CEBXy781hB+BD6AlEpVSTlTVV2wmdXFK6N0W9H8Pgulvz9Rs6iKKGdzE+APySEoracDPVG6rYuyrxXN/aOecIE4IA5Ozq9NQ5cLRM9RUV89xdWUTZKBePYNa47Tc0dKVdT/UuPa8OcKLIUkom04mrKLdkrtgFRQEcwIyGnhQa1+sP8HmBg+G+EoodnTyvlbDBNrzFYrvBEQuCqOpW4vsTToJagFPAqXAj25iisLGMVKnubPFG+uZTlT3kVNeB0dTZR3uYavQwIDWc0TfE+dRhe4usQFr9gsFW11Nj+mAxfJv7+0MVRoc1VVHK0KcWfMkwH0XhdN2SUVVK3OQ+ZHb2AGfJ39PBXnmrg03pOqkSm0jz3IBp8+kKUWkUabljHaeRlZbeGiW1Uudq3GH1QjFwdWMphNvz1JyqWqapJrXUCsIpSrnEE/3x/o5bYR34EJ/DmwMpX5kzqcx71rGiYc8M5IxsXotWTWaHygl0opzkUtNKXBhUlVCZp8iYiS/ofTaEqIVCA5Bbx3AG39lVPIOsAPvvXg2ofOVDAv1Dbq8zPZlMedNJo+eADTBAeuUoE03Lkc8wD86UQ5/wyu73KDbSjn07o1m5VO6QZOrVMx5Tpw/YwbBOTgXzMagCsZlajolkZlknDAlBdXTTD5klzVTzmtdeG/PErDZhcIQjmlGk3ZxY92+w8zE1GqnFKVHKHzFu412im1A7xApc/mQqvHwuEcpP0AjAVCIXmIC17hWapSkLG/xNinZkI5qYfU66rOKeCcwgxCmUFo4e1kclETYKvPXXKzLN87Fni2LrJSC2Kpzo7NfQh9bAJbUUkM/X3guK5kpCmjeAE+XqqK9COD96jUO0dwm3Md3FRKfU/HPZAFblHX86fhZoNLLNR2uERtx0uQq+Igg1gP5VFVfAuSC1wFoii8FZRDgddWmj1HXRLxhRUw8Z/vwgbIpALdfSBCa1RTRvECvH1RwdGfssDfqEiWBtGqp7B7w58x4UB51B5TIy3XyFJwJptqNS9iqmne9DYYTIMd1D5UK4z3JquN3Q6YMPmqYytwFRMOVHeLzTsmN6/OrwPJ+8wO6SUYP/gDPuNVRqxbQZNqsO7iPfsn0mjsgHiY3aRUOR+h78LU94yGaV7oEMy9Qxc6sgPCgYSjwEWoTiyRr/njCOw8ChP7vEtPNlu62mdgmaTmolZvDX/SsI/ZVg/jmFyrB4W8tm4Hk0v+a2ejIqcTYEWP/vSPXwd1YUrHj4lHpRrN0JNdTRkmHIhPBuED3iSxpllP5Qjuhv4vr+DxpB8sjuHNKuOauHEfqaG17AIP6++Mc63nxQVf5wKe8HWtQbzHO/z0TQd4AqYPeJ/VfeCiuKA1qinThKOK6+ECbf32Ykmz+xU4BbOV41iea3nOIVj2h5YnG1eumr+x7BUtb97HrV5nU57svHOMzwx30/hOHeVMNuXz7nMNZ65SgchlTWEuKvo6Hz4Z8A7rRCtmbIQZ2iHVlGlSgWj43rpRk31TF2gw9TDwOWrFSzuk9xLtlNoJjg5AMgxnMbFUxwmVsT598vv89E0H5ATzgW7m55u1l8gt5HGr4yB/RdB8A0M5xL1hUq13GLr6e9r67UW+Lli0x3JYZhF+Ro2mNOPqAKQqjabhrj7Mhu8PDSVnvoeqtmvNzTRqKuTxV8cUBUfY5NOB93iXPf/oSavB4QwIXsa+NZbKpFqjmrKOqwOQAeP4FFUmyBE1iXSCpXA8oXGe8/hX7VyMVi4FH4UdY3CzYkiW7x24sL6h2hu+D5r/so8B/ZVGv0HpU2tUU/ZREcfRw2w7iqLgAeySX3JahKHrXpcMpSmCXmbJAb4xgdNFaEkSS3iObvxENLB1Orwpp1LZFEdSS3+IRPVHLKmS2rlAMzjWJZAPz0+l6cADbK/YhVkZxp8WjabsY2jU4yI448ouOvG8wyrlNE6G/ttX0OXYXq4FCJxisVS9vpvepAa3uoYDXKhVlZUMJuar+jT95wH+XTEEV2eYWgy312hKA9YadaQCqtJBAKoM3znIDeT6cDeubPwbFbh6Q0ru3fBXvUxBpe6ejm8As4FoCPrjCOtFOzKlP98U2yg0mtJAJjCLgUuWErR0mK0Hc1MGA/VmSxAb0KXHSg4dKbUTklFGtTzZzIt/CS/UOm8CMGNUKMkH/Pj65UGqfUvBpYTbjaoUFUfAEzKGluMwLWGF4OjFR/hUO6Sa+5Bk8yOYCFZFPK/0YU5v//6HoXAURnt+bkm1hxuzFf567npnuMBKBnOeOhAGRyMf4fMMmK6zjDT3Gcko2xRAFDhWAIJQljVSPTZFcWFzQ65QKa/ly73E6HGaSQWY66L+XqTDqYstWAesE3H3fAwajf2Ryp9423oQf0lgM2DsDLRDWrJop9SOyAWarorEpeLVvM9SgRULQKYIXghfyZmpNVU/cKNSJ1hSb4szempUF2wDEc7BfMPTUB+YAO2L8TYaTWkiB6g9+RJUlmrvpwk10ZwD13sJvvpqDB9XG2M5wZn8i0jFnZviDEeqB7GXdhw83B46Ac9B82K+jUZTWnAC2kYcUVrA1/xpLrBVPfeFuPN1ScOdTCpwDed7Mg6TVRfT0yebq2rAWcDbwHPKXb4Xa1Qajf3jhLudV7Kt88sJlEo1JYl2Su0IR4AzUMnzCkbdQFCrvxseg6T2rgTtjiZyhr+q1ms4jlA8UVLjei6oyXQ1iBlUhQiC2TO1J1sHhiC3QGAx3EqjKY04ASSBp3+C2nDijHJOs0D0gJ9eaMaEmZ8zp9ZIcnxQejIWi4pjBlpgv3hqDScWM5xYqsMHsOPZdkTsV/tIx6cXw/00mlKGF5BTH5W5C6h0QWM/2DnIjYO6gtPhaukmm/L3zDF1wERsttImWcAJ2PpaCL/uUN3XtEY19yc5lroMdkhoL7jQvSGWYmmakkI7pfZGFlw6WZsGwZaiB06oXTGHRRYySFBvWSzjpk6HYFQ6r+FEGtyJg2pUBs1FTaJdgOFwmgZMWv8pdIJuD4WzLllNeHUkRnPfkg0p56pCWyztkszp8607HiN6vA9jJy6goedRTtaqrTQK+R3UO8VYOHIGPGG1w0BO0YDTE5vDcOjkvY8jqG5qSyre5b00mlJIAuA0B7gCYKTHOqHEapT9ioMQOP1ccyJPNsWEQ16qbcGCRbeLCUccMeFMNgn4kjK3qqpaeA5YAd18w/MKj2mNajT2RQDQdcOPsG0RSqV/VSe4tNQQLj1op9SOyAU1ub0EtFdzTyfUGm8Oypxu9QPZXTB72UTqDT/Kpdme0AyLcwp3NvF1QBVn8UQ1BB8C66p3ZwSL4CO4HiQgC/r3gzBU9NYVJeBOd/bjajSljlSA3ahJZmF57NlQs+Nljn5Yj8h3mtLo8Hne8ZlITP0q+fea3g0OIL1hRfX+fM8ThK/tBptAPiQ4l6zGmIOanGs09xvJAIsxR0qNjdXWlTNTgQggCpZGKed0RnNOxDfmKq5cozxwYzXdm1HwuApcJRtnzpnqcvmrGvAjyqZXAtlKEJloid1qjWo09oWfbMsO0QBLpRfrvx0FnVBdkbe40U6pvXEWqJ+Vl8qeg5KB8YgGVviCPCuIjH+QB2Ze4aWXZyLfRU2SvVHOpRvKSbXee2rgUuA7FywOaUvIeQdWtexD//h1xPULhJ4gLkDkGcjZo5zQYdVhQqDasaPrqWjuJxJigUY5KkXQmlxUH+FUaBoSiewp4BJ80G86zU2/MMtnNCcDayutGXvAb9a2qbCewuZzIgP9mez1Dgt4kR0L+qg9ap2ACPX3oQmWzEW9jqu533AFZddagyX9zsn6WyARlUAL/BkHb+XAEy5EftGU0yebk4Z7odFTZ67hzDWAQqOqJhy5QiWOnWxN8lg/+B44A0TnQGVIruVC4HBlqgMKjEyjuX9wojJJth5EoXSO3YdSpx9qhuuE2qujlVoS6JYwNsQLlWbXzfy+RSMgG4L8TuX1I7WerxqSSAYWTQcZ7sqifUMYOW458554nZlDXqLHkC3Uj4hRRRWSgRSrCxgpvtnkSwHEGQiEnH6w1/MRNtKL2V9MBCDuB2+eZA3iN8ly+QSBUWtpuwpl0w9A9/pAbYjfolJ6w9C91jRlB0Oj49wgOgMCPcHpAQiqeRxTRgEz5YhFsBnABJC9BG/88D4zB73N+NZfsuS1nwmuHkFXttOOvfgmpyAyUPvNCl4DlDbdIMcDznrWZgO9+S+P8l/ToyQP94Mr8PbpSXwQ/y4i9xobZTd6ntgDy4EtEHHC0qNUr+lqyiKGRp82Pzf2Qi3ONpJYlnWtpzqGhYpGxSqDAA84kAAH/CEEIis3hafAq2887g5p5hYyDjhiIheHfM6oCQfScOcqrlw6WRuWAkfNlz9nxENd4Zw33jGpbFzUjZ7v7qHFcmAORCRqjWrKOq6o3/BgoBWM8eYlgvm3jUdVGLNqgOxQHnxh1co+PN3vR5XtwAwsfztc0TPde4OQUkpbD6KaEIy09SBKGD9gRCAcjoQWzSD8l1bMYAK/0IxL42ojWwjmDbWYVLDMV3NQcvBAred0Hw9PfLKcta8MgWbQ/oVtPMcS2vEfaideghNAOsoBNaEiLibAGXIaQaKnF9vpyr/5OyvCR8AnELTxCKfmtICZsP73LvR9bjtNlxwAIA13LoQ3ZGP7jvTsugey4ddwWFdi/3plk4XARdvLsVDue402gn3HmzODt/iNekS+0pRrHwicOmHRkzUOWObBbsC70KLNXo70awuVgFHQKjicZhylAaeowzmcuYYJB1zJxGTOwU/Dnd+oRyzV2U0n1etwvgtsAr6X7K3TkraJRwj2CePg0PZ0X76OJLxJw53Th5uzsUVHHnHcw0aTmiNr7g6tUfuiMI1+whscpwkXHmoIR1dj3mV6kytkoiaYjijn1Ik8JzUApdUQwB9ohKUNVGXzswvwJ2o1Nh21hfUcKjpKkvn60eYPB0C3CvTZuopEfPkTbyIPN9UaLWbsWaNCVIP7TqVOqJBFG7rLXWz5uD+hE2w9ptsj9E14dMZufhK/oZPui4OFSHmx0G+0U2ojgoHu/QBPcPgonfIu2WSmesNyeHTSbv67qiOLnrZss7YOoFiv+Rp7ToOAtkNg/fIu9N2/XRnJ+oA/dAjeRBOOU96cdmQ0DT9LPdb+NkTtd9mlju8weBO7N/TiVB9L0oLvPhArJDJLELVUBWBb9ICQzVu5Rnn+O6AjK9boOmV3iz0b0/tWo0MAF3D9JInKnknE7qgHi6HjdxvZndgLHrM6wSh6VNh7Z6AG8CRM7fcmoV/NUNkM/uZjhkiq1olSPQ0zXHFwNOHunEZcfHVYat4sfghoBrWnnOR8YiN4DxgG+MLc6i/wytDFyCjBvv3q8LZdIGS70mh4pY5Ms86a0NwRWqP2RRug8yDAGdznJlLJ7Qqx4fVgBXjPjyPZcR+qTKCRtmvEInOtXnuYX+diqZRQH4t1raWcz0YoRzQOS8Gxiubnc+bXV+JQFtLR/JyLcjVTgUCo3B1ZWbDzjEoMbNIPQtZZNPpxio6W3i32rNH70yl1BZozUp6inRhbaueJAcByuZE94iQ6Snq33Nwp1em7NqKbF5ANm5Z04PrDbmSNcsN7WBzLJj3DFSpBNct+zdQC51o7p4YpPQIcWQEeK3ZwDEGTSZDa14lPHcbxH9oxe/tEtb8lDmU8O4H/i5GMffBDhj64nOaJp2EMrBgC88zXb44y17wLvAdH2gSRs/Q0YcCRLTCYbxhZazlzokbSXywkBm1QNWWH7rWA2rBtanuyOnsRN9aLFo/t5dsug0jH3SJEIypqtIfJNb+2jqDmAr8Dc2DKzI+Z4vUxTIbw4FZ8yUv8QjMiv2qq0oTigEqQ0rMqFUddpuPkH3iCtQyJXAvTsVT9dUFFZKpBV7ZDI0he7kK0yCIeOL0DnuFfvBC0ksVXnqWTWEY4WqOaskPn4UAj2PlaW9I7VyF9bBUaP3aQFe0HczXFcDCNgiWuFF60JBNwRyX/5mBJ6/U1f54IWXFwyLpnYTJm62g+JheuWFvreCwRWi/LcX/mcPlyRRJEOseBIz/AcyxhWOBqvrwyklGOC1lsyu8yazSlGy8giJGiCxttPZS7IBrY3boXggzgYxuPpuyiI6U2IjQYqAGivyRpoCteG7LY0/sRnuJbLq+tgVNIKgHeUXzBGDpH7lP7VHZDQgTshLy2w0aFXshvxIw1X3csab5eDuDqArm5kJRtMZuZ5utZZ8s7okxyc8DDGb7IGsukmI+R3crz2Rl4tRaIKZLZz77I2K8WIOMFn02xmHXN7WPPK7z3pUbbA4Eghkikr4B1EDOpCn3YwLHdraFuDi6V0vjM8zXasZf6h2LUXrJIVHHPwvaJGvu5Hay+c0M5sb5Y2scYRZNSzA9zL9S8a5nT7+mIipa6QTOfn7hINU471mS+CSZXB/G55Ks+T/PC6pXInwWfzdQavRu0Ru0HJ2DyemCjlUY3QMybZo2ubQ2zgX1xKGcxF2XlIlFWMR7LBplMbkxzMBxZw8K6W71OLfB5LpaSf4YlNVTmZf4uCGhMVSn5zaUOS7PhVR8QCyWf9xnOK8sWI88KPpuuNXo32LNG789IaWOCZC3eFC3KRHr6q9IFbzEDXeLzbtCRUrvCCSAb1n/XBX8i8RqQBVHQ4f2fCDtUkwa1gGFw4d2qfM8TdLm2F17KgiYu0DqH/jVX8wAXeYNPqLn4stLGPojaqMysYXqvmp8zUc5nrglyMm5chXXC4ohaG8ME8+uEbJj48WwmRX4KyyHoYVT0NAtee28h2e+Wpx072Lu0C59FWe6p0ZRWnABSYNui9rRlJ9IbjieD6+TLvMMj9K8GDIdLUz1ZzUCCfouGB7LgmAs8Dm1n7KQ82bzMlzx+ZqsS3SHUxutU8hcdyyCvam8+DKfWOtqabXWu0XYxCqgP8xnFIyOO4r0UfIaiNOoCz/deRaUNV+g7cCU/HniaefstsSONplQzBXb+0pZH2AN+cOoiuE64zEQeYWA14DW4tNeTJTzHpGOfwjbgrWAs+8ISsFi+aCzLvKlYln4Nx7XgJNSwcslWxxhpwkZ+r2GNXc3Xb86lR/zxWAwehkYrwZgBX+H93Z/04jvenj6AMKs7azSlmyacOlqPUFsPo5hIElnw7avw1DS0QosfHSm1EaFPgnhfIisIeJK8iWfcIfiO/Ltd/IC6QIMhQA24PK0i/+BjHDFxiJYqauMP/g9GEvdbIISp1NwXWUBLDgFqH2k25alOLE0nRLL1Y5UlaARwrHfagGXttxVqnbeWD4QkbOVwRgvS6vkwKf4dzlOH1W2HqYjvC5JrLQVODwM+MGO/dkxvF3te4b0vNdoI3A8kkrbDh1OPW7QRidpCZmwZNZIE8zTqC8mfuPAm/8QBExEEc2y70mjNhmeIOVkfdoHLsGQGe66kHr/haP4DcJUKePMnoyOWwQTyt4WxxnBU3YBBQA9Vobf8JYlnwCV+dnmA7+VYrlCJ4SKUwGog9kiuVRV8U0kXVLlTtEbti9Be4Lo8icxwbyL7WNy/c8CvVsfl0+gwlB2dWpGJfMgVKvFv099J/tZP1VeIQ6XRR8eBoz/kHsYSWTVq5Br7UBOwOKvW0VUDY0TGd37AQDyzkviPywNslmO5iisvig/xrw7i39eR18uxtp7KzNdT3tvHnjV6X0ZKV4Ty5RBRpsoDvZUOrpUk5K4lr7WU5jbQhY7sil5Ai/Ug/CRyrlDRDvMkM/U4LM2+MX3HMHNOVp87oZzGttVQnqMPqjdbF1QqoDNcquXJNCYxN2YcPOGkqgm+AbO7vshrDy1k9dH8679GEpNR8NoXVXwwFQhcAsIkOftCdeonnCHSty61216CXFhxoD9TmMr5xxpxNRzmZ1iqBGuKhj0b0/tSo9+BeDQT2c2VX09YYiGpwEFuDGwW1KhRoKw50NYHpU9voCVKo+b3MdWrMJtxzI4fB0Nc1J7vUTDysTks+HgsbMESJS2IAyor8F3ADdb5dKf/iC2kz3WgvvMZYi/W41c/c9kV2Zzn+Zrtohk/YNmPrie+RUdr1H64mUZdUTbNaLNiTWF21BVV1CzYB2VHfYFmQA/ze2+IqaU0+lnCq1x/yk0J5wpwIgrVH+00+feuWqf5Gnd0tNytYhOuxwiqeZ3nj9g6RNZQR12RjXier9klWrHaPH6t0dvDnjV6/zmlAcjNzxH62K2PLE34Ai9tktAzChVG0iq9PbRTajd4AcOcYUnWSM5Rh89bF6iNnQE7T6i1l4KT3oJF7QuuyRbEul14G6CrPM8/+ITX35vHpHff4fOMV0jL8OGwryqUZB2MMSbV7lgKHnk4w3+z2tO9cRj8Cef/eIDarS+pE3qDcJa0Gh/OHF6j9YJj5EyAsBR1nQSU2Q4y/xvsv9U/1H2IPRvT+1Gjq7OGkIY7A8S8G5pKHKHwaGPB/d2FNaIo2IrUEaWvNkA/eYKPeIsne2/i6w2D+Ifpn+xx+DtNh0aqEK116xnrfalvAi1BukA/r5WsDxwELiB3C371VYc1eRJER0nbF3cyh9do/vFpoiaoqJLWaNHQGrUPCtNovPk7V/NjP5Zdo9ZYa9T6tVG2qODuUsPGeqAWgXvJE/yTf/B4263M2TeSsf0WwI8JqI3k0eR3ea2V7odSmRfQBqrWggCQ6wWRvuqMBv1UnYn2g7cxi9e1Ru8Ae9bo/eeUvsIlKucVzyxL+KF0uFzOZjtdiREnUeEko1KLsThVcCav0U6pnTDFC6KToVYwuO9O5IJbbao8nG6ZXFpFS1ebCxEVF6HtQQyVyCpCVfA0Ae+AaHqNt2tO4X3fD1mamL9Eg2GwfVCOKUCtLiAmSZgLPAXyTwFL1HfvHJjIB6On02HeJvZ805Mqg3/nV5pQdVQKnICcE5CZBR41YGekkq43ypRr7NuY3o8a9TkQQ+LRmpx6KH/ExQmlzSPm98WxPuoETO4A4iWJ/E1warL6vMFUEM9eo3/N1Xz/3FDlmBoRUwerC7QGhgDVIKZaFQLGJarPh4BcJIhcoCbVG+QQRr6znAHvL+O7zc/i/1gkR2hOlVHpKtDjCVdXQYVaanFMazQ/WqO25waNnqjJqcaWqCKoxdR4VEZDccYvQtuAmCiRJwVRE9T9AmeA8JYwXKKWkyOwNHMz7l4wjTcYCIExKI0uEfy6QI3733IQL7yzMk+jNR87w888rDR6AsiGq6ehQjVtRwvDnjV6/zilHoAjDHmVYytEme9hHwAM+wTEU5nQ0gUu7UMtJbkDMVj0rx1Uxc2d0nIlPJL7GrEEar0JtIf0c1Wo8kV6/gMcAGfwCFIrMH8VBb0dXAG5DpWSNAdIhg2HYFEfkN3Kc4VKiB2SYVOVhArWDkzEslKLea57cE1jRvafg/fwODVYR3h/zofgCLsP9UKGCQ4QzGNsQnSXvLRvJk77wKOZ+hkPoszz1WL6GTWa4sBao5djHlB6MeOEZZpp7PMuLhwBuQacQlK5Ol1pcBcwawrIv5fHh0TEEAkzyPs7kY9D5IVN3EmDihD3qTfvt3iDFvP3ElgfkoART6+AqrB68TDkOEFsVD1GsBAxSPLSdzNhPFTooH5+rVGNPXKDRmfkb5NmZCIYGjXiFdZJtXeCK8B34NQ6lavvqTWcXcCiCSCnCobIxeY7hmBpA+NkHo3xcMWyHzWHuM+9CQ2eQIv5e2kSqI54fugqpdGlw5BvCaJjg3ierxFDJeP2TYdFUKE9kKE1qrFXUgE/9i5vUeYdUlD5EaFvwEf+rsy8JEiU3XlE1kBNjg1HVKf3FgXtlJYgh/sA4cAg8G8aCWu4sYCJucdh22pWfULvAieUca7ldZqZLV5SUZYUtYqcDHx2Bl4XE5jY9F1Ee8mQMCWjgsb7HGZntb168/CqEyyYMJbkbX68s2SimiT/AFU/v8AHLcdDJNQOucTh3u2QlwU92Ixwvc4DB84Tc7wKk3tAd6ACKj/fSLm6m0mDRnO35Gn0SWheM4KEperzgmm5Oajpp18x3NPQ6INeR1nj/STxGZaanZnAZ1EwSYznzY5TEXGSnO2o1jFGjqEJdcIO4BBEUwsqgt8bybzdcSZHYoJZcbo/3kDCKmj1cjgrhvcnKhJO1YY1lZ5GrhCM41O8A+NosOEwkXP98zRqFFvTGtXYAwU1Grfi5tO9uij7Ane368vQaINqh/nW+ymSM9TnOaiEvVmx8KEYyZvyn0AgKhLqY3VHQ6w55LWnecoJv7HJTOn4MUfOt2HV2T74OkPSKmj78k5WDetDwgmIqgEbvAcglwpe4ksqBf1Bg82HSf3dKZ8d9UJrVGMveAAeVKPwaFhZJROl7i9EOq+Jjsj5DSEsFPwno2b0xRVqKrvo9N0SpBfQoj68cfp90nBnwcNj85zQPEyoSIgJSICwWEsy0O1ilFaYEGiu9FtHwBjIOQPzUvL3Om0DnJWDeGHGSv6YUInjIoVz5K8C7AoM3AcCiVwu4DD8P3vnHl7Tlf7xz5ITESExSSUuSYVKK+pWVHToT0pRWpdSDGXolKLVUjoyqKIXLVMtpaUuU4YytO5apWWYMhVF3Yo2SFSCpE1GEhGRpOv3xzore5+Tu4Tc9vd5znNy9tl77bVP9rvf9d6+L5+A+FAiZwh4HPZ935KHww8jJwtlAKdhpBl6AStVP8Vj+9uyst1TDH5lPeyD6yfB3Q1S02B2yi1cbDlAaU47qlAyGgBv/zKOm1Smn5jtsJjNqa77BEaqfWEXvQ4yulAizwoOj1IOI3PqoSY1uyT7M+yva9n690480XO32tGczhsMX33SgW4/7UF2E5yKhMYrQcRLZJAg+nGwSS/qxsZwqVa1LEZEna4f6AaeG6B79/VsP9aH1c17M3DmZjgK179Uab3XIy0ZLY2oUDJaH2acn4gLmXQTc7KYsDW0XOkOpEfIub60IHCQ0fkSeVkQ+YxKGvrGvo87RlLuMfkc4x78GA7FA3tQQmp2M9lrSo82Qz4piIiEoNUg4iSyqSC2E7jKKtRL+YWz1XyJd5pPsDeINdC9i5LR9c2702fMdtgC1xMsGS3NMlpx0nebAqFEyWA+Eb+W9GRKHMOBk7ID3cQq1Io+GaNZY0WElb5b4nAFAu3G2UUCmJcyTn1w7hRrrhOrA6FBSgnX5da8n+7AhZ9rQiNgtjpfeoaj1zgDlflXW6xBDhHUnnWVyrINTXM453vtRjOu3duKrx5gFCxbOAixXRLxvT8BXIRVQFdU78UbpoNTgJ5wtOdDyHjBT9yLeEYy9cAkqk4AUQeqhkAflHK3YOFOQstoehKc4x6mnZyd5QzSqbtmaEMuGCVeNtO+hYE7cOVnL6q0ToDXjYQ/87xALazriHXIlwQ9PtzFki2DVTDGDeO5EQGf8Axz7xvJqUg1Tvww+HZsK4SX5K5rUOtSIr//ywO/Ho7nSAei0uDU4/B5tb7IdYJrVMfl2WvMWDeRqq8BPpaMWig5aBmViXCWhrx6ck5WUiwYSbLa/EvCYMBuxK1nHrkDMT97U6VtAtjrvc1ZE7qedT9wr1iM3CDgCR9UKm+gaU+b/XNT5jR/nlORamv8ELuMukm8r4L3xRtcW1UTvyfVkXr8DOB0ApzqCptr9EVuEFylBu5vxfP2L+OUjLaDqt0tGbVQkkiGRj7U+9AySAGWAofFXmSTAObIXTB8GEp563CPBQ3LKL3N6A88bX/3CQLCYN3mobzlMYkN33dj1fd9OXIgWKXyzgHGolgL9CLTGxq3hhG+KnNWp7oWBDaUSnyQQ3zUfJgiSckAV5tjMpFuDXEceK8uyLaC0BnhpMr29MCogOnmBu/wN96/NFkZmy5ACvxl0BqoAfe6XiRwfRzUAlpD0mk4fBLiDwGJGCvtBGA2vNH2beR3gtM0RrSUrDjRH/ygWX3o1lot9i1YuN1wllHXWbBsxxjeazKaP8haSBlE8FVotgGazYVmL6iIojeOfUpbopxHOkJTEGgZbcd+tnj14vglY+mqoWVUR3wW3g2yieC5OSt5b8NouNu0cxB8k/koY7cszhK3mExof/cRqAbuDSUi9Xclo+1VLcxx1LuONmUAZ1Pg+Ex4VKwi841qqu68nWTFnv5Qx5JRC3cWzjIqZsKqL0bwXpPR1JI1cZENaBkPIesg5F0IGQlBdhnV9aTNUDpU8zUUVkb/j/9kyWiG0/FaRm0oNfvB3SBf1YZpZ4wKdPtsagnG712YZTzHZkL7BkpGK7eWiN9vKhltq0pnTmPEVPR5oxLh1OvwiFhDapgPcfgiOkhWLeoLbpaMWrjT8ENJ6DRcf+uDXCmYPqak51R6kA5MPwlJYiFyl6CmfBCV/6SLYyyAlb5bbKiLSudJBx4FQrzA1Q3V2H4CdA3YxM5zPeGMgCbpPFFvE1epQSYuuHOdP3CVS9Thu/COUCud5vUO8xn9CJoZDbtQUcYUdZLwOKX49Pkge2kq2FOOJqjeorK5gA8BF5UquzTFsT8pGMrOGxi9EsSDkon3zeAdn+msSIBhE0A8KZEfCvgFI20wA5XGO09yc67ANQw4A8f3wlYM33AboH4QBgeEroXzBYZD436HOf1jS+QfBHQCqqiDtxwymE7LM0pz2lG5ltHuwGvQo/46tl3oDWdcqdQihe5+X3IddzKxUZXrVCeZWPzY++NjeDW8Qqjbv9mYMAgxDKK3qqhMKioxJwrjs5mExVlObUDYWBC1JTJSMXCCWoDmxByqZbQ68NIiEK0lA1v9g9Vhz6qsoNdAeEh+7y44YRdwHdFtthrEeYl8VKXxxx6Cr1HcgHrMuihZde6H3NADqk6ATjO2svtCV+TvleEZlLPJktFSgXIvo69D94D1bL/QA066Qosb9Kq7kVSqkoELVUmlBle5RG12n3sc78BL/NHlv2xJ6I8YDvFbIClTyWACSocm4FjGouHcsilLRi8Kjn+otiWjknOdmbl1Kq83MGKJ0r+MAlhvP2MIjGmGXCc4HGc4g1yBZitBxEhkqIBREHvUUUa9UfKpl7GpGHIabJfRrjM2sTOmK/K6O4zAktFShPKXvusHNIXH2hO0/RhHq7UgOUWpoopwrxUFLYGeO0BslLDoa9SKIYHi7btRWpF7+q5z8qiFW4Q36nbSBphrR1iyYTDPrV8JlW6wi47s2NQbPoPj4aoWxbzg1GmA3ZoA3eHIrGAe4yvOd7ifwZOXsHLecyqa6gUhdSAkHpLiIDrNUKzx9nc7jQLuwJJ3B1OPM8rIsyMjI2cjVs8nAVgyBORwQfW5ccTH+7A0+EW2vduRbmyACfadbqCeSW7ABBi6ayE10y5zNbM2xCrvrvYgn0UttAMjINQNPINQRqcbSmnOhlNrWnF+Qy3EZsmE02/ybtepEAntXCAqM7sRbcFCYZCXjFaqmsJuOrJ1bX/4DA4fUlwqOcnoHruM/jirAQ94f8ex+a14dcs03hjyNqdWqf28cUwhxP6ejJGZoEniV8ztz0PsJqmKYUBmmM5pnoP+Oxn4YBTIgYLqS+IImbWH8NmhvN1xHAP5B6cTjAWr9sFeHwEzr71MUw5yIrENUTgybevnSByOBDHpqMip7XXYtagHnAARKXl1z2Te6Po2RFgyaqF4UBA9+uXnfR30qIZezDQDdrUAusOxt4KUjL7fikkb3mDmM28QuVydpyWGvtSyop1K+m/IWUY1XMnO9+AgoyOUjIqzv0PDYJRkN6PD/K84vMA4RjeLSRoOM2/YZfRGG2JN88H+2yShnF66Vyn2Y0+ngOvr8NWC3ogTIJIsGbVwuzGcj+QIRnd9mOlCVYhZKBiOAEe6guwu+KPcxXeiL7AWx3BTxYMVKS1G9AcaN4KUo5WotimToAHH+PnjFoSPMsiKzMags3IDI5pSHaV0OreGf3w/kGd3rGZm15eZNGWuWi0/CfsmtGQtA9jDI5wMf5BuIRvoyg6eT1yMax8gEsTbknMDatOg7ZUsEqXocFhH3h2TdHrTKA9oeu0k13HnyqcNOPx0Yx7wOc26BJXW2y0AY/XaBESo5ODQplQSJzlI9jJuV/u1tQTam4/V6co2dW0hE/ZwNrMh8Qv8YRUsP6QUcXlGafbwWjLqKKOg7v+GQOcWsOKH/gwLX8v6kO70ab+dyP1QvwckbKnCUoazg67svtCVXvU+51F28ULCMkRP4Bc7wdEDglN1jXNHoAiU8oI2Nke7QbMbp7lw7j44KojrW52fxDWO2PfRPYZdgWYtQCyQRLfz4bBI4Cw5PwfcMZqDO6cpugONB0Lv1asJJ4TL0+4h9nWlTsv7gteS0duPosgoGMREoIy2ICBU69G9q1ndoTcDQzcTuxf8+kHCuirM5yU+ZRARO5rTpute+vI5f01YgOgDXALxd4l8SBDhp3SaJ+r9CLmTEOp5eANPe0DgtQv8Ku6GanA5uQYXRGKW41bLqDvQuEXuMqrH1NHVuigj3LxNj1PfLqP/pR1xr9eD5bAksvzHYUqzjJafSGlDWD4YGSt4L8zqvllUBAIH5RwWiuHAQm6N2rQswSI6uu1oBzTuAptPd6HaO5mcHhDIJtGCWaNgO2qxpr2x+mWGuW5MRy32A7MOQWWxBrlMMCstDN+3LrBw31DEXZKHww+TTHVOnGyDdBF8GdGXn7iPKjeuIf4sEV//DmegwTN2gxTAZkRw8oKO8LyfAucaNKE1h3F9LImWo07zTYJSbMeB4xcxyIxOws6hD9Nm8wlFGJPDuPrajgBfX4T0CFS01AdoD0f2BfPmhAkcXNuBhGp1EY0ktFOpv66oBYsFC7eC4pRRzZu3H5h1FFzEOuQcwQssoPG+w/wkOyBGSnz2pvIlj/MZ/Uj092AeY9lKDypdlohnJOK7VLgCdHJM800l/5o3PY/5aRB1dzB97/mUWn3PU7PTNU6gIiwJGD2G04FTR+Fcu9r4748nJIdrNI99AZVCrA1NP6BVawiOhzWre7F510Cu/KEBoovEb5iqu7Nk1EJRUFQZBUcZjUGl2M46BB5iDXKpYHTaIhrvOcz3siOinsRHpDJdDCdCZMBjqzgo7iZMjKbSPRLxgERs/10JZ1sju0GnzuaUceQ8jxiUHo1rUI9ecg01k3+hVs/ErDrRBJTDVWdIRBx1lFHnMcGIrMZgcHn6AYEe0LgJ+F+FJasHszl8IL/+4W5EOwmdFPGRJaMWioYQ+HwwN8cKplsGabEgCugkJjBLTgFG27d6535AOYYVKS0i6qKUQc/6EHZ+OrN3TUPuFyycZghrUXweemHqDowfCcJdwjCQ5wURfYy0WH0OX5RnuNlkaPXWtxwZ2B45U6jaVhuQplITvynEvNxRERNd73MaY2HQEBjsC9S37xwEtVee4+9MJFmsz5Xw2tU+1xH14fvzTWgT8z2sqkKTsO95lG+Y22MS3AXVFvyKu0cqca/Ug9MQ/aViMiuPKM0eXktGc4eDjA4GESihPcimqi4sKx8RjBZQHkAY1Gh9mcQxtZA9BJG9jPq2wrawcEfJog8QbT/WbOSGoDIUAFoFQdOfDxLGLFLF+lwjJ3rxPdoLrl6tRjOOcWVSA7zfjOFRl29Y13koNIRaC8+TiS1LRmO/VL7e8ghLRm8P7qiMDgThJmE5KGnZg2Fi6rN422fUEAiEx1yRfxacGmREJE+AQwp8ftAy6oeST32srkNtidKJAI2DoMXP3xHGO1wVm3PMONKp/t7AKG9IjnPlrqu/kd7IE36LRz0NYmGYH7U+scvoqnocGNyctnWPMb2ctpAszTJatiOl9jv13fEcekWwtaSnUw7hCWyUO9knTtu3lNfcI6um9LaiZ5Cii5+9fhoyWvDBNGNxWVTof1AwELpoO9VSfiV5oC9bthppOKmmfXWENXwmHF76MCNj5yImSWWYLgAijP2d69VyQwZKAZ82fdaIA47HQbM6qMX2Sbh86R7EtxLZTjB9v7GvPp82cnvuAHHfTfjYlekjw5iWNJsIYfcsL5mMS49rXFtek2tRKFbiDirt2IKFwuJOyGhD4I8rd8EukGcFTCM7u1Ga/XMSMAWuNqpNjyXrEFMl8l3B9WkQdYv9Bc/kcDrsn6NRaX7pwPEIOLGzDSI9bxltBnT7AkTzVJhahaFvLGR55+dV07U4WPX5MCoflVz5sAH8BgyH661hw61N30IFx52Q0aZAq9XfgkhCScUJlNbUibH1UDkCutLULjlfhSDaS+RrgtjXb627YAZKRs/iWDOuiZGiMYzSUxFwdO9DiKs5y6jN/goGeu4C4SXtF7kPw00dpA5YnsQVWxA0gYix/jy09ig3U8QtXIGFio10YCiygWB6SU+lnCIJ+PaZLghWop4UFQ9W+m4R4QfQDvyXxSPvEbw3ziAmyC29qDDQ1PPtMlzZe64rySN8Wb7ViFaCUVumvcG+wIix8FVsB5bGDoflINZIWmz4jqSjrrTzdqy7yQ/OaYvm60pFpfFmdfj2AMaA91MxzNv3XBYlP/bzeQJhHeBTuRzxrWRdvT7IWYIHxGyWz1QpWqeB5SMgo3E1lr0wCA7B8ID5yESDpTCnvpEWLOQEP4AO4L8iHllL8MG44pdRdyA0w5XvVnREpgn4BEXklYFKnU+zv0ytnngLliwazLZj/eBfIK5IBlxbR+PT0A0V2SwoUbyZqMX5umwoR4+OytgAORCaPP49S/YNzllG28FKuQyxXTK97jRkJcHyTs/D62RRf7v2ArlbMPiFJbAcXmn0BmdTjAiOJaMWCoosPboiHul/e2TUFfjjjUoccW2PMty+QS0DNV1RKmoh6IuSPM116w5Ew6uRiDjJn+Ummn1vpKub5ScvOJfopJu2g3LwZqDkzxVgEAT1OsbCfUMdWtu42/cJC4F/yWWIThJaR6C05wn7SMko9/R+dcalx2FcLB/wInK8YHmiJaMWCgtv5so3eKtPSc+jfCN6ObBnMLfeVblsw4qUFgF1gZ4BMPyT+XTgK2JF8ShQZzQFOrt8zc27KrFnjaMxaq5xSQdGt4YV3/dHHF5LX1Zx3K8ZjX88zyVvb5YyHK9tN/G6dIWrY2uz8GPDY1vYOevFrY6o0AIYgtLnkfCZSz86ffpfUjwW836KobxHTITKExMJ4CLyd8EWAUvIngKVBCxNgJZiDXLfGlxir/FT/H1827YL74WX/zJwC8UDLaMjl8ylF2s4LBzbKBQXgoF2LvuZP3S4StnNRNVa28nFst5tQHd4ZfIbzPniVdqwl+3NQ6kdcYnL1GEjTyL2S7wzYogf7s+S5WqJyS3OWctoSyCkEYqF2wuIh3/xJ5qsPUeKx6osGfUERo8F8eLveKXFInsI6IpiyAajNh1Ui6pdsDLxOYZHLiX0i3B+kC3Y9UAP3jtqyaiFgkHL6POfzKEbGzh1m2S0KXC/2492pacbViSgJKQ6ypDzRJ3dH8M4BWWsusOiGHYuegThL6l0JYXMadVY9bE6Uht3tzJvd1SKfbNGKHmrA/wCG+lDk0/Pkei2gvlpRtnL4Ikg+kgQ6Si3sK5QzTCNqPMmjqDjqgtqTuTUr43Z1bUHs3bmXRNrwYIBV2j0Et2F4NOSnko5x1Lgt06CZ+VqNgt3bi0vo+zCipQWAakA3WHZp2PYs7wb0fbtxel5tAGdg+Dg5g64Lnds86DVZTr2voUDQXx+k494HjlX0E8M4XtxnkU+sEUk0EjMRr4seM3tdURnyegdRrpQYaBrY8LGgrfsS7trcbgsuYbwlYgrElFb0mnSf2EYzLs2jimN1DEjvgBRR/Kpz9P8UKUJy2c6iluG/WVW6keA9e0h88/VqEwaNfZeZvwEoz7O8vJayAupAJ1g8Rdj2TRlUFYKenHdN3qcznXg5NoHeZj/qA1u9i/0qk8bpBNBtJP8kz8jkwTh7UN5rO1emreP4LH2e/m4/TjkacFTLp8jHpWM2GDc64VBlowOB3/ZjW7X4qhx9DLirzcR3SVitKTJW+dgMCy4NoYp9e31o+tABElm3jOeq2Nrq8hoIsoY1X2FzcgADkCHQQeR9wp2//QElb9JZPxYS0YtFAxxAK1h4Rfj+XJm36ykteK+bzoHwIXRjTD6AWpXKRhxWW8U3VI9+/fJKC10GqP74lqIPsXvta4hEiWDNxhZDfl5+XWUU0c96wFhI6G2fIK20amIcRJxWCLel4hYSZPR52AYLL0xmilB6jyDN4OoLKFtEsog3U/etWeaXvAE/HaY3eI+xAeSsBcsGbVQULiz53SIZZDeIczPhL+LQayUu1CavOLAMkqLAE9gwaJnafn0PvjQoEooTg+vK/ZBAwEPpTJ1Kk86yqj0AwaPBBEmmVTvDf5dLZQlq5TBl4QRvY0CPoiER8VCvu3bCpEsGdHP0cDN6fz65YmKuIRNhs1yGdXfiuMc95B8yJfMEdWQIwTyHYH8WCA7Cyakv8nkze8j3pQclx8hLkuOjr2XBmIba9PyJ7DQtBMxwNqdsOuBHqxwG4p4RPLSDnjRzWhdY8FCTvADlnwymL6PryJ2Zs6Oj6IgHbUQTU8BGkEy1aE1SkiroKKSdVCZBGtA/Cp5osNnxI2qBx+jUnp1em+G/X0vfNx/HPOfHo64KXmpX/73uTm1LxgImwib5ErEqzfZQg+u2GpxdUNt5OLKyC0C+YPg2isuDEz/B2Er5iPelpyVcxBJkpUvPMWkPnPhpGlOZtYkM7SxGgG8DlIKHvH5NyJY8tI69XzSKfcWLOSEusCKDf154vHPuD7T6LNdnHrUBsgUoC0YaXH6DPru9LTPxpzOG44y6NIxnh4JqNTfffCv64idSkbzc/BmpeWiorZhr8FHchfimKS/eA/8D8Co7bBvOVxZD59vh0XbIeMUE8RHiL6S/8jFiK0S3ryOImjaa7oWc96TmRtY/60ZJ05DIxBpkpc2w0Qv9biqmMmCFgqEWuPpUPdgSc+iQuFT4IJYT7wcAUws6encMVjsu0XA9BYgNt0kvp4n3k1vsO9kVgVHscETeBJ4S86nFYcYHbyC8DPqHDbUojsoBP54YBc+xLO2Wn9W2IlStMrVbIFaRfkCT3vD0/HLuEQdPhLd2JrHvF2xR2Lrw4Lzz/JizAIO121Jy+DTbDnjyBLqieNiYridFdBrz03YB9JVsH6KSobyxjA8c/Iw6/Rk/bcn0McLoq76c+/hi8gAwdd+qm1Fcad6lQRKM2tgWZZRl6+ukfm/akQEq2Vccbem1ql32+V0wgnh3wndEEdREUYXwAvSW0DlM5LmIQc4OuohxXiSSM43vmbndYNOW7aSSlUWiU5ZFXC5zcEVeNkblsYP5rnwlSwLGcRfZq6BnahUYn0uXdtqs5/rAfj+3Sa0WX8C9oDsJmAeSjhT7PsXpNDDDcXCPQaeD5nDwrXjkYGC5W2NHsMFJVcrrbBktPgxvQVU/iaRmwlexN6rKiMLwzxdELij4p+r5RwW1hwPv+1DRT/Nof+6wKOo6KhOh43CcNlqbWQ2alsC7Wgp9/OReDjLhM1tDu7AS3Xg7ZhxTH7wfTgUidEkzRWDYEm7nvXffigtrM1Hd1SiX4Z9mzblczuzzrHys2+z8wA/GkTiV5X51JaedeayjtIso2WWfXfYdKYtt8ixSgrTV4P4s4SM6SU9lWKCxb5b7JgeBLwFvOqK9903wHb7ogEZwNIRLxKw5GeWn36GNfyJBsuvZDEj/GPyQL77qSNysGBJilEdo+ej34OBzl3g1x3V+CthrNn7FxgOv8o2TPQ5yPwEI4kJ07GNgL6fQPV+cbzIfOTD7qyPhMM4erQ1qaj5nIsSwNuWzm8ugmsZNRH7JZdlDUJtiWy116eZDWbzDWlWsXoxuyERulWJRu4SiPRUbl51p24N1Z9tfkr5UKoWigfTg4AJ8Ps7HnAqO7FIcSEDxfM168HpBHz/M5UiJIM7LmEA/6Kq/Y58ndfgLBw98BActR/ohmONpt0QpTt8PbY9SxnO7rVPwKsgZRAv1ohgfmL2ejtX1BKz7yJw6X2NJ9mI3CIgDGVUanKlNPu7+XMGsBcebH8S2ULw2YInEF9Idu54mM7P7FMRUDBSd/PSGGmo/RfBRxkTeGTAvxGbJb/HC/b7GImQFixoTA8CBkP6O55ZMnq7FiXJwEehE1i4bzw00h1AdZdQP5RrKQqlWCMwjD8ztLEYaJ9pIJDAkertkbI5L/oc4/2E7DKaxTi/CEQtCSIeFYWNwEglNnMNa02mU2/Nta/BKGHshtFcRhuwOa1CzDPRpmeSur5vUvFqdBMZK7jeAKrOhfdGWL0nLZjhjteiK/YWShZKAm8NArlSIOZIOLoKxRBelt27ucNK3y0kAlGqKiIC0tsB06XSK7Zbq/3KD+nYW7/sg4uz76ULO+jAfxBpEvFviWgnebbbaqLv82HVIXWM2VC0oeY12hfqyAaIQRLfn5K5TlXOdajNsohBPJGyjUqrJS994eiH9USlGTWUQYimkuQEX/qKN1gSqdSns+I1LybMbKCxwLpMOCR+Re4V1I2NYULGRzxK3ux/5rETUEuFWGB7GqQ/DvKgO5WjJbVkFaoGqP9NCIYv2ELFRCCGjMru4P1uDJw0WHJvBxKAiENwsee9rAx5inDa0GPZLjo98l86ffpf9tZ/jO1Ph8JGlKBoY1QbiL7AcJi6YxLihqRL+Ldcpyq7BvyR6RFhtIz9gcpfSMZvVvKsZVQ7jRrJBoiGkuN+zfi85xDYhTJIwUgR1sg0fc407RMO/UK3If0EXfZ+yx8/2QV3Ywh2QayFTOz02dDv6DY29epKpW8lra9Bt/oqFmXJqIVADBllCNT8+y9w1GBuvl2Oo9i9ICcJlsvBeN1oCH/qCbwEwwdgGJwRGBrO/MQIRBEgPYoS2Hb27VFw7TgP/eEolf4hGb9B3edaRnV9dz0ZhNgjofd1VE7VEYy4qrM7NcM+B51LpA3JsygB001h6pnOYq5qNfMWmxvQ6Hc97n44G43oJfnfNW8ihvvTDiWjgQX6ZS2UXxhFIVdH1S7pyVRopAPTh4AcLFDOqFthgykbsIzSQiIQJaYxwKte0wm657hKjXNxrBkpLmSgVGR8BPAZvNH1bS72vBf5g0A2ExztcC8Mg7oPJGSpME1yr9N7B3eBQbHLaBLzI1IKzjcSPCYmsENcwUOs4XQ1X66FuiB+lYxeaTB2jg+Az+RiHow/hFwpWHW3kZ6cnyfVeR2bijIq106BzCeq4cZN+stdDOtgGM4FMRj09e1JhPh+IM8JfH5K5cYhRdEfD3QowDgWyi8CMWR0ivdUmrqc4LqdPfZ2GqWngVNbobNYz6EqLZCzBDJdkNpbwCvw2Jy9Ro0mGMZhR7ixDnwGRvPmjzORQwRygWBrz/50DP2OaV1nk/lKNTa164q4KHlppTrcFZhSH9bLZTT58RwyRXB/+/NwGUcjtDChpxvAOJDhghpcJXD1aRiGiuAWlKozE9WZYg30OrOT9b264/6N5MYJtYyPwJLRio5ADBmd6juJphzneqJTS5RiRhyKFihiI3QS6/ipSm1kuEC2E9x8V2CYwjpiqaOK+qkRiDIvtaH3DbAVpRUj4Go49I5AfCAZtsFw8IYFKBltIX6Gf0Wjum3rpm7m2k+N3K5eu9UuoGpJz9rnFArZGjvpcZzHMted6uvdCgeO419T9XXzRvVMHVYnl2lYqCDIKhCDQyU9FwsAb70CcuVdqGbhYBC1lR9YRuktwIZ6nGfiQh0uq0WYDbw9ij/1SCfvbM+EyEMoXZYGtIWpsybR4q2faTLgew4fNSK1Wu14Az3bwZAdi6nDJeQj7ix5Br5CJfzosbcCP1T5nelDw2g8+DAhKCbfGhGXOUUwN/t6sXae2jfD9CoI9L76d0kAVh2Cv1cZxx/5LyF79jAiwHH/nMbANEaGff4nMiH9zyCPCNy/kfjtUe1pfAo4NwvlF1pGXcggkEhSb6jtVW/T+TJQonkadW+mpgHtYOG+obgvkvBEuqojNafQuqBqMMdCLdtl7nP5CfmFgP4oy+0yykhMAM5Ar8d3MuaF2dwz+CQdgPH9oPL3iXzDo8jvBEzDke33Vi5Cp/RugC9H9SWEcGoPP6esSa98xs1wej8K7IA+F7ezstdTuC+SBG1WyYeWjFrQyykbmdQnKktGb5fjKBXlKzmLMjdtLkAHJaOVV0mU5J7O5ehmGPHdC6jU27MYXPja5D0Le65T+8lztAFGDwOX76+xRjyDqmjXleGeKI1dWPPbrN3PohgV4rE3pXLaB/KmMNSa2Qbsh9/CufeBiwTtsEdJgyyCMgtgVfmVHuiI6e/xlSivrLz5GqUXL17kkUceoXHjxtx///3MmzcPgISEBDp37kxQUBCdO3fmf//7HwBSSl566SUaNmxIs2bNOHKkfFURpQID3JRKOURr7uMntXDMgKoexa9QdaVIDHaevbYwaMcyhJBcJADagg/xWd3VwKBD6OwGB/Y15ygteL3aVBZGOCoZnSallfW0rrM5fe4Bzsj+iFaSF90+4ECNh/lgrzq/WYUV5DGVkcPfqag19to0mGSbSid20fWXTYyob0RLtX83J+PXZh8jGeXNPZII8UPg514BiGuSZm+p7VpcpweoVKryDEtGHWGW0cO05j5+JjXTsadvcUPHTuKAkC4wQ85B+Esmpvwdrtp3aoSalCYZagAMg2F1PiIzw4X/jukEWzDIhZyZb+Nh/powzu+9n8uyI6KD5M8+/yRuRD340L6POS23sJ4jMFKLM4GjsHbMMP6Pb2k666DK6UvDaHfjPIbNaYxE1PXshcGX1jN6wnuI/0k6D1cy2sO+eyi3zxApLbBk1BGh7aBbhitNXeAHWnAvP5GRaZDe3c77IRZo3AMmZHyEOCN53n05jJE4ptCaKfZcUYUs1+1HH8GIcoLBzpuK8iad5sqQBvwiOyBqSH6vFYdyBR+376tzjfRxhYEWshj7GM5zCbHP2Zv8tbQ7SpPqVOXTcDQCsVLSeS6cshP76iTO8g5LRp3hDqRDi85cjyzpuVgwY6YPdlbe4JKeSrEjX6PUZrMxZ84cTp06xYEDB/jwww85deoU77zzDp06dSIiIoJOnTrxzjvvALB9+3YiIiKIiIhg8eLFjB49+rZfxJ2EO+BeBRq6wNG0FlQn2VjEuRV/6pFW0IHAsBMgpkluUhnpIlh+9/N826kVe891JagLBKEMO38UJ6BnP3go5gAnPm7DuhRHNltwVLs2UE7ik4JhD65lzoTnGSPeZmli8V2LXnDo32dDJsy89w1+4AE2nO+WJV7mxCL9G9hy+JyK8m3HZkLQvdGsf7w77i/E06qL8hk/jWoDUN4bhFsy6gizjB6iNdVJzrqftFF6O2S0HjD6exAzJUdpwc9vBJCU5kvfN1bBV67cGAV0R61v2wHD4MfuDVjx6WiSE3xVC5YU06Dml45QngF+gx5Nd/HsCwtY2v9F5VEypxGYJ1YUpAGnYe3rwzh57EGmzpqkoqVgRHpzaxWjkYKqb42EDxMm0G3oBiq/k0irgdDqSSWjFYGczJJRJ7wOkS6BuNrgBM34A1dvq4xq1MWuR7tKVojhcCACbhzGiJDqyKeu2UpGCetpVJ6FNjyc0wLMrlRgVTzdxL9h7ilURDMK4053dXoVBs5RUHtdaJZR3BIjOTo/aFop/QRLAsJh1XXEo5LGLVT17JQFFSNiasmoM5IBT3gMYlPy3dnCHUQ6sEXcYL18n/LmNsrXKK1duzYtW7YEoHr16gQHBxMTE8PmzZsZOnQoAEOHDmXTpk0AbN68mT//+c8IIWjbti1Xr17l8uXLt+8K7jDcAdfaatFb3S1Z9SUEtUDzUEqvOJIdzOrqRQ+4Ip9D/CEVKQXPiiFsGQLxl6B9/yNwQ7B3RxtCA6Cnm1rzervAtpUd6VV3I3tGGb5UZ0ZAb1TEYkQd+OqXDnAGft8haCoWssG+360adc7ras2yq9WnK7A+AuJm16Pv/i9ptVItBV7qAMM9HNfZznMwR16PALER0Kfrdhp6neOVHW9kpVN+mpB3W/HyAEtGHWGW0apcJx4fqmI4X4qrH5+zjCbLoQhXyelWgfz38U4EjYhGJMLbTIIb8CeP1chnUC3HRgEt4K/8nVpPn1d1mzra6GEf1EyC1AloD0tmDIY9cPBEU5b2fBEiKVxUNCeYvT4ZGAanG8owPQRRzX15c8ZMWGmf33D7nHIyhs3QxEefgUiEFQwl/YwnI1fPhUi1VD9O+TdMLRl1QgZM4h082ykZ/Y27sngQNMdsUWEmA7Ohbtkbsj+im4Qxx1GdAPegjLoL9j197EfpYhVvDObbWAw2BR2J1G7WdAzyIz/7fsn2caMwKJyKCu2y1b+Uu32eR1C/WiwG+VEghas509d9AppcZ+QPcwkE5GswyiPvI8sDLBnNCbEQdfvKXizcOqKAR6tshzFTUM+c8tFpuFA1pVFRUfzwww+EhIQQGxtL7dqKkatWrVrExsYCEBMTQ0CAUSTo7+9PTExMtrEWL15M69atad26NdeLcgV3GEeA9WcgJgVCCOcUjY3Fo5fRevtWoVlvbSh1EtYCnry2iS30QL7oztqmKkEoCUjNhPgNIH8ThB4LZ8gvi8m4UQX/HyA9w4see3cxhZmqfgbDBwxGG4kBXjBfTkf8UzKCJci6gq981DpSG48axWFsmykYNKH+9ddhe7tQKndL5Dv5Bl33bKLqwPx/R21oJ6NUcexOODGzDXP2v0pV6Y0nxd+EvbTDktHsMvoT92FzMe6D4ljw6vu3OhBWH7pe28lHvIA8IGgUekGVef0CRELQpWg+GjuMzVMH4iYTmRw0lXn1n+MV3zfYPq8Pf2KtGiwN9SzRbVyqAK2AGdD0rYOIYMlz5/6JnCh4sNNJlSvsXONZVCF1TkkIBoZDncRf6TZtAyJO8tSOlVR+MlEZpZC3QapxGjgENS9dY0+7EBZ/OJYff2hA57nQh/KiTgsGS0bheFf4Mrgvp3ZDKw5xisbYXNSt5IpaYmlz71ZiAFp3uKN0clgQtJY/M0yshehTGGmv2uUZizLIqgNtMGo0g+0jZKCMV+05ctaMQfZXXZR2jgO+Rmnr2+VyScYwmEGlTMSirl7Pu13OhwKODBHmPqengRgW1xxLiqxF2i8w49p0QnIbphzidskoZUpK04Fk+FckfvVLei4WcsJ7aXBufm2UvJcP0qMCG6XXrl2jb9++zJ07F09PxyWEEAIhCtdY97nnnuPQoUMcOnSoTHlhYlGP/iggkChi8XVYyPl7FS31SKsFd2D0RNVUfDhLWS16sGSjOr/e7wTKMI0MVT2MMnHBZ20q4oKk9tSr8CdFxuTuNL5OTgoGfr7agNmfTmNnp4f5xede1g9R12YmKCpoDWl+12Wu6auLqiXzQ6WGPBa5l/TWnmzkSXa0783apdnXx+TwWc/tNPaKnylwst09+H8RT+iTyuitCKlHYMmohrOMXqIOrqYbyIei3c/aIAV4aSyIb1PpzpecGNQGPkHVmIOqqdwBJMHoSyv47o0WVK12nbenvs64ZR8zZ/Sr8ApEEqjSG3TfUjf7CdoBo2Bk67mc/OuDzH12JHJ+JRiCQZikURxCqo/X5QhNUBHcB8A1Bf7If+FRWP/jYG4e9oLXCzhuGuq32AVchA4XDzL6hfdosv4cLLq1yrqyCktGFTYA08+oysgALhKHr4OMmstgbiUJQDuMAIa9AGKJJFrUBfahjEtzbWd1smoqOWv/zhNlnPrav9OjaTeo5rhPRWmxNhhmdLJ9LN1/tDg1kB4v2X6+uk5z8kdpWB/7+bcXYExdEZ+Kum57Gu9vEdwz7zJVxkEPtlQYupvbKaNlL+aYDmy0mOlKMdaIK0yQX1P0kFjpQIGM0vT0dPr27cvTTz9Nnz59APDz88tKVbh8+TK+vqoGo27duly8eDHr2OjoaOrWLX9UMwexK9M0P4PYwwau3urWKEqGtzvw0hIQgyT7fdrRQGxjA47k9EkoshBtpEbPgdV3P4tcLNSruoBN8Bs+BGPuOKUipN08wP80NAk/h/yDIFXsY1EOqa7FWY+pjXV/jPJsV6D+JyASJLMiX+Rc0yYs328kT+UHvU8sKlHqOnB/6Hmqhf7Kwg1DCa1fnrLtc4clo9lxEKjDJS5RG/cqapt2ytxqZM4cgQlbAGKIZHndoUwaNBcuoQww/bKTBWnDtO2lY1xNrE3UG75EPevLdwtbwDuoEoD/A+qgDFIfoAswCua1eI7Fc8ay/u/dGdtzsVpPayIkcIxGFhdcUAbxEFTwxwVW1OnP1Knv0v5/XyNjBczBqH8tCDJR9bAn1HhTeAtuwMLTQ7MSEMs7LBnNjoOAH3FEEoh7FSM5VZPeOfMLFBQ64vrSJyBqSgg9hRKeKPse5pHNkcwkDJfWCpRW8UMZmbrgxUwkFIgSlij7Wbdj1J06z6g4oX+hBAwTXMcyNQFSFAWP0upcKp2enKyOH3ed2UvG0P7uI5wonomXalgymhOSbo3N3cIdQTrwbt2pMK4z5YEpOV+jVErJs88+S3BwMOPHj8/a3rNnT1asWAHAihUr6NWrV9b2f/7zn0gpOXDgAF5eXlmpD+UNY08uJrF3LbVwA7VQ9DJUQ0F9FmbKAxswegaITMnR5veSIk5m0RiY22mbWl+rmkrg8EU4vBuOfwnRYbA8ZADTmIF/a9UXsBnqvZ03/HitCcL1d2QdQezj6nh7skaRko0ynF4a2hDwQxnF2lD06wK+wy4wp9XzTLx3AWtPKrVY0MWIOcU4GvUbRu6F5ARfnl+7HF4vD2KaNywZzR1jTy4m4pnmuJrSj3SkvjAwy6c78NJrIDIkK1s9xdDQdSpLz5kULAO1ZtyCiqBuBXZBvc9+pd6qX2m75RhtJuxl944nuNEJeMH+mgByDAwJWMy4GR/zxoRX6LNle3aP0a0apPn1dWqLKsC7W31MqFOFYevX0vKNfXy7swvMzeFaC4IbKArxBKgbl8Dcp0fy/JzlNHvLklGomDJqA8acWUbEkOa4BhkxQFB6ojB+f+301HI67DUQmyVMj0fFZE+ghMg5gqnZFjRxkE470N2Ho1HGZ7BpP1eURmtpH9sb9RBIwGDW1dq0KBrVnAJhlhLtytFaMgRlmF63z7kwacP6t9DXr19RQCxhA+cjj5Z/FntLRi2UVUy/BGPen015cO8KKaXMa4d9+/bx8MMP07RpUypVUjbszJkzCQkJoX///vzyyy/Uq1ePdevW4e3tjZSSMWPG8NVXX1G1alU++eQTey597qgjBM8V3zXdMUx/C8Qaiewn1IITlEcpEpbHGT7ZgkCrhPEjQbwoOXh/U9zEScIxVE9OxJpaPabnMNaAdhCybw+h7GHWmulKV/aApnUOcvJCC+SRysT3g/2Zhp/XZnq/VTjP01w/qqPIPm7g2Q6e2rWSTnzD6KYr2H7S+M2cq3byO5c+T0vU8qChN9wVF02YyztMvHsB0y/mOkSpwWLgUt7imCMsGc0d098FsU0iqwoOf6m2uaJE4SBGXKAgyJLR4SD+9juL7/kzI3quMsL6ZsIhLUAu9u26DYxZwLyBOSB+kVRpkcA/vYZSmZscohVvHp4Jh2DdyB70u7gNFqAMujSKx4LLjTW3IypC6qvOFRPgjf+P8TS5/3tOHGoD76EiwjducS6eKIO3A8gqUOnfklf7TuaNu9+2ZLQCyqg7ELYExAqJ/IPg+FYjWTYVdcsXVEa1mZalRx+QMCoSJem6K3dOizatPbWRqm9qnZsUitJcmqE3FuVeNdMo7bf/HUvhTOncoImRtGYz13x6m+aWijKWG6GM4HSUmzrBdHxhFqrm84JyZQfzrPyMn7iPTqJLEa7pzqA0y6gQdaDMSSlUuvJXptaqVtLTsJAHhgIN+A2YX9JTKQAWI+WlHL/J1yi9EyiLyhRg+pMgWkl+nhJA0IPRaqOdqOT4SWWnFjT1yBMY7wuVTyWyyGcUDcQajuC45stpHakN0lSnbZp7r1sPWLhlKM/vXw57oNaU8/yLgXTodJDI3Ub1i+4fWpA1Zn5Gq7NKTkXxAYagVKsPUN0DNlzryyzCOPF4G7Z8qfzNekFSWIIiPadglIc9A2gYD5WWSOROwdrdar90VNVQacStKtM7gTIroz1U+wfZT3Dcz1hypaPu+wsU/D5zR7Hsevx4k0n13mBmpzeUwWk20HIySjXMkU29vSkkLXLl/1z+w7EX26oU1zfh2ZAFzGAadRISELuApRhr6uIo8DbPERSjbgtgOMg6IG4oo7Gn9zq2fdGPa4+64PHa72rtnVaEebgBrYEXQPrAa96TeHPGTOS/BWv3Gv8LS0YLj7Ioo+5A2FgQ9SVyoOCUn9JJmin7BIYpWJCxXFFMsR47JLQHlU4bjVGDaTbQCir5umZU11yam5tFYbh0nV3HRYHZUNYuWjNbhT6XNyp9OBWDrElHal1zGS+/82pjV5+vBzzlz8+fBZAgorPYsksrq31pltGyapQyfDrTlhaultbCnYU78LdvJDw6C+M5VFrZGnI3SgvFvmvBEYc3gv+UCGYRZrRRyAQ8oFn9wqUfPQ38MXYXD/v8hyE11hCBofbyG8NcL6qVeTpKVW7ZCsNrrEBOEcjPBZd87qGROEjsbnXbhmMQ3ee3xjRn/BVU9dpQQZeW9s/aIK26D/4S/w9OjGnDYbtBqonubyXhSc9d19gmAWIIEAg3tsCAOkqJXijkuBbKNg5vhQYv/MjbvuMcovauGH19CwJXoD/w6LVdNKj3MzPD3lA3WQpZ9eRAdsKhTNOLHLZHgOdr6Rw9+RCX59cg/mt3rrVwYWHii9S9mIA4Cmy0n6eghmB+6bnOY2hDcRjgbRik73iPY9uKfpx8/B48Fv2u6mN1yxgbxjOvMPVGGShW4jgQGfA0q+Ea3PjCWPZn56+0UF6RCpyaBw3G/sibvhOydJhGQ/Ku/9a6zxV1a/UHWlw7Cu3TUdotAsPMza+S3DWHlydKM+1FRVzDUU2MjgDf2N/1+NowLa6FoJnqSf8qOtXYFeXqbYphHkbhmJ6sH0bm+RRkbuZ+qunACfg8lsDEaJp6qKtNzv1gC+URV0t6AhbyQyogzwjUUxBKr0GaNyyjtAgIdIEZTGPZ2jHZF6JeapFVEJLmusB+2Y3v9ndkV/sezE80+niakRPBplaBOa1B01ELvO2JELEXIo/CWbv+svPr3Rayei0KNpRKD8FQb+lA1cEQ2OI0N3/1Immp8oRrQwHTsYWFK0YljysgD8DoAe/RwWMP6SlGraqFioNAF3iN15kc/n4WgaBeOupsgoI4jryBs7I9333ckXMzm6iIYWHJH3IS0hTUencB1PoyEe+IG3jE/47rZfv2lah02cIYpAWB2ahsgWpW7EtWa5rj3kFM/vB9Zg19kft3nldzScQwpvW152Rw54VM+ziXQNrgvoQLeL8TQzuPb/HzKHpNu4WyBz+7jE4NfxcfN7VN6zRNzJcbzLrGF/hOPkGEe3NUdPS4/Vsd+XN2vRbE5atdpDqJOA6lVc0MvN4Y2qUo3PtmONe7upr+1k8wf/v2QMgq9NHS46xRncfND+b6UtXGpLnXYaraO6BYerSC4XOYPrakJ2EhP0SOAT4v2/17LKO0CEjIhL/MW6NY5nV7BL3Qs0H9IOXHzIn91eyHHTER+n78JTJFsHy/EfFMJ3e/a26EQubvNWJRKusgSk1/jWoZnkrhko1sTq+8kI5Bqq/VWwbg5wWvLHqDl/gAusDxNEONmpOfnK+vIPPUqlt3botLgI8uTeDg5g64epDNC2+h/CMqE4bOWQdfgd+7jt+lY9Q557U89QRGj4Uus74lfqQ77MRg2M0PBaWQPgzMRj1HXgfeQpEjncZguS2IEVwYIa2Cynfvhwob6+xGN+jMNzR44Uf+mrAADqHW4vp6zQZpYQQU+35pqAAWKir7isu7HPm4PVV9rcVuRUSsltFvwPMtx+8yUDIaSN4y6gqMGAn9g7fCjViMnqJg3FW53ah5jayFSKftas2mi8LdURpWu5GLk2hEG7na6DVzfwehzHU/DINUR0ydr8Uc+c0P5tizRhxwmtPPtMyyzStSX2ELAJGkzyjpOVjIDyuABn1/pGg9BkoWllFaBNgA+TowDDZ07Oa4CHQBvKC9ryPbrBnVgfEBIF5KZfHIIRzvavTsM7Ps3iq031TXf8SifLwJpu2FpUEwj50btO+4Jaorl14SeLuA6wFYmjac8c8sJPqiSjjS6UDFoc51+q9OumIKqkBtiQoG9SmGc1goW0h/A/gT/DihAdXJHkMIJveMBnfgRS8Qf01lQtibeD9+Q9WQFjaPPTdogiRQxucZlIF6BrUA1N8VNiKZ39xcgADgSRwNUuDtOuP4dcXdfMVjiNPAAQzDWM/3Vpl/9XkSVPoumfAMnyjDd1ZZVaMWior0N4CnlIxqXakdsjaUc9eb7E4LvfQaX0e1Z+JMNMpI0wwFYGg6chghP5i1qB5D12zq+k2HKynk+M4wu6IzMCifzCwLNtSqIgqjjlRvd573rWp3szs8CagHnwOfKL3e9BZGtVCWcYKWXgfzzFqwUDrwJlNQrvbiYES887CM0iJAL2yXtRpE3wubVf6QM+5WPUH9cFwI21AKddUvfeFkFUYEryIcozIlPzgHRJwDIwUNluh9iwpz9QsoxeUOxJv28ekP1QPiuPpLbSKXGwZpTnPJ69ryQgZKhV63v7MTqAVXuntxgoK1ErdQfuAHxCbC6vt68zhf4ONmLLl0SrlOEaxO9liCJ/Dl1S7wVRXefWWqkcJqRl4Cm5NQ5vZ9ccN5bBfTuy/QE3gAB0bgiDr+TJ73PtOHhhF0MVoZpOZ1d07zL6iA6t9Jk0PZo7K1LiWq4zsoypbiSH60UHbgCSRdg5X3PcVjfEVdD8d7QKfxBtv3df7OG/hHzEBon4ThenU37WGOYN7K3WXWbjnVnZqjkEW5e52JkjTLrtm41rHjJNTTbb/9u9zSdW9lDuB4rfZzX4OUDpUIrV96SY4s3C6kclI8SOeSnoaFfDHw5GZgAAUrHix9sIzSIiAdSEiEv8xeA8tdYQyOpCcAblC1CfRwUbQEWlW6AiM6wJAVnyMfEKw6k7OBpteLxZkUdKswzyO3tbVePPg4HePtAvNWP8e9Hj9BJ7UtisIZnAWZn4ZWpUnxMPDpf/AtD9PNS6lxCxUHuh38wFGbufBxIzzD1HZnXkpPVPMDM/GRNzC6HfSetYPvnm2hDDTI3vOotAqpM3QtqC/wOKqW1EXVdupa0r/wD2gCz/ORMsB1ZqAW0uKIDDtBVgGvuVfY7NuFJApOPmWhfCAdSMqEwWHrif44iKqTs+uEDAzCPPP94Q4M6AjPPrkaZbQdMR1RVqFTaM2su3rl4IsySr1R3MS63rW4qIdyYrIAZfzGssWtB/JWehRbKONIAiJ4U84q6YlYyAermgKPlfQsbh2WUVoEXABcbcBSCJ52hOc7zjFqpkAtAO0LOp8HYICXMtjcUaolbM90mgz9nusNDP6+slxTpSkXGmIEV7Rq9ZkJ43Z9zOGdDxN90Ugp1v7Y4oC5+sfdRZ07KQ0ac4oPeAnX+mU1ocHCreIC9pTQrdB85AHenjEui49SR0vBIEpphpHVUBeYum8SPAptpx0z6khL+02U1/yqoJh2O9j/zlR1nWTA3oA27HuxM+s7dadm3DVV9xlPwWpnCzovcyqEvSZVZEANt6vMIsxi9qyAuIBdDldBy5H7mD15jENs0kzvUxdlmGoZ9QZe3DULNl1HFWBrqizzzVZataozY4RmzNU1nVoStIHth7p6G6rOMwr1C9yu3ALNBoH9fPuYy8uI16xIacVDMhDFgqkTGV7SU7GQJzJAEYOXUcpAyygtAnyB1DSIjYBTka1YuGy8agyvW8PoND+7TnGtDz0D4FFg8HCYvWwaJ/a2YX+KY8ClOKOHxQ1zwMT80v7cljj2TrUB9RtBq4nfMr1TGHKg0VHNHIAprmu2oVJ3M+y/fTqQiQvJVGf70dLb/9DC7YEv9pb2l+DomYeY/MX7NB7suIzTSWq6R25L1OK370B4c+pM1rXqodZ+HvYDdEuU/FJzSwI5hZg0XID6QFfUtZjauaT4VCL0WDjec2Poc2m7ipIewqgl1WMX9RqdA1j2h14alUmmOrGUXhPCwu2BltHoS3D45MOE7ZhP0DDH9mb6ttF8AW1QmUfDBsOCHhNRKbuxGFFFLeGl/W4yu8XM89amuIY76qmkDcVo+3azpi0OaENZa3SzwKbyCwGEjZ2e1XrNQkWBvZfDm8fxP1HSc7GQLzIiKKvN1SyjtAjwd4MNqBftgbbw5gsTsusHnTbnBvhBqybw8pKZ+D8bAWMMX2duCUelZb0LOa8pdTWLJj8wk9YDsAWOfNieaVNmE2V3sWpxuR1JVq5oEnsD1Umm7m06n4XSCy2jnwLpbYEWN1izsldWCmC607tOnGsHvLd6NLSGHinbVGSxzp2c+S0ip/RdbXzejSI2qoNRX2qPWC51Gw7TYYOLnQrsEirwVNzQDzJd7mIieqphb4Zn1ZRWLGgZ3QrQCWhyg1Wf9M2qHzU7OTXxkZbRN1dOgG3xGFR+7mQnHyqtcL7TdYV7ThEOG8pdFmj/PpnsfPXFCRs5dS+vTxRTqkwv5nNZKBuIBbbTuMlhAkt6KhbyQdktVLOM0iJgeZoS01jg1CW41tCFqR++qxSruam8uYUCQAeYu34SP2beT/RJpZp0Wm9ZallijpoGo8RAEwzpRX/9jlDZO5GZL7wMS8HTxdG3m1/Lm/zgHLHVaZegmH9dUYvd4SylWRA0KuxFWijT0DKahKr/vlnNnUHrN1G/o2Ncwrz4BQhqBxPWfsSYXrOpkogK54RgREtLK3KK4GaiUnVDUJ4jc2uZDDgfUItxsz6mwcYf+b+Egypd9xIqWpofCiOk2M/tgXpguBnb/IhjOEtpiSWjFQ1mPRofr2R0yPrP8e9u3M5mvagzc+q3hqkz3sWxljQdpYk0KVBZcHGYXWKpppeZaCgQg2n3CI4JtHk1j8vrnDm99Dz0XMDIaQpmOEvx7F6Wl7wWbg3GfXlatGSYVVpaapEOUMuTsmVNGLCM0iLArBZiAI9+v1Nt2K9MnjE1q14rG1PnDdi3oCX4g2eH9CxfpG5VUZrhXBKm4YvR4FyrMVcU2dHuXQ+RvsmTSUPmEhmn0movmPaBnNe1BYkOOx+n07100lE6qi/qFnrQgy3siVDUEBYqDswyGgu49oeafX9hya7B+JD9HtOR0iv7vOAaTGGmsVMHFDmQ7s9ZVuCGsvTaowxCfT2ZimRoPO/BSfiaR1V9qQ1VT1qQWtLCPLR0VLQOKo3YPgdscOxYW57M3MhxLBmtaHCQ0UxDRv/xxUA8MUxLvcTSKbxXvveC6aBC+tqI0xHEVNN7aYc5T0rHgvXf1e2vQIwWNLqpm2ahMGvd3JCb4Wl+ObvFtfkPSsO3ojcbidiIlb5bofEelZ9NtBwTpRQjXgCuhFM2nn3ZYRmlxYT9QPhWSI705e05r8NY1DPdHJWw13SNZhGLQ4YQud9QLa4okhWNsuDf1aqsGQZxkVml+U2ETh//l3XP9iB+jbFd142Zu67ld56c4BwQckcZwuZqIldv2P3hE/wh4Qbh+V6RhfKMDUD4Tog7WY/nVqzEb3LOtmVdD+jDBjo8+xW1LtrDhZko70sX+7suAC/tcEEZgT1RfUk17M6y495BbB44kC4rN1M/4Yq6rhtAJI7RzYKcJ6dt5vpbG8pADkKFWtIw2H+ng2dEehmtgrFQXNgKnNoJcRH1ePbT1fhPdjTR9C1Z1wM687X90wkMplqtiepiEAeVBW2q03a1VtVXnYpK201FGabOLWAKQgvmHEE1a97cejq5YzTJqo7yaIH3pRsqzdpCBUYS6XftYfTtKO+wUGR8vaA9cLykp3HLsIzSYoIr6jaQHaDjhG3c++RRowbNHC19HE7ueJARy1dl+Sa1ovVGqR1zVUle0cSShq5y0e299bW4A/514OVZM6EW9HtmG6mZjumR4HhNeaXr5pWUpKOjer96OKnXPoA/iEVlY2li4fbBLKPdhm6g61ubCHRzvL/Sgao94btPO/Iar2c3zIJREVNzxLG0wSxIHqj5NlVRUfP36Z7wBF9AFZjBtCwWXhIw+rE6E7bl124mN2gD1QNohTJOXdScDnk3UWveNXkcb6FCIAN7KXMn6PL0Zjq9tZWW3oYPSFddVu0IJ198EBU5dObRNkf4tJu0pAmPnNNrzQ8Ps8Z3ju5ql7U7Kh/L/J2Oqjp3by0Mcuux6vz7xUIo8F7J/5IWSgNOIFJkVqmUhdKDf/MIZZnD3jJKixGBQHIKvMYbRNRvzpkv6jlGVNKA7sA4IFi1LTEbaumoki9/05ilad1rrtt0R82zLkZ9qNlAZAnMnTqJc71qE7tcrXPTMer7CgpnllRnmJORAnE0jAGSZrlCLYidAqNKez2ghduOQJSMhjGLnQ/3wvO8cgbp+9YdYDAwBqIIzE4P7QZ0BJpg1ESWNo+RnrMbyiDtoP4WTu2qNnk9QXSPIJ79ZAGtEo8ZRms82Vl784K5Zj63iKmeV1NUSxp7Kq/IgI08CS0g/i140ZLRCg9PICkOJjOT3Q89ARH2Nl/2791B6dAF8aib1VyLqbVTAo6mbGmC2Y2qDUttjOr5ZqCeTMEYvUjNmtPszi4uKkRzLNq5W3AsPAWxcywZtQBQHXqrpBcLpQub6E3ZIXvLDssoLSa0Q6WxeraF0MPhNI88QPCHUTAKh4Xt5ICpYINBIcvw8XFUJdrga0p2EpbSYJxq1ZeOWiS0xPBRm+daPwgCuv9MpTEpNHjwSpbaNVMn6PHyQ37LCX3e6qiqF20gpwL168BLLvN4IuQzAKp+AdPHFuCkFsol2mCS0Z/C6fjtNsRpSf0Jjvut6t4XWsOI2CWk+FZyNNBsqNTT7ig2WzdKh3A6Q6fJdkKtbZ0M5xSfSvT/Yis8AbP5K64pkKGNx0Qcey3nB+e6+Zy221B1pF1MEVsXSHeDj9Kep3+nFcRmWjJa0eEgoz+G0/G7bVT6XuI/VulEb9SzfU3HXvCED6pgQ7uVnF+6yZO5oKO0GKjagPbGqKo1c9mDkTvlixLgqBzGgFvzipk58vXfGRjGqLlDrOqP2uuFNbi7QdUgZSpbqKgIBoJYdnGQVRJVyjA9BE4PbElZJTkCyygtNngDvt7w1Z4OeLeI4eiIh+j/wgpEgIQeKF1zDT5hGGNOzGZN+F/ggGMFiTlltw2OhD0lBXPGnrvp1QZwd3OMSqYDnm5w5Wcvol8MIjOqGqcOZU9FdjeNndv5cvou3Wm7/lvXtWq23ax9OsCK9aPZeqk/0cAHofDevAJctIVyCXdUXGXvnjY0ue97drXvwYROb+Ly12s07mI4gubzInO/HsnvZz143+3l7PWjLijPUQ+U4JuZtksD3DDav/g6fWdPmf2b29vwJiweOQTvuBtgA9c0lCGZgCPJkbPRmZeQmvd1MX32RtW1BpFFpiSrwCWvmiS+Uou1EcO4gCWjFR3uKAb3fXtaEnz/EXaF9mBi1xlUnppIUHflDK0OfMQLzNn6PLzpiRJG3VhNuz71zZmAo2F6K2muxWXMmgt2tAGYjGMBj96nLsrtG4O6hv04Cp7OsSpIS5j8rt2cGG3+3TQaAp5sOjkI9yrw3tHb0y3KQlmBJzzWjb88s6aMUumUY6wE/rWcskpyBJZRWmwIdAMxBrod3kN8hD8cgrWvDMO1SRLdX1uvohZN4cq5+sy/GMbKkKeo7JmIf3d1vLmiJB0IdFH+KOcazJLIFNSBIK3yW6Jau8SnOVbApAKeYVB781XemP8K9HRUh9dxpHLIT83nd63VMQxkbxx5C92B9IX2QXopAg3NXWihYuIE0LgfhB4L58TGNpzaD+8+OJVAvyhe3DGLoCAIqg+x+DH2s8WcbHcPU9e/S4yvvammWQDdUGmoj2PUjudlrN1umNtPeaEImYLJXvtqg/94t2HByxOp9d15hqSsUkRDZujaUsge7XRGbtdqNkjrAP1Rv5dpPiIDVvJnFQzqD+FYMlrRkQHUHwwP/3SYU1+2InIvzGo7nYY+Z3n5i5n4N4L6AXCJOozfuJBvp7RCFSn7oTRAEoZhp12UqRiNcYtiXBblWGf+YF+MlGPnOlgw8n7cMdiFzQy6+vqcOy1rOKf0OhukZrZdnfuk04SdNWkQDHaFZ+CtREs+LVyn/favmb68pOdhwQx3QPwsyZ5RUbZgGaXFhOg0WDhjKA+12k1SC9TCbh/c/NiL7Wv7MOSTxaq2600BKTB41Hqq10hm6heTCLIn5mu6g3QgKVP5SpvhGE2905mCztyFDVHqPynT8NfqtjaNG0HojO3QEF5tO4fIOMc5ax92kumzmZ4ip3PntM3sV26HYZBqeAJ1vaGt17csHjAEeb7g12uh/CIQ+Me6gXRo/hXhfdS9ePwQnOvZhAU/TeTNnydAd7gwqxEkwv33nqdB3x95hN2k+FTKTlTpgTL+uqMMQTdKRkjBqOf0sc+pE4YBmGG8J/hWIfSncKgFP3I/VVLskUvnsZzrCnJDXtfqiaq9HY6qw9W1aHbDPd0Nph5+lzkTnifyaIGu0kI5hw34x8qBdLxvG4cfVzIaEQ6n+rRi7rm/8ebpCdATzs+5H+KhffARql37FaUpzfz1ZoNPa1XNyFtSuUd6TjqfXhud5tYuNpSbNRglQDpSatbEua0GzBHdgnjHklCRWr3y0OOZ+7uqebyx8hWVZmLBQmBf3hVdSnoWFpzQEhQfRhlHaayGKjNwRxlodYHGw+H+HcuRlwVL0qDbGfBvDWwBuUggdkhOvNAUuqEWr+HwW6I/lcZKnv55NYHVLhCTYvgotTppao84nMZRnZrrMwvbKtCM/IIfZoOyrv2ljUofVPQTVOps+gHY+9Bj8PkNCIKMcKVW4zH8uoH2a0jGMWVZn0uvn83Xat6mK178MXqjJmGo9QygugeIvXBkR3tGXH6Yw+ZMJAsVCmYZ7TwYxN7VyEjBQoz7+fhWkJ0EospN/r0gFEYDd8OpCDi3pQniE8lfN/6dj5iAtJmMOC0cHYAUYC9w0b4tw2mfwqAgQpoTPFDGXyfUM8ZpXXrDC2bxN3gMeBfiuQvvjGgjoqkFsAnqek6j6ktTMNJ5c5qLOXXZZp9HHVRktDWqFY1zCjQw32s0HIXxWxZatUkVGGYZbT8MHt6lZPQ9lElUDzi1EWSnSojeqXy74GF4GbgbIs9A8pe+CJuEjKYoKj2z61NrjgSUMWiu4TQbpwVJ6y0Kf7s+l6d9TglkL4zRNaZBGNWz9YBoDMNaQzdgM3eL1BpQG605Ff+Yr8EbpYm1NtYwd/wOhGHw6pw5REcW4nItlEOoFdjKyKfYI0p6LhbM8APOyqEgym4rGA3LKC0C+gP1QwAP+MeSgTThe74WRgXIgF9QtV2jQPYU+DwaDQegcf3D9P3hc95cOxNsEPxiFHKPoGFXOJHgWBGTkakUszuqn725F+it/PNu9R8ejJFOrH28OtHHG/CbBWKbZO53I/mAl3B59xqZA6uR1AdIU8ckYe54poxV3epcp+1plensQ9bqui5KrZvThs0l3Z5A1SdBCMmurn9E+ihbwULFhFlGV6zsTxO+Z0+owWXpiUqkixgHcn9lmq47CAeg68JNPDXwc+4/vBIawcIh42m68jijElaogW2qv6YAqIKql/RB1XSk2E+ujcLCCl1B9nf2HHkCXe3zqGI6r6nkbI9HB2ZPncb6yO68zmvc++lFlj89gKER61SkF5Qx29T+SgR+AeJQD584+zZ9/hQMI9QNdf0BqDV1Awz+Gf07mFKBzwfUYsK8j9g19o/sEbCnIL+LhXIJBz36iaFHU1F+keqoWyliDMhd7rTY8B3sgdD3tzNA/ovnDy9XhIIL/FFRxoM4Mhdo5oM4+2jVMQTDHCHMDXnxvue1jzO0NjMbzFqb6jmGgs2PTeldmclkDooOwAXsnMQY0VZntuHqTuOYjWAN7QbWkVGtfc1swHrMVFTRvA97PgmBu1WfZwsVFX5AQ2jfmcGhY5le0tOx4IDRXUDUXA68V9JTKTKs9N0i4IL+oz08u2s1J7a04QhKLcQA2+NQi7pMYAvED/Qn6n++RCYG8uanM5kw4E1kO8G4+W8jLkjEDiX6ZiMrq8YUFZ430yTkxa+V4fTK6bvcYM5SdMfwVmuVCI6+1PohUHviOdo8vZexgxZzblQT/u73V0Sy5D83OmaRyGiVl4RB5B9ofwXbr68phgHc1L4tBMeEJh1pNUdS9btfa3hq5Uqq+CfQset3ZGQa1UQWKh7MMjps11oHGdWLXn0vRXwGJ+5ug9wguEgAz4Wv5KNWw5BXBHNXjuT5vy7nQ+9ns9hjhb7xdP/NEGAI6kYtCCtvXkKaH7SAumGQCHW3z0NHLk1jJvm50m3zHnq9sYYeNbZz9O6HWP10b4bNWkuPoHVc8K1pGLJuID1Q1nprVDrwKGAi8BowGQizvyaaPo8CBoJsbz82l6jqlQAv7rnwC7XGnqdj/++oDla/uwqM3PQoKBk9gdF1L2IjHL37IeQGQRy+PL9/OXNbjUReE3wkhwGNUTk0OlVXQwuMjgyaG0HdShG4q9PLjHSnlw1DCyU77e8UlcSPLumb6emzk/C7Q1kte0P7bqiVgY6KOp9PG5g6v0gbrOk4al1NqpSAY46S+fp1PlJDoCpEV6bD7IPgBylyXL6/ioXyCnva+ap0plte/lKF/oD46Hf4raRnUjywIqVFQEs39X5gRnOqpfxKeDVH/+txwD0OQr1RkYhfoF7bX0lN8VE72Yl43v9yMmwAES6RnwiSRkFymqGqtFrxRPWvPosKXOSW5poTnAMnzvubU2TBoFJoCQS5QVJado6+ZKBZE5hxYCJX9jbg8u57lBGeAeMfX8jLKxdSab/E+8sY4g/4Qx+IjnMkSnBufY59HtWdtjlzDOrvdSKWOxAUAj0OrGPb/n7IXQIuQXqGUuVRufwuFso3zDLqlXaF8CqOy7EElGHaFHVvHb4Irg1gJa0AdV8dB55Zs5jrN6ry4qylBIRdpFfczuwpuh6oVN76wEbUatqcpecsnDmktILTtrye0G4o468rynB0c/o+U21L8apEO5f94A+b2g7icCK4JkJHsRn5hUCES7ZF9WP+gOGMTFyGa5rd4DbPQxMomR8aubSN0ey62a4jUxnHtX+6Cmfh8ov3kLRTxa+8UY48CxUPeelRnUVzGqWLbMDxi2BrAJ/TKut2PAz0X7mCZFmdMDEfZeBtN53FHceikRgMTZOMYzFMYdN0ndOAnQtt9Ll1VDY9h2Pt7thVrux4oLcqOUmAh8Vm5AaBGCPhTxI4gnqwJJnOo38Fc46VhjmF1xwVNkdYtcmvhTYQqAtL/ZBvCOgDuMCk9nOtCFmFRXUgGPlTZeseKEVoCrwtF4M4gVrlll3WXQ0rUloEpGcAifBY2lckx/lm1UWZ/ZPHgVNnUCsvDQ/7S+uPS/D+kMmsDumNcJe4x0IzX8Pw07eZNuZ0BFFHSs1ESIWJguK0v5l0qC6KRMgPiE0z1JmZND7YC9ac6MX0GbOQNqHyZHVbiXgQPUHuFMxwmYb4TfJw7E78T0DjoJx9yzkZzM7zNc9BpwM39ICgJdDqwLdsO/cU8ksBy4E4WJSCVa9WgWGW0auXajvIqH6PQS16tXNEv5vbC0WnwSS/uXwX1oLeL+9ghu/ErBvTgb3WDWWUDgMGAo0wSJA0blVIMzAMQDdURHY4RoTUGW5qbo+5fcXJlx9EHhAcDjeeG/HAqcdBjhJsGtCVF+ctpXKUZJ7vc/zqWy3LkMyak/kdsrfCcZ6z6TqkDTYHdMHr0E0A5OeCiK2wNE09I0/k8XNYKN/IS4/qdy2jZuekNre0jozJhKFiAXtkCNzlDwxAaTJ9x+u6TTCiiaA8OzpieatwpiM0a9OcvFLmh4C9KOUpf+QVQfhRY8axwPE+IN8VbJWPwqhWwNMocopAjPTcnCgDnbWs+Tu9QtE5V+4o19CjQDP4qjHye6Gca/th/SswfX/BfgkL5RFBPCQPsLZrSc/DgkYo0HclrHpoBEqLHqH09GG+dVhGaRFwMBP4EhK/qcX1poa/0Yxk4BvgVCRGrVlOiISB7TezdUAnKh+V7I1tQ7Mgx/pRM3ttIMpobErB2uTmpG6d03Q1goBQF1UiZk4CMtMy1PUA159h0NRNrJ7WW6X13cBYpGaiDNRdMCZ0GdJVEMBFxKeSGicukynrEdQIvO3ncV4S5LU80NHaxr5Q/zV479oExC7JkfXtkYsrwUpIugTvxVn09RUdBZHRdFQK4Wn7Z7MsmO2sU3FQXxzj6Pv3Mv3jWQzwXU6Kl/0Rqmsm9bsXKmo6CtUv9G4cU2udkdcNb07VtQG1UYboMNQDwIXsUUn7Wvh979HsG9KZw+83JnKMYWibHVinjkIzsROZIJjYfAbjpn6M76fJDPJdRkJAlax05VznZf6RTNu1sb7b9yH8vC/Q+4EdcAXk+wIiIWhsdrIzCxUPBZXRsygZ1bpCm1T61ktFOVruEQc5+es9MNwT5bnR7VfMTAQa2vWr26KY6zELCrMxai6u0RrbbABr6P39gEfBFsJ3n7Ug+hX1rU7G1SPsOQT3i93I2oJx8l14NAiVYhuIKm4xz0W/m9l4MY1oNlZTUa7dpqj6g+rwuR/yPwIawK+x1XjvdctpZMGXvYmdrP60pQRNgfVyFuKvEg6sQj0dywcso7QI6NYRQurvYdPjXZmfknOLbZ1+tBc4fhLFzmnu/aeNN/ui8olOu5EegtAd4Tz180qCJmZfJOu6ygyUAfkoKnLqh0HjoH2fucHcyU0n8TREEXMGo1q+6FYvnjhWq/j7gmsMiLcl898YzsCem9XO+rpcTK8MlLE6DVZ3ehZZSTDDbRrBFyIQr0oezjhMhGxJ/c3QuIeKojb2VYaqXmdXBQK9VX+6+iFQ/xM4J9twT+xJhK9kI735bk0LqAW0hesJsDbNMkgtFExGwdEwTTVtcyAdQ/FgVhURyAzBuh1D8byaxH7vlmoHN4zWLC4YUdN+qNrLwRhstNpA1SRBZplxht7vblTt6DhUFLY+Rj/QNLIZh2/WmcCEZz5i58qHaVjltMN1OWclJADHX4eJtunI/wo2Pd2VNTGD8JmaSqUTkt6+q1nh258IX39SvCopYzwD5WhLUYPc8IAkH1cu+NbkM98n+JP3csQPkk6z/ssD/EDcD9Wh9Q1oC4f3wpZ5Rvq9hYqLwshoFEbE1MxZ64nBzJ4ECHEe2UjAomYooQnBYGww59uY02yT7Nt0val5Js6eF0zf66eENpE1kZDervOMnPOSvIE2YPNhdXpvGlc5RpTpusxnd0fJSvg0eNU2GZksWC/Hwp5QCGyPIiXSEd+69rE97e/6V9KrA00ZWA/l2h4AT7SnjbxElAyB1umqHGAN/CSuWXrUAgxrzPIaJT0JCxpngPl7w+AJcEzDLPuwakpvEa4AneDgjA70OhbKyXz2j0VFTBMuqbA7vhgpfWYnaxowDuRAQYuu3yG6SOQzAtlOMfNqaNWmFYYvju244+zndCZNcj7eF4NCQRu78RjqVatcrcoDvSEhtgo+U1OZ+P4MxvRcpk6WWwRIwwW1eN0JY3cuZmyjxfAaTGUS/fiMK183gKFAQ2je/ABhvMMDHOUmLkTixys8w+rYQfx+yAP2QT3O8Hf+Sr+gbarmJQ4O7mtKjbTLXA2pTbPdVo1aRUdhZVQvelMxGK8h+0MyCYgcA3KwoEfXdTz81mFmTXmRlxMXYLPZ6zHTMGTChmqR4ge0BS4BkajV9XmMlis6yuqCYtDV7/VRrtFGGBFXu4DqaKQmXZI2yHCBiV4zmTt6EvM/GU5ojX1EpGVP08/2W6FSIGN3Q2OxE1nHHebCkg6DeYspbB4yEFoANYAm0CtkDY3tvvM4fPkk9hl+X+WhCBd+gzbv7+Xbrq1o/58jXK8GUSkQJ2viO+wCcYvq4RpOFqGNhYqJwsqoJidLQMlo9Rz20ff58VdA9hD8Ue7iO9EWFVU8jsEwkO70rs8AhnHp6rTdefbmuK357Day5wGY9/VFuZIbMz99OI9X2UxEmmP5AKaRzH+fzYSocGgotiPrCJgL8/o9x7S0GSQ2qWUPmkRjRIftBarUxd5lHGgModDg3z/yD9rTYdpBpA+cToDLsiY1al3mqq22lcVgQeEViFle0pOwoJEOTA+FbnID25e2QVkX5QNCSilLehJ1hOC5kp5EARGIerw/BpyR3fiYkYwTvTlOwdLQdOVGO1REECApEWw2qFofozbMBnjBvi9a8vCnh3no6d38d04n0t+A2MTsBqb5s45sguojmoAjlYG7fR9P0z5mOPuP9XH1G8G8088x7pGPmfnvl5nUda5aTN/AMfqbm4GqF9zmMhsPVFjUDQiCI68Fc4rGZNoHycQFFzJxIZM6XKLjh9/BDvtYpiiNTmsM2bKHkXxMW7GGGFRrnrKCxcClkhfHHFGRZFQn4wVi8F1qWhFnltiGHlApFty3SWgC6+/vTp+47TnXjJrrLUHdwzfsk020/63JgzxQKcA+GM8EJ7mSVbITEiXUqUIH/sPJBx9k3fc9+D+xjVgK1pHRLPPOpaH+buDphephuhKO1AkmmepcpQYuZODGTXyIJ5BIvAfdQO6A5BSIT3NMjgzyhd6xq3ma1dwvtlkyWoyoSDIKSo81RPWsBiPq3hB1z8ag7uVgN6gcD+7vSpgej0GAFIcRxUw1jZqbIapzijQ0s0FOyKtovB0QDDY/VqY/Rc8q64lOM44ym8XO0LKpnc/akawTj/0D1NB8AsfqBBGHH1epQQYu3EU81UkmkChqDUlEfgkJicrINZ+vVR3oGrOJkXzMA2I7qajS0rJSrVaaZVSIOlBmpFS7SNohO3SxWHdLIaZ4QeWXJUx/j7KVG7gYKS/l+I1llBYSdYHh3pCRCZV3SG42Eiys4diipCAwpx7ZybbphmppkpWSB8pYewFCBu7h4PoOzOn7POMHLSR+HSRkGvadjmZCduJL82LTzNVnrsfR3+kxzPt4u4DPEHj4k53sG9iZOWueZ3yfhSrio3fKyyjNdPrskst2DX1yZwPWGTaMRbyOOr8OwkcivxCwCMIvqh6IZcHjW5qVaUWVUfPy1IZa7wU67VcdqD8Wesxdx7a3+tFmyl5WMZiGCdGOTLTOq8w0HAiQpM0x4pnT30B23pQMZaCe8m5Ak5/OwSuwaWtXOlfbyVl7HbvzdZsN09x+E1en73P6bDZeczqHMzO4O9B4FrgMvUbmqmqwH/ZtVIapJaNFQ0WVUa2zUlH3XEtUYqqZ79YbqP8CdF+wnu0BfSA6GlUpGU129l0wNHNe0uFMXGSelXOUVEdVAwFfaNKK7SdC+b9qezlh4prIixYpJ+T2aHGeKTjq/pxg5oxo9i64DL5G5qZqKqg7C2aFWzJaVJQ9o7QeXjceZU2V2hZhZClFa9mRHmIqKgukrBTE5G6UWjWlhYQnIHzB9RPgKtga3FqXs1TU7ROL8m/EoPy3SSdwJETKAOZBeNdQ5MOC19NeQ4RIJmfMJWgW1K+jjEZdBWOmVDBXtYBjdYwznFOGsmpWg+BGhjeivWTfvM7EranO+K4LjdrYwhqk5m0uubx0jZ2+/txg/i7N/noBFjcfQqfJW8GmfpeWeQxhofyhOGU0CaNtUQYqdTAWIzlPs38enwcLRX/kvYJL1OHeFy9yl1c0X9XpYLDz6jRdDTMjL46GZ25/S33iTCN1N6FOFV7wnkOTfudgD8hpgsZCGaTFUZ/hTI1i/uxcJedMpeLMCZoKHA6DL/wep8eEddDAvgguhnlaKDsobj2qO28moZZmF3CsAk0FTn0In4i+yA8EDWQiBHZDMTK0QZmx1THyh8x880WBNpsbopjPmsLyVsilgvvEXk6nZCetLizyk3Hnytic4Hze46/YZXTkOlV6MFNV5VqoSLABLfnMrZ9lkJZi/F+V3dA+FKOWvGzDMkoLiXYAKbDgyWcZ2nUhKxKKJ61F17NtSYPok8A105c2VHpfH7g6tjbRY31YnTII4SNpFfMtPgfAvzv4e2W/JZ3pGcyLRrMiNH92BRoHQNBmePjnnfgPjKfBsz8ifQU1u15zXFjnFu3UcDY4If/608LAPKa9l+KIKavYvesJmKMMiIPFeDoLpR+3S0ZBLVWPoBa9GnrRlwCc6g8X770X+YKguksy3WbsoVKk5O064zhfvxbS1ApKOmUBSJtTexnTdg2hU3zdINbbizW+vfA5nMrCgePp8tlm5CFB5IOFS+RxNjpvJ3S86LHH97LtQm9opAx9a9FTsXA7ZTQBJaMxOGY7gIqLHu4D54KbID8T1JISmrRHmVxBqEimWYvqO9Z5JHLYx8zCoHOX/FD5FS2hYWMekj8jvxOcalu4mEZONEu3AzbT+2OP72XbuacgAvZ1Kltp9haKA97QvjHNxL6SnoiFPPBeGsj5AuUeLyuR0txhGaWFQFY6WjC8GL6U5TufJ4acU9duFRdQEdOIMyhDVEcj9QL2KNRtn0ByT19kO8F9/IzYKxFtJL2urqeqrELjt1TtliYvyokIXl+PrpKxAfU7QP3V8K3shfhaIj6T/Df2j6QuFZzr2QTmoe55cyQ3LwMzxX4NZhSnQZrbmDthe6dQ/vjkrqyaGwsVA7dTRvXxqahojKbH17Kll6OHI+B4MOwTwch6gkmtXmPynPe5Z/RlKv3vd16uM5PNvl3IcMGI8OeUnovTtkQVFf0s4An+6LuL2h9eZVC/Tfi3ikD2FywTvTm11GgnkdtQzhkRSabtuT0rigLnMVOBiC8hql5degxfZ0VJKxjuhB5NQiXn6kYJrhjOV1fg8Bk49SCctN2DHCuYLpfC37qhimhaoiKowfaXjp7qSKo5adgVx6IXb1S+a0OUkRsMgZ1pIBOR8wRfVenEqY+NVOO8YGb91vvbnF7FBfN4Oisk4ks4d08degxed0uNciyUdQRCa1hY0tOwkC8iHgAWDSvpaRQLrJrSQuJRoP27IJpIUvoKZqfke0ihocnbmwGhvijGTchea5qBIkHpCb+OrcYTbOPg3g6KL7o1eLeIYYXLn3mAo/ikJFDlEBCB3QKFpPauxLr48S0P82zMP+BMFTipjp3Q7k3ePTQVPkStvs1RHXP6rTMy7XNLgdijKvobEoTS07eSm3SrqAOVlyRyc6MXs0ZYtTBFhSWj2aGJj5qSc42mXnx7A/W7AK/BoHbLWBP+F9gG3AXUgv4DVuBDPACNOUVDzpKGG+e4h7M0pDrJRBHIumVDFRnSVeBPkvn3jGDMh8tgJhx3Ks9wrgPNbXsMKnrUjOwZFbcLulSgWR0IjDlN1MfBzBplyWhRYcloduhYpZZRc42zjm1qU9K/BzAFBoUsY80Xf4G/ofQhh1F0SkcwGqUlY9Ch6choSyABqjRTNulSmBsykrHzFsNsOHUp+xxyMvTMNaXuKEd1tH103WzmTsATCKoPAed/5uLH91oyWgwoWzWlIayWH/OT2FzSE7FQANSVg3lOPEjZiJZaREfFhkcBm2zOWObxpgi9bSktZgbQR13ApwFGVpFmsdXQmjUN1bKhJ+x9sg3f8jCrGcTpZS3VQI1uULNuHJmZLiRE+8JJV7DBE10/oys76MEW6i39FbagiAm1gQkFMyjN84qEtXFq0dsBaNUIqGb/7nZES3OYy7bvO7KVnnQU48pE0+fSrEwtGc0Zmsk6EFWVpheaZnIRLctahJoFAU9Cwqwq7KAry3mGnV/0grvAtWESPj6/ARAX68fvUR5QBUY3f4/ufMETJ3fDPEhaCdFpjkkUBYF5PjrNMRVlXAeb9rsT6bw2wFX6s5ThNBXTy0T7b0tGiwd3Uka1kzcYgz3bmQjQ2anUqg7QD1JmVeJLt+58yAvsXfuYwXL2G0Z4sQpQDYY2X8ifWUnHQ9/Bx0pGI9KMRF7dGVVDy62zYapl2hNlAh+0vweijOucSAxvB/Scr8sG/JM/WzJaDChbRmkosssjTN9Z0vOwUBB4AhP4HZhR0lMpACyjtNgQCnT5LZEzPvexSVy5IyTMnigvaWgAyu2rjTrN3mlO8TUbfFVQhqwPKsJiwzAy0zBCI+dRRqgHOZMWORvBOcF83DX4+oxRy1kdVUPUKgiDkQkc+zIW5Bz5wTmC2wdEO4kME7xlX/WU5hSk0qxMLRnNG5pXMxBHahRNl6JhXvzqRWldF/C52+kLLRN2Z1PsJbJauzgvbiH7wjo36P3SUQZpnGke9VAJh+bacvNxztsKc17ncfRYzZ4E8f5N5NOVLRktIiwZzRvuGM4XXdZhbsGike70fXXsLZHudtpRs3zZORZi4wwStFSn3TSc2e5zg3YcHUSNqdV7QxyfMc5zz425tzCpvub93YHGT4LLwmtk9qrGW/bib0tGbw1lyygdiuzQwGoFU0bgCnwmv+OY+Kqkp1IA5G6U3ona+XKD/kDj1pB+wJMG26/csVSWJBQRSOxFaHNR9QvFiywWzly1zg1U2xbn/31OoZVceiHmui0nuAAJqqbuCIbiSkCRJCREQIgbeNY3zbdKHue4VUNVH7cXukzcTMQ+fxqKaKIo3crUQtFRUjKaispyj8Ew7iB7v0+zEadFMCYTYiILdh5dG5fT9vxgNkhPYyT56GjNBVRSYkOU70svrp2ZdIsL6UDSl/Dcho+4sK8mTcWvnMaS0fKOkpTRs6j7PtD+0sFOc4aD2WDU30WlARF5t0DScN6eG9t9btBOJ830rfdPN81fV8Tofc0qPYPCG6LOMI91fSeM9PuYCwdq0kj8ytl85m+hPMAPrxvubK+S/54WSgfSgaOzH0LwCapwrmzCMkoLAHegB9C4Barq2xUiP7yzc9AKNQaodwbaA35BKGNSRz8zyZ0NN7/eoMWBONgTaaQEmpGA8vqeSIPqZ5Qn2hNo4wI+wRhGcV7tZfKDc8Q1HnYc7U3tFue47HsPp+JgXSGHtFA2UBpkFNR9fwYlp0GoyEw6jg/awvYFLW6cQM3PeS6aQfgIjjQuDVHXkYxjFNg8x8JGTPWx0Wnw8fJxNB52mFNPtqLpRlhRyHEslA2UFhnVLWSiMGQU7OnkGBFSjZwinTlFJIsD2ukUjspicEYGau7hGNFUd1T0N7dmEM6OsYJCG+wxKfDR8gncO+woP7drQcR++LQQ41goa3AF2nHerT4flPRULBQKC8OgpuzIr2IlZdV1ZLHvFgCuQON2QAp81boDfZuvYiN3/l+umTLPAGuBLREQfRSDpReUQZZh+jsnFNYwzcnYNW9Lg/QIZZCG48jmmdP8Y1AG9hFgeyZGyCa3eTmfPzOHbXq7s/E9Dq6EN4B+xkLcQvlDaZJRbdwdR8lDDLmzX5PLd7d63rygDc6oPPbXDMIJGATzZzFoXcwws3Wa383zyekc5mhUBhD7DJyNbwg+8E0+12Ch7KK0yKhGMkpGdfsYbeRBdnbb4pijuaeveRsYMhGLyiqKIWcZMqccJ2HI6GkMR3BOz5IMp3fzfHLKvHC+9vjhEBFzHzSBPTlfnoVyg0ZwVzPCxY2SnoiFQiIWuIvfUK7ksgnLKC0AkoBZ++FUBGzkSSYzs0R9EOkoZXQCFfnbcgZiD6HuSE1O5IJRQ3q72rC4AInKMF6bqBbg5ghpXr+RVrYxKFbCrDYzuc21sJFevX8GTA8J48yCenesF6OFO4/SJqOgFnsxKDnVC01zW4o7AS1nURgGaWGP1Yte5znnRq5U0N9djxcP/MPnL0Qs8c9qYWWh/KG0yag28JxlFIxMHs3Qe7vuSfPYeh4J+ZzP2UhNRUVVNUl+QX7TwhLhJ2TC8rpD+XFRgyyuJwvlFSegitIXFsoeTh1thdHGquzBMkoLiAygcQAs3jyWljNLnstVLxh1P7a1wNqLcOoQEImKnqblcrDZ8MvM5eW8v0sO+1+CfWdgAyqaciu1QRn2+edS85x9vnkZ2M6Gq73edjhL+ZiRhDayFrzlGaVRRvV7LErJH0F1ZcormyCn7ebvc4pA5mTo6gXrCfurKLV7sRjNMJzhiuP585Ix5xRlbRgMPrOepQynZRHmaKH0ozTKqL4Xk1DyeRBl4GkZ1Yap2YDUabOuZL//c4tAmqOv5u903+PjGMRohU0LTkcZprkZtM69TfMa3zxH/UoFhkas4xOeoaWLpUfLPaxa0jKL5Q+A6nlRNmEZpQVEOqgClGrAlyU7F2eYoxnrgPfiYLuOnmoDNa/eojh9l5PRqv/OUONFH4JVF2EvReuKpBfspwsziAuOhrLzXM3XkQl1dyawNGW49aAt5yjNMgrGva6jMjpt0Mw86my0geNi0rwAdjZMnT9H4ZiuW5R564hSQeG8UDePZa4/zbqOlbCR3kWYpYWygNIqo9qBk4rhQPoGlf2jHa7mGk6zoWp+uZLdAITshqr+Lgr1LNDnMM+jsNBzL2hkN6d5mueqo656TqyBtQwg9XbyUlgoHVhe0hOwcKtQur5qCc/i1mERHRUQngCtoUrrBJIOlfRs8ob2+J4GfC+B/yU7WYk3CB8UqZBuO+EcAQXHSKn5+0SIPw8HM1W0p7ha9CajFryNM8jZ2CwocmMO3gDXfGqSXkCGUwtlE2VJRlNR93wMaoFbHcV462n/G/InD8qtRjUWtdiNo/jq9bTjq7Bpf87I6XpcATbAxYkBBHqBLbGsUjRYyA9lUUbjUDLpiZJRb/vngpIdmQmGzDKqmXSLW0bNc7qVsXO6HhvARoh+NgA/L5Sj20K5hUQwvaQnYeHW0QhFPlMGYRmlBUQ9gCFQw+sqEbmlxZYiaGV0AaVYjwDuCeCdoNgG6wL+XuDqhqo79UB5r824gUoBToSIOGXkRqGMyOJcNOraUhJRPPfFjQSo1uhXXBdCm0Hc1kbtFkoOZVVGzXVhNgzDVNe0ueIYnTFDy2IGyhkVa9+moy7FiST7uM4MvMUBGQf3ef2M6xJo198iPCqvKGsyqpGM4Tx1N728Maq3zNvNSMVoIRODktHicPDkhDhun4xyCYLq/oTrRPCeYrSrsVDe4G4tksowYgD5oUB0WkxZpPe0jNICwBPo2wgSmlThb8ziILdHoRQ3nBe9etF61r7dlmikG+mFsE6nc8VII0rg9ixyzUgFRXZ0q71J80I8jPT4mGMDg0gdFFHMg1soDSirMqrhLKuxOLKBasPUDN2bUKf/5tU7sTigx78dC96YBBjJIs70q0cCF27DGSyUNMqqjOaUJq9lLgpDTp1l1FybmUR2+cwpBb845nq7ftPYOHiJ+SSFuZI0xcplKL9oWDYE00LuuAZltfLbMkoLiiRYynDqcLnML5mcF8CQPRX3dijMvJAOXE+5TZnwCfAw3xLPXYS6RXAizUoPLJcoRzIKjiQs2qlkRknIaDK3h9cvAfg/vuUqNWjncoETmZaMlkuUMxkFx7rLwsjo7bq/UzFKAIoTscCjfMNFlwD6cJ51WDJa/uAKBFpGaVlHEqjuxVElO49bgEV0VADUBXCB93mZqlyvEJZ8SSib5JT897kl2OA67iRTHc/bkR5socRhyeidwfXbOHYabqThho/PbTyJhRKDJaN3BkVh2c4LNiCZ6sTiR1Cd23QSCyUMG+Cn8sAtlF2cB8ool71llBYADQGC4FpKdfps2Q5YIeZSiZza2djrllKpShSBxOfVesZCmUVDgDpwM9PNktHbBFeK7kB3bmdj/nwddy4SQLS1ICqX0Ho0Na2qJaO3CebI7K0axM7tbMyf06hMFIHEWnq0nMIdiAKvkp6HhSJhN9C2bKbvWkZpAeAHkAI1PK5CXFluS1t6kVVvU9R6UudepW6AL4QTgguZ7LfSAssl/AASwcflN0tGSzlyYg0O9oJdPEomLoRjyWh5hB9AHPi6xVoyeptg7nNclCWpcz9VGxBkl1GAfVgyWj7hCnjn3uPeQtlALNmJS8sILKO0AFgHcAk204saQy4zepFKRSqbfojSBzO5UpHgbNDagKbw9hfjWDxiLGPCl9221CYLJYt1KAbXLZaM3lYUNbLl/P9wB5rVh8+v9mL6X2cxdPc6S0bLKdYB8hJspI8lo7cZRTEYzTKu21W1qg+brj7B9L/O4i9H11j/s3KLBKBx8ZNNWrizGAV8Uzb5sS2jtABIArZchLriNFf310a0l0TJCUxpoby9RfVKWrBT6buRPf3WDOdeqrnta0NFSBeBGCeZ/OP7yMECesKAJtb/qjwiCViUAFfEBa5+qWT0khzDlEaWjBYH9G+XHxGZc3puXrABjReB7/kLDIr5F/IJQXofGBxk/a/KI5KATxMgU5zn6pbaiEd/56Icx5TWlowWB/Rvlx87tnN6rnlbhumzHqvxEiWj/WM+Qz4hYBz0bG39r8on0oHliFOS6b9Au5KejoVCIRSYvhrEAgnsKdnJ3CIso7SAOAIsBQ53gpX3P8VU8XfEm5Jhsgo9MPoJWg/qwkMvYqt7FGGQTFRLGRvQGlbs64+YJKFJBHKPIL2X/bv6Vh1TeUUs9nvpBqy7vwdhYj5ikWR4hqslo8WEW2kHYzZUbfZXs/rwq2yDOCD5VbghP3cnvRe4egCNLBktrzgLhAPshPn3jGCyeB8xV/L8NXgUo7WKJaO3hlv97czymWF/bxUE8bI54ifJr8IjS0aJAGpbMlp+EQXb3kLcfZHOXUp6LhYKg9AYEINuwtmvKasJ9tZzpRDQi9rB09Yz5E8CroHPI6lwEmS6YN8DynjVDe0tFBzugPCiYGkjupepvntTUIX59SFhXRV8NqdCAFALIAg2qN0iL8HqS9b/pjzjBOA+CPpFboOlMK7D23h9cROi0pHRlQlvb/gPrfug4ND9SfNqNaF7JNqctpn7rfoAfudBJEh4GXjzBuzxgy3qe0tGyz9igPVLYUzAMl7cs5TV7Xrjfu53qlz9H6lnfNjXFvbb97Xug4JDy1peMpph2k+XzaRi9FitDni6gHcciOSbcAHG/f1t5p6ZZMlohUM6ETv8QUSX9EQsFACuwMt1ZgLLUZJupe9WHGwAxkGtAeep9+8z8BuIGZKOvyXy0mbl8fXGePBbnt+8kdV03LyadU7NNX92M/2dBvgCC8B33QV8mqbCO8A44DG1nQT4NBFWYynS8o4klGOIS1DlqQQmMxPpKphe71VElKS3PEfYyuwyCpaM5gfn55gzy6fZ+HTe5u+m0gCfkjsRH0i8W8Sw6f2ujKn7gUpBuWjJaEVBMND3LeAo+HeIYODyzcjOlTjk9SDCJhkqTxK2Wj2+dc2pJaMFg3aca+PTOU1XR6I1dMquNxDoBvUXQd+M7VTaLllWbyiyd2XePzQZFt2wZLTCIY57J10s6UlYKCBswNxZk1D9fMqmQQqWUVooJKFSjyJOwkchw7gyrwE+/EbzDgcI2niM9E2eiDWStlE3ee4aDEXZS+5kVwYWHOEJyti0kb1uVH92sb8y7Ns8gHUQsmMPorPk14fuht7An+zjREHQC8fAQ7UQthRpxYA7wH74wGssf2INHIBpYbORlQXPsBwRIOl64zLDMlwZiooO6LRUS0Zzh3MENKd3s/FgAxp6QOMNMOLGcsR+yb4fO7P8/QF879Ka1hxiD4/QvtPX4G3JaEXBaSDpdcAHXuFd3hw2ge2RcFKcR3YXbOBJqveMo5u8wAC7jHrbX2DJaF6ojpI7s0GqDU/9u+kU+lT7e2gABO2Cv92Yg0ASQjjyn4IAsYYlR2Fv6zZ0qbvDktEKhXQgHL6C6R1Kei4WCow3oaxLqGWUFhIxKB/E6LAVEAU2u8XkRxwtn91HzTW/wFlX3IdJArZJkIMZ31EVIFu50jnDht0o1QUtLjm8NAmSB9ABrnzvRfUNcYg/Sw427QDDgKeAGsANFB32IfiQMWD1VKtQiAHkLzBiyyp2H34Cmtq/OAozX38DmSlY5fY0XleSCIi6SU3Zi7Du0IFbq5msKDD/Ns5ZIGZDwQ9o1gIan4CQawcR5yWfxz7F8k8GcPT+e+nKDqpzjetU5eSKB1nACxB5567DQsljYRoQD2MjFvMhz9OtvuL9/CAOzogIku/1JTahHq1dvifoajx+shsvdVHEK5YezRlZGUd22Ezvzi1e/ICQFtDqNLT45TuElySAi8gdgv5iOgt3KudBEPAX/sHbTLL0aIVDMhw9zuY9VmFpWUDYD8C1UyU9jSLDMkoLiaao9MCvZ0O9989wcH8HXMggmeq4cZMAfqFJp+9p+dk+KrVO4bkRKxHekh7yAmGxMD0AAjHYBs3kKxXVA+yKStPKipRC9iipFzAZZuyaiKgjqf2Hq1wbXFMZosMBf5Qhata+baHzzH0ctxa8FQp+wOwE2NcL2rTay5onexkOjzRgFzzxym7kp+6crhfEJN5B9JSMlgcZ/wtMr2PIqCeOUdSKLKPeOWzX4uaO6jXabDLslAMR70jEZkll0tg54WF+8bubR/mGGlwF4CaVOUQrqALNn4lgbdyduQ4LpQOewKyNsOdeaMYJ2GfowgRg1iV43wc2iRakfubDDroixkvGye8I+wWm+yoZ9cPO3G4ft6LrUj+M63eu77YBwW7QajJsl4MRCyRCSJYwAjlYcK+YywcbjXpegNDucP7H+2k57zTHrUzOCoZ0YAO95+2gT0lPxUK+2NyiC4pVo2wjX6P0xo0btGnThubNm3P//fczbdo0ACIjIwkJCaFhw4YMGDCAmzdvApCWlsaAAQNo2LAhISEhREVF3dYLuNNoiZFKFBURDHuMaGkalbGRSQ2ukomNpn4nCF5yhFqfnefXzXcjxkrEUMlKuZXxX8CUJsrzm1MEoiIhK1LqjCBgLOw+8BBitkTMlkx/cBacAf6GKgy8Yd+3CkaeUg3gANT65DzMK/+edUtGHaFT5kO8IDwulPG8B/WddvIAEqHRlAtEzQlGBglG8jEiQSIWS9bLdYzfDONbKBk1358VUUZBtYMxJwbZgMYB0GwkVJde1IqPRvwuefbwakZ3fY9dU/7IBvrQGOW9zcCFTFxIozIAH/ECzQccIH0jNLzjV3NnYcmoI7SMNgR2XOxN9zrr6YZBvONu//sbYPkI+IsYh3xV8BWPERhwGrFByejoXRAWolSBJ47RwYomo+Zr1tFRT6BVHWg1EjxkTdreOIxoKfmC7sg0we9/FJwXJ/ngjKpEy4CsPsHewI9fNKDj/dvgs/KfRWLJaC4YF06zRSU9CQt5oT/wp8Q1lPXUXSiAUerm5sbu3bs5duwYR48e5auvvuLAgQOEhYXx8ssvc/bsWf7whz+wbNkyAJYtW8Yf/vAHzp49y8svv0xYWNhtv4g7iSMoT24MwDSgNxyKbY0baYBaeF3HHTfScCONGlzlLuJp3usAzdccgMGw+8MnEG9LRG/JJLmTAdKbKT0UsYNmzqso5A46AuPnizIsmwAzYcn3gxFv30R8LOkk/msQFw1Gucir2F81MKJgmP7+Ci5H3kN8vFo4l2dYMuqIONTCKjYRmAmZ2DgzvJ6xQwaGMyPDfsAuGBO2DLlBkPhYZQK4iHCRiFcl0+RWBkkvpnRXi9+KVn+qMzq0M65ZHWj2FvwiOxDwy8+I6pLaM65Sw+UqK99+iqhWvkzhLe7jp6wxMuy02i52B14kgeyb05mveAzXftDKktGKKaMAYfAT9+H3icG/AEa0T3M5vHcINopElohg5EbBC3xI5eaJiHmSqXI9g6QXYV0qroxq+bQBjetDq1lwUT5EYMxpRFPJgxziM/ohFwsGikF80AneT1D/Ax1V1YZtOjA4AJpcOMO/GAjBEGTJaIWSUQN7EDZZ0pOwkAcaD4MbNapjuJTKLvI1SoUQVKtWDYD09HTS09MRQrB7926eeuopAIYOHcqmTZsA2Lx5M0OHDgXgqaeeYteuXUhZfm7oEyij9AiwZw1cvr8Gv7/i2GAz065WM+xRARcTdWzz+w7Q8oV9BH97BNdxSezb2xn/SfEID0nrbyTH5XymnIAp3WEQhpLJKc23LERsnOeqX56olN2XPWDwWLgQW5Pae84hAiRirOS5+ivhVVdojyrefgzDAK2BStU1G6KYPp8E5gL9ISYTlpTztCNLRh0Ri3o0LwXC58F+2vF//Aca4EhHaS62SkOlit8Az8npfDRtAjJaIJsJ/sRaGqWdQQyStI1O5ayco2S0iyIz06n4eb1KM3J6pjjL6Phh0CYenpHbEYslIlXS7Ys9tOAoy/8+gMPTGrObR3iEfwPq2acN0QxTnycbmbhxk5X8GR6DWoMSYRcstGS0QspoqyCIXwf/4k90HbaJnihdZ26rphNgNDnPaWDJHPhN7OXoXV7IOYINKX0ZwRLETMnDvyVyRs5hyg9Kjw5HpbWa5RTKloxqOM/ZGyWjL7rBiLEQfBVGyU2INRLRXPJXZnOEB5D7BdtFPU6K8yzZqdYwGvqRaF7OugNsAddqqdScdg28YLkloxVKRg2kwvBopn9f0vOwkBvu+eQkyn2XXNJTKTIKVFOamZlJixYt8PX1pXPnztxzzz3UqFEDm02t6Pz9/YmJiQEgJiaGgADlUrPZbHh5eREfH3+bpl8ymD5cKYLQOlDr3kQYDgfP/R+Z2Lhp71diXoi5ZC3R1MtGJu5c5wGfH2jZYR8Pvb0br+VXoBYse2sMYrRE/FHS4JDke7mYMTcqEfYa9AAaAfVQykgz7UHpVrC6/1kj1CJ+ymswQHqzUa7HY7NEpEgCq8dx5cEGyqB8ChgDtADuQhmg1VCRUWcD1BnVgJNwcEDTLFbsilCuZsmoI7SMpgNB96o+a/tGtlRfah+RXu2a2w3pOuYbqCbxH8OIsFVcnVIb2VxwtG4zruOOSJGIj36nQXQqx+VHTLwKUyYrGdXyqe/70i6j5lS/uqhUoCmTYYisxg65Eo9dEtFEUunvksMprRj4+D9Y90YPzj1emwW8QCj/xs8ubBn5NBrOwIWz3MPiL8by8/0BcB6SLjkukssrLBl1RE8ZzFM/r8SnOzzY9CRnaYjfF+o7nfCSiqNxqt+TUc/1rcB7n8G/qkFf0R85VnDzP148wA/UCL5M9XVxBF2NJ1x+xPPXDBltiEohNkcXofTKqCeGzm8EjHKBKTNgoKzGN3I5XuES0U1S+YqkE98gfQVytuBN8TCrxA0WrlGOdO0McE7yM6vV6sAIX2jV4luO+zSDQ8DestxkouCwZNQZ2j15mhatv8viDLRQejB9NZz/w/3AQcpDpLRA5XYuLi4cPXqUq1ev8uSTT3LmzJkin3jx4sUsXrwYgOtFHu3OYslSpRCXX4I+biARiHclLgszqMr1rNpSyH2RZiMz67s0KnOP21ls9/9Exv0upE6pyv+owZWYOqxaP4JVJ0co5rt/AVehzci9TGYmfsTSducx+BK4BHIXbDWl46Ri3KK6Ybb+uzih2z/oaG4wENoalYrbAX4c1oBDtOapzWtVkdA/UY24r6EioHeheouCkVapI6E2lDGqtzvDmc1hE7huSuLB4JOQZk+zrgCwZNQRWkbjACIgbn89arS+zNXg2irUYk75doaL07v+eyU0J4LlPM/yOs/D3SA7wIc8y4Ne33FsUFuqTf6Vawdq0rHTNl7mfe4iPpuMbkgwHCXOMnq74CyjDYHOLVCOn3bw4/AGhBPCM7tWwxWUc2gzBH9AFgAAl4pJREFUuLZPYlLIazwQ8gOBROFrX5qan2+Z9pfOCDE/25xxEzfG8CG1Hj9PkF80tIAjabfvuksTLBl1RLw4zRiGMAu17D23twldu29im1dvliYqvz8Y6aQaZrHV6b4J9vcP9gP7wZNV7GAVIQHAQIiZ5c14jzmsfX0Ald9K40p4A7qEbOZl3seHeB7cfdKQ0R1569HbhTxltBMcGxzEORrS98cv4SpwA5pzgBf4kLXfD4MPIeKoMj4/MI3naZ+3jqGYU3RzQiBwLDYIG5k0anAB7obDh3J/XJYn3G4ZLXtSmm5/JXBMdKbvPjjRvqTnZEEjEBg+cD4MCqe8NGwqFAdMjRo1eOSRR/juu++4evUqGRkZ2Gw2oqOjqVu3LgB169bl4sWL+Pv7k5GRQWJiIj4+PtnGeu6553juuecAqCNEMVzKnYM2dGKBT9Ng9CAIijnGkb3teajDbkAt1mwOIRiF3La5kEmmfSHnznUqc5M6dS9h65uJS99MIgnkZqYbCUfrcnB/B3of6qCM1N5ACupefA8qPZZC5Spp1PG6zGu8ztC4deokaSjDbguwCmKPqvnnFKFwNmC1cvMG/FzApzswAWV9pqnz7270EON5j3Mp93Dtyl2wSCgP6w1gEsq9G2gfqDfKEK2Bo7FZxfS3NjYzUMZrTneqzen4q8BZuHnWCxkHeytC+MUJlowqaBl1RbFJth8IIb+Es2DYs4x5ZZnjzrkF9/IyXOOASyAOwRiWMYZlavGYCmc61eMETVnLn1h1eARVQhK48au3kod/Qs3HfyEz04VAl0he4w16ndmpiJfAkNGlEHlGyadeEJunko5RN5eK4wLUD/DrAoSh5M4e+d0d9BCTeJuzmQ1Jvlqd9OWecBaoCXwK/k9H0KvTGh7gKK04RAAXqcFV3LiZRU4EZD2n9N8uTs+0nAxSbagepQXH3mqL7Co4FQfJO3P5fcsxLBlVMLO8pgLRoeAj47l4tRa+4krWfa9Jj3ISRWdjVeurBPv4+y+CbTa4z06gExN412MCVVsDIyG9Eaz0Gsif+Sc1Ov6PCNkc9gFjoV7IGZIzqxPgcpEZTKPXSbuM6mfCBmA5RJ9UejQZR12poY0/rc5cUZFIPxfw6QpMRBH65SCjN29U5tq2mhANXv2u4EssM5iGrCngK2ApnDqjfGzLyR4B1Z/N5Ef6d0rFMRLsivGc6dwdxOGfkQEC6kPSfoNEquwveQuG2yWjQtS5o9dRfIgCPkAckHyEqBBR87KAYSHwzENjgFUlPZVig5D5JMH/+uuvuLq6UqNGDVJTU+nSpQthYWGsWLGCvn378qc//YlRo0bRrFkznn/+eT788ENOnDjBokWL+Ne//sWGDRtYt25dnpOo8//tnXt4FNXd+D/rbrK5JyZIaAgSMFRAQAQqtGKliNfinXpp8fV+a633lr7aX6Vvta1WrVat9dKKr3irVEXxWrXwihUsIgoCFoQoIRJI0tyTTXad3x9nzs7Zyexmd7ObTTbn8zz7ZHd2Zs6ZzXznnO/53lwuLk3oZfUvI4FLrgdXvsGIm3dQyl68+HATCLGa2pGTt96+l8hY1RzazSyWXgK4qcN6EO55faywRg4zX1WIgbYaofSNR5RP8RBcbaUVy5WxEWGlxNw/DyuWU7rQVgEbzOOmKudsBeqwMuA2AiOwBnI1BlSWb5EKpzqS2+P+wiGPbzX79Sf4722/4NcTfsXHW8W8YTDxEFATR0yKltHeKQCuOwdcNxkYmS54EEsZDRBeMYXIymmk/XKxFlpGmZ/HwmuTjuJ5TqOdHLrIZCOT2fLuNGGdzEKYSPIQslmFkN06hDz5zfdF5r5SzivMbeUGWcP+Q2fd/rDOBZ2QMb+Zw0o+ZDIbgwpkCfUcxofk00IJ9ZRQR445LVWVzkjuuE4Kqf17IHjeXYzi8E828vNDbuRXD/6GDy4X7peDCS2jySMbWHQafO25z/jy3INYslQofKrCZEcqek4iqipkTm2pSmIOcFQu5IxBLLbeCKumHs5ehlNHCe/wbV5qO4nWDQeIA8s7ycprp7M1B6qzhIzuQcimHAeLsGS0AhgP+w1ro6S0niL+Q31gGA1rRoIHps1czXdYyXTWkUMHXnwcv2sV3AhsgM2bxDqYupAsr0/NWKw6DkklPdLvLZXT4QjF+nTgLmMxObRzFs9Q5/qcNyOcYyAykGVUKKWDWUpL2WTcwQuuHUNmgWKgcnMx7HepAb99BrE0NZh4CMNwLnzcq1L68ccfc9555xEIBPjqq68488wz+cUvfsGOHTs4++yzaWho4LDDDmPp0qV4vV46Ozs599xz+fDDDykuLubpp59m7NixEbs32AdTMOtsGgu59NbHmXbTasCyDsSrlDrt48eNly4CSiIRiYxnzcQXtL62kE87ObSQH4xn9eElEHAT8IvjA343fr+brk4vXzXmQl4n+3lEezl57WRmdRHwu8n2tpNDB11k4jPbyqGdTHzBgRREfC2viQlx0P1WVT7lS1o57YpnNEqp3/Z+NTAVjLUuuv8P1jYxZAZTLaPRMRIoMubzWxbxwe1HQj1WPGkkaylEVkpV8XXbzhmNwluGqMPrxaqlWoiYKZYABdBcmoHPLRahRHbvLjLpIsfXTm79V2LG2ob422mew2O23QA0ma+A2c6JsOeIwuBzJGA+V1SLqJtARFfcSEqp/dnnI5Mr+BNvvHUKxs9cdG+D55oG41CqZTSZVAL5xrG8w5Fc6Pp/vIRYUGrGWQSluythvndC7m+fVKvWTPX7bIROWQmUmh4Nfj8UlCDchwoRC04Hmp+zzL9t5qsJEX5TQ1BG29vEOTwe6OgUCflqsWI+QXg8dIvdg54RLeb3qluu0zWov0c45aFAacuDeD7OMoo5sPYLAhfm0fwWPDMIQ2AGsowOfqUUGL+Yum0u7g0/bdUkmWxgUS24jjZg02oG42w3bqW0P0iHwXQCcNZcyPxrE91bC5h0xL/IoT1iTGk4eksWIi2mqpLpjmJIth8XSWEW+wWCFtnQ7X7Ha5D9Xv/ZEfCmK/wsQtJJqMuudSLn/dXv1ZSM1cAKMJ5ywZmwbZtw3aoKe2UDk3gH0/4gbWT0WJj4+gfcyK9ZeNPfhPImlcFYcBIbe3xzuO2qhTbcMfZ9Jb0pyfZ+yePtpqTjYPfc4qDMSqumXclUlVK7ghqNUuqli3ayWcYCFl17L8ZlLjhKTMpvbwtzDQMYLaPJ5Uxg4nCYU/sqz3Eaa12dbMGyBqrusXYlMhbsVtRw7sH286vxmGp/wg1Z4ayV9j47PQJKzTakQh6pHbs12b6vvQ+yzJPcXgCcfz24vmlgTHNRO1YsGK3Hiu0dLAxkGU0LpZRSyo15PO76OitT3ZUhyk2NkFm0BpGNsYXBl4YsvFIaVfZdTe8cDmx+G7rWFsLTUNVWAViKoHwfiDgDjQ6ZxReEIhiNQqoeJ5VJVakMzQ9sTVTl+dWX0zH28wWxW0dVspR9rJOGHuuEHKGLEBbYO8z3b8HD2+AJBp9Cqkk+xQANsPmp6Zz7wTKM680vEqGQQvj7VVos5UvijnCMfd/e+iNf0WD2R1UoZboiO3bZln97c90FggrpRqaw6MF7YSuwCh7eOzgVUk3yaQEYByufPYER9bWccKNwr1WVuGxC65nGg10pjPYRIOMx7Y464faVbfWW1dfv8FJjQqWSKZVI+7U7uTfLGFBpTVZf9vjQ8yfBxDs+gBXABuF4tJLBp5Bq+oN8ql2VzNk9sDJUDyUyVxsI6+h2Bp9CGhmtlCaQUjfUfhfeuPdIWhcfQB3DgFALpfo5FYSzjHqCKnMgZJ9IllQnuvBCXYwJN5wU0d5+IhkTezdCuR0BlAyN8i+a+JgAYhHjGnhn+nSGFVbDEcoOyRTLQJhXrKix2dHgtBjkAUoJZs2NrtnQBaho9veRyV5KOfWZ18UsdxLg1jKqCU8+wI+At+Dtku8w59ZXuaQsVLGC3kWg2/bqjUhrp+HO7TQhlxbUDqLvg9qm6jIMvceFqudwei/PEY5i4MfFcOTGN9jyzDSYD2wT60caTXiqcC0yuOnqVPdjiNIJ6Zp2TCulCWI98NeAsNIVuFYz93cr2PHgISGWRU/Q9ti/ydWdlM14jw/38iuJl6gLHhhvh51Rf7ZGRMKxOkQ5mRFALpwWZ5Oa9GcLsGQrbNsLs7++nuPcr/P90/4sYjp9WPGcvSmM0VowY8XJmhrrcfaXanpR9jeG9x4mELnJ3p8lX1LGt+v/DzbBrx6/Ac4HskSdSI3GiQ5g9ffhbw/C7NnrGUYdj+0+k3nKPtEopHK/aEdauyVTKsBOimdvNUydrJ6RlEtpFVXjO8M5D0H44THcceHO1QEcA/yp/jw+5WCMFhdzz1gBncldn9MMdjKAl2Dpxwy/+3Ompbo7Q5D/PuMXiEj39EMrpQliKyKfSDewFnhr7EkwHta/O5sAblrID8Zw2t1m+0IkRTHZqNYTaf1tIV9Yo5wPiN3SE443ERmAb0CMoBvg8+8d0M/qvmYwIeOMnwBe3AZPfvciltUv4K6rrxDJSgKEutpK7EpqPKIVTmn0OrSXSALKX/k+F9pzxaPfS5dt99AY09ibE8d14eU0nqP78gLu/tVlnMbzsAkaFmaxPq4za4YCLyEe7VuBle/CstPP5Sf8jgyjnCmEWjPDKYfRKJaxEIuCFs/4I62rYFlIZbvdts/q973hlARKXksGMAX4P2M+P3xrCXuvGc3OS2AvpbQt2o9paNdMTTi2IGa7z7HP9SnbjStiui81feeXRb/C9P1KO7RSmiCki45c9XxgJxibRK3OTbsnR3TZVRXTviqpqUJaf2tqy4QVMxzR+EdJ7COpDKx5DXizHS5HlKIxy2S8z0wqc2MbuDVDk2yAjdD1RiHXf/pHPvrlOPGFzJjrpHjG63Kbaux9HgeN3iKg5/NGWkCjsYRCaIypPK6DHL7LCvZcMJZLn72HU3le7swGDiMfLaOa3qkF6l+EvUtGMyuwhhNet2wD0vKYKAe2cG63sRLODTjSkCcVaDWpkv2vnXiUX7/ydwKwv3EoZ77+Ekaei2fugc+BUexio3cypWgZ1UTDbq7/5h9ZtDtd7XYDE48b0jXiWyulCUYqpt3A368E42QX3JDFjt0HhWSvtMdnRROvFY81tD8spipfbc0N/2U05TUkfttfEHXgVgOv1cL5OSJGTWbwHSEmxDnFejDV9M5uYPUuqP0+GJkupi7/Nw13mJm3VMtlb+Jjt3aGe4UjFab9yYld/FIV0y68/IClbDvhUC599B4W8dtg+ZoRZ+wgh3YK0DKqiUw3whazMgCrL4D6jeW4Sg1OvtVMWEbsodXRYs9aG0s7kdyAe7M8qll987FKv8Ta90jOSBnANCDXmMQ3n9mAUeTi1VnieVgPfJ8nyTS9J7SManpnN6z5G66RX3H+v1PdF006oJXSJCAH1HcBjgJ+BlRmsT1QSQBPSIkVJwuqXel0UkCjmVQmQyENX7PQQw1lIhlYIvAglE0/ljvwGuDpbri4VBSN8wN55t9K+JCpkAvjgDkJ6oYmPalCuAk+AnAbMKOTkms74BysWWBvcaVSFMLNAFMVmGVvV/bTC4yFfWPyEtaUX8nCW0MZx/Ma6y+YzZWv3s6N3IosK5VPCzP4gLXMpAKhWMxJWC806UgtsBGzAt//AMM6cR1ssPC0UBfeaIhGsYw20VGiUReyQciGPc5UpbcqUupxauU0D3CmGxqMEzj8g40Y+7t4ZpZwxvQgMh8fx+tsZiLbEIrxnD5dmSb96UZI6S9x3Whol+9+wh8A4e9QYL7SB62UJhmjDQ49dA0cDw0/H2naDDLJoSOY+AjCl2eJVLzevm+sGTITSQA3+9YeGHn0D5dZ136Mutzbaf5dhnDbvThDWEjzbPvXwR8DP4JmmFcoCoHrlV5Nb3QD3U/DN0f+E2bDuVMfEvenj/AWznjEKxGZd/uKB5gJXWRG2MW5Y04xpuq2FvKZ73uZHT85hJ8++kuu5fchi2k+Mgng5kEuwwOc7NUyqokeYxUcO/J1mASvPXcU40jsveNUtiUa62YisJeOqcAqO2O3ekYaXp3qqaoxpKcDr/rP4Oz6pzG2uHjxOKH4S3f6ZiDH184f+SEVaBnVxMj4VHdg6NDRCXjKCc1Jnh7oJGtJxpUFlWznowWzmPaD1XThJYf2HpM8J0VSKqTxWDzjPS5etjcdBJuIvIwbaUTtJNQ6CsJC6gf+hHDd/S2Wu26nck4PkAcN940E4Jkm4Y7ktMqs0dhpaIKpbGDyGRt58M5roA2CzgwyxlQVz0ipMXH4LpwY2s+bKOx9ku1PhT1TC+NatHKKMc0xJWwtM0XZlzp4/HcLOJL/CzlOlp7JoZ0tf5tGDvCET0yCtYxqosF1IxzEZzx58KmUuVaxEnHvRFIaY4kWkUhrZTzKaLzHylQJ8n0tzpUHoylVI5Mbyb/d5t8r5sL0t94hgIeuSwpZ+rz1+xUgPEcygNwNX/Fe1lxKgWd8wuNLy6gmKpamugNDh24/cCSwMhshvemDtpQmmVdr4FwehwqRkdJtKppSKXVyzbW77jrR37GiTu1KJ+MOcuhcWWwplpJoZwPqqAziPJ0IV+A7EMrpzxDW0RGEjuCyvXJEeRivcEPSA6kmWj4G/ov/JZ8W+NLcqIqXXYdLZBbpZCPdjAvAOEpYNyM9O8IprB4CeOkKOdZHJk/yfU798+swDJ780alBhdQpw/hUNoBfJGnQCqkmJpYKGd2fRrZgiV6kZET9LaLxZt7NwKzPirCSNkQ4n1PZF/U61TjWZqAUuOI2qHhrC2OoYsNx32TJ85ay2YEtXcpq8ae8TI+jmhipMjg+1X0YIhTkIYxAaYhWSpNMPlDBTqiCHNp7rVGaKmUzXrrIZMsn04QlE2LPPmHPrNsKDEMEEv2pHWYBi81tWebLfg4/QinNArwwnHRNlq1JBhnAxMBmNjMx8o7xBpxFY5iM1rU3HvffXOBEqCkuDiqI9qy5Tqix7W7zJalnGBfyF67/8R8Zd9FH/PvoUXyLfwb3tLorPrsJMJmNMB46AmLSXOzQpkbjSJOQ0Y+ZHFKH1E5fY0L7y2XXiZEIDx8/luutmpnXjv36ZaIkGaN6AnCMkYXrFIOHuYSfuM7lgTcs12C5fwuKA+DbcMChX8CYdHMK1CSfx6g2jk11J4YEVU3AQhDSnF6SqpXSJDN7uOnmtpRgVjsnxbOvtUUjZeaNJt401phUP26hkH4+GdYFOxE5D76aUde+xCvjR+sQbrorgYtzYL6yn7Sgqu2oVtNW6P5SiKlcbdZoemPOcGhx5/Pq66eHuu3a6YvpJVyG3liI5/GQBcyChhlZIS79Usad3HLl8yO0DrGlbL7PTKZ/sJm375zPlffezsvMJ4f24PHSG0TipYsAbrz4oBMKvFYiF40mGpq3ZfCi+2Tu4CdBJS2cohaNiPal7EsikcpnMUIearFcb9WYUDt2ZyEPljtuKXDFaXCHcTeH8AnGZy6yXatZj2UZ9WDFkobEn+5FeIzs1YtGmljp5jMOSnUnhgR/Be78/Q+xlpjSB62UJpm79sK4DdXQaLnO2Sdt0dCb0hhuW7xJj9RjncrXBPCwZfdEeDNDWDejWZ6WVk17uRcZH7oauAUoQiimk7DiTLNsxzgpv3sg4zJYOM45JkejceIPe2HkGw2wlb4933uzYjrJSF+SHkVqT8rNEbDv2DxayI9r0Uu67PrIZBejuJC/cOb/e4mMimZevX4O1/J7cmgPeT4EbM8NqdK2kwOboOBcOAmtlGqi51VPNxPZzL61B+LHUtr6ghyKpGLa1wQb8fRJuu8WEJoxV8aHOqFm05XXIC2qpwPfMEbgureDg9jOl5MPYul3RYZdWYNVnkNduA1G0Hhhx+6D4FE467IYL0YzxOkQCxqapNMNfJ1PgcmkfmktsehER0lmOMBNwBxhKW0hL6HZcfuSDCnWNnx4ceOnCy+bPp8KKzMsy2Us8aOY+2chFNrtiMy6nQiXhPHK972dS47QMgb1aHjx9uivTaOZAHAl8DjwCiLRUTKSEPXHgqaUr1yEQnpUHi3kBRfConlOqC6+PjJppIjH+S/u/PPPIQ+u/9UtXMaD5NCOL0ImX0fqgGKzXJZGEyUTgCkXbCHvvn2UYsVEJnIC01/2BjlsdSOsmiCGLqmg9pacXm6TimkBYmo6/VGYfr5IZmR8lM3qcniYnuu4Tgmggr9lE+B3wxew+sE4L1AzRClmMhvZnepuDBG8dCGWm9ILrZQmmYVjgB3AFNjFKPJp6TWutDeltT/jTtW+uPHTyP7s+OgQ2EDPxEbOJ7CURjW7rh8Rh/o0wkI1H5itnE/NwuvUhqoI+xHW1TygDP1Q1MTEMbdB/Y2I+3Em8DbOWXclvYlfONff/sAPlAAnwp5JhfjINAev2DwnuvACPl7gNK5590F4ASb97l88wOWMUbL9ibrLlhuw6g5sj1sdxS4h419o93pNbExZA5wPrXVFzBkDW3amukfRoyqbGVgK4HAsN3aZKVetvdrtcA6J6nZ7/o1w6q1Psvyzs3mHGcw+cD1LdlmW1w6Eq67d+iqPV9up3gQnjH4JI197G2lipZyJgc28lupuDBHqKIE0tExr990kU7sTMYndAzs+PUTEVcVJuLjTaJXUQJxrEDLD7sb6KexYfgiswXK5jQapkHYislevRrjn3oJIYHQfYrIKluLqFDRkr25u/74cKBMZDDWaaFm9yCxGXQf7TszrmwLZF+uqjDuNlyxgKnA+fD7pgKAVszdlVI0XDeBmF6N4kMuoeGsv1/zyQUYfsZW//u4klnMyo9jVY6HKHSaDuL2NfFrIGN8MWcKyo9FES/vRCA+GPRlwvtjW1xV1OZQkO7GRPL90Ox6OSGrUglD8Omz72WNdpTUU8/jRCPf3Sx6HF4wnyf5pPRewBOOq/djtWs8fdoUqoNn0dJVXH3Gy3Q6ExfYgtuNaY7Wp0UTHZFrc+b3vpkkIZXxJOkZ+a6U0yayXb8YTVOTisXQmwjrqZKGNNGGVKZNqGc6WtdPoXlEA1Thnk7AnL1L3yUNc+0qEMroMqAQuRlhIO8198rAU0k4sK2u47BXy+9CL5IRxztev0TixESguBIYhEjXIeyqcHhfr9miQxzqJeTRxp8OBE2H3OcXsGD4iqGj29tyQMe4AX1LGldzPkfd8wJ3//XNGH72Vv918In/nGA5nrdkVcV77M6M3N14vXWTTTk5eO4yCY25NXZZTzeDjCelSnwXM6Pv5Mkh+pl2nZErFiGHrc2ylWEzUoVPtYzZiyDwCOL5zP2YbW3BNNjiLZ+iYV4Lf9QYPvxLZAyFDObc9/lUOr1WYk90ZcMzdsVytRvMuy1iQ6k4MGcRCcnpl3gXtvpt0qgDckHflPlrrihAfe58oJhoZFxoOuxW1nWzqA8No2DRSWDal4qgqgqqiqLraSoWyEeGauwmxBOtBKKFyUpFHT38i9TwjEMmOZPsq9mRJjYgfuxBe3Wal19dooiFjOBx+yirxIRrlMtHxphAqT+EeAapbcS5QBkyA5lkZtLtz8JFJAE/QginjSO2JiLx00UgRO6lgGQt47JMr4G5gNpxw9XNcy+85iO3k0BFUOOVzS8aaBnBT1raHrA2w7wgRuypdha1LCi1B09KYD2Ww8ibLZVGj6Y0WoLke5h66AjoHx8RF1gv1I5TRbqxYWPk9WC606jXJ2qXjgJmTgEfghzPv5IHl13Godw1VeyfAifBMDfxBacfu5puP5TKcjxiG5XZ1f2k17kaUeds3PI8vrmmlAGflWaPpyUae4Swu5SElwEOTLMR4LHNup89IOhie7YOaboA2OC73df62dSHto3PIxNcvcaHhXOoiKadu/FQFxtCwZqQYwVqVL+V7qTzmIRKXgKWw1iFKxFSZr1aEEnolwr1WuvIW9dL5PMia18CYwiq21E0TMayScFZTP3TmikE0/daPNMmiA+jeC3NYacZpEFvyrr5gF0WpdPbGBGAWNI/LoMWdH1Q+1XqiHpnx1nzetJNDO9l8RiWPcgEr3v0erAD8UPzb3fzw4fv5Lq8wnNrgOZwsoD4ycRNg/0AjWa8Am+CAklbax2c7KsHyuSMV1u5c8WjQg48mFrr98C3+CWXCtbSFUEvkQLC8q0phAZbrbC2hjxOpsEKoklqBsIiOmQvdz8GFhQ8x661LoBWWcBZ//NRFtUskMGrAsqKq7rkyy65sX406k23KWFapiPqVY90EyG9rZQtaRjWx4OG9CXP55yRYvCnVfUl/ivgPVnS5Vko1UTINoNBc1VgNgenuoFWyPxMW9YYbf7BfDXtKhHVT+vp4EEonWG645QhXqipznxcQ8aF7zL+zgXlYAZ7yTpMuupEm/HnAvE4qCz/DTYCM8c10by2ISkloz82imU5tJdVETTbwbpPwDniJk5mf9Xb8CmmsIh1vrdLhsGd8YYjSKOuJdpDDj7ifw/iQqWxgHdPZxSiWv3uO8FxYB8yC2ef9nQVHLGMeb5JNe4gHR8As5RKOfFooeL3bqlH8b/CO73JUYu3n6cjLoJtunexIEzX5QMmBUMUYlo86lmzeAMKLaaoUVGl1lAqfB+Gx4yF0obQCmNcIGauAR4AzofM0uDr3bt5kHjtWHcK4wo94mfk8/vylfHy/GGqXYCmdsrYpOOcELEYopHIf9ZjeyjF1ZWXQoWVUExMFsLVaBDxrpTTplLIX54jxwY1WSpNMB0CD6f+9Nf7zxFNGJhqlV7WeypjTA0buZV/RgcLqqd4hWQildIX5twjhNluJUEIrzW0VwZM7u/uGy9ory8DM6WbCyM3ByWxZSQ2f5xX07I/92DqR4Ri2paGoapJJPcKF/Z98SyiKbeYXsYhdotaYIrUp29gF+b4WfN6SHh4Q7eSw6oLjWbXneOEuXwfMh2lHrOa4I95gxkXrmMxGMs2ka6oCKl1zVezPkXxaKH6jEzPMVLANitqaqMkdEUzIJvsTUC7oq7pcdpWOAnakmdORJumUQD0lvMORHM0bPe4du4KaCsVUWm6ly2wJocmUZB+nAZkbDGiBCS+up45hnMbzXMUfePDBa+BP8LcNQsTexLJmqkNqi9KWOt55EOErzYQqrR5ECZq9WEqy3SEkA2ghnxp3GRl8rsdRTQyYd57WKvqFEZuaEJKeXmVh9O2TZNYDx/hFjVLqCKYJgfCKZqosqNJSWsR/hFLaiBixZDypvFs6gQXALCxFFXpmx8XhvT0O1R5Henwnk0aKCbOMjcunRSi7exw6rR7rh5V8h7PZRjPwRCwXrxmyNANXDIdXyaRWVg5MRsxoLDjFbUvcQD3k7v2KxlHCXdfKnusRSqUfilfs5jX38WYZqgA5ijVUTVakWjL9poKqKpJ+MwYVIBMfxa90ikKjPkTGYD/QAFlNEMj1AF2OVlY3AWiFN5nHJbkP8VJbug2nmmTRAjAKcminhrIQl9NUES61gtzeAbTb9pUW1OJCsfNDPziXs7KWstYnvvun+eqwnUs9v9p+h3JOGT/qQbj2yt9IVd7lvnI/9Xu5rYV8Xuc4zuAhGoDnovo1NJrdwHNaq+gvbgM8s8G/HdIoildn3+0HPthrxsKYI0q40i6JJNL5Zfv2faSynEOHFfOpKqKt9BwVpWtvlvlScZo1hJtsD4P9Tm1j0siNNjdCj7Do2JMi2fvgB4pgLTMpnQSVxTquVBM9UkYDAffAGFTDZZwGYS1tQxS6V/AQIBMfHeSAB77l/idl1JBPCzm048eNj0x8ZDpaMZ2bEt/7yCTf10Lxi6aF1E+o4u4HmkMzfDu6/w4zWMcMcsYIxwoto5po6AZYC0fyTq/3bH8RSURRvpNZb6VFswARH0uFwbltS3nCJxZn1JATqSCqqGu+akyoiprwyCmRmD3rrhP5tLCWmZTPFIqullFN9OweGOPnUGAdZinF9PI30kppkjkJmH4iTGYjjBCTPB/emK2kToqkus3+ioQsA6O+IuzcU5EsoqcrrUf5a1867m30HgHFC3YztfRDMvHhxm8mbVEOKop4QYIsqGU4+MB1gZj0ajS9cRIw/SQho6Pcu4TCF+jl5YRbeXmx6o5GejkRqV15jF/dPfREJdTDbPDiC8p2OBmPFDcq3Xo9BDiwYR+5j38lLKRqJmy/0rd65/OpCnD5QdvpIBujBqbP1TKqiY6TAJ6EIhrJpCuYxEe6oNpfqYoptQ+Jsp9gZdj1AOvbYO5BL+NVypbL7LwyQ69TYiRVqZSKrmxngnmcTIAkz6GeRyqr9vOrTOVDIcd3wpj7tIxqokUuu2j6g21bMYU41T4jiUWvaSSZcYWw+RU4au37kAfZtAfjrfpqLU3EOVSku2wAD5R3wgbT9KkqpX5EIqMRyjanJV0ctsv91f2mwuiZW4WLrtIHiXyfV7GPVg7o2YbKMKGof7ANuFPUn9RoemNCMWx+Cb7xxiY41vblwDDKOPMFuCdZrrYy0ZEXn6iL3AekcumlS8SuvI4IRoPw3g5fIAopQkifCO7upowafHh5qQHWv923PmqGDhOKYfMcOO+tv/Lm3HnBZD99rTWa6CTbMk5a2i7UREFqfGcHMJHNwT6ACCOQw6m9tEuLsp/9eivM/Tcq7dpjUCV7EdZPlP3s/R/FLtz42TxbxLPqZEea6DAjldNLRxqwjBuPmVAqvaK+taU0ydzbJJIdsA7YCl2mldSuTPZmsYzKqhnFeZyQsaRqBt7iEfXhLaF5CMul3V23N+QoKc8xz2DCzPUU0WjGsYVfI3F7Alb9U/vyrzwsS1z/+8BLMXZNM3S5vcGU0S3w0WczYbj5hSpGvVlJJap/XbyDs1OZGLlNtZbuDbVMSstmNu1Q0WmWg4kN1eqaTwsj3m6CZ4EvzY12hTQQcnBIrKoTmWZsam3MPdMMZYIy+iFsZgLFfTiXOsokc/7swbnGZzdiGlnKXv5THH4QVd10nY7PB0ab2xqU/e2xpHZLrWphButRJRX9YdTThZd30QqpJhY6gBbhIaRJPoWYZRrTq5KwVkqTzEmICio0Aa+JzJjhCszb36tE46YbzXns54LQODCJ2x3oOWLLCXcnkTPhOqEmJKqE4oW7OfSgtcFJarBdh74E8AilNC/MeWXW3iKxb18mLJqhhx9TRn3A3S7hBxdpYI2kmEajjNqTgTlhd/GN4HXgDsqxTGLkIStPJISJJ/7OSxejd+6j+JFOeAXhzuwmvIVU9tcv4tHtdUolHgKMYhdefAOipqRm8FAJfAyQBeufmM3MsvhLxjvdvlLRk69uQi2e8SCdGe2iK/vtJsC/OTjkO9UaKveT/VX7PRyRd7MBEYtq5hoLKf/i9CiS2+zXJT93AGWBGgCZ8k2jiZJioIHhj3+e6o4MDRqIHNY2SNFKaZJ5Ajgc4EDAX4ssbx+t5bM31POo6mq8SKUwEFD6pVgiASEI0fo9qSNjETCvm3FHf8Qo9y6HyFa/cpjVfgA3mW6f1W4WYSfpAdycXhhFvzQak25MGS1DaKfq/RONdTReohXTcPuZ2wNB+RevTHzk5HXQaI5Y4Z4xTgprqW8vI95ogseBbbYvwync8jRtoiyM6JqlmKolazLx4cPLyDCXpNE4sRE45kTgRIRPqbnymKjFjXDKW7SEy5JrT68AlgJcxH+oE/ZfOrCuRcaJypIu8tzSwjnS/CuVUBlHqrbpdD0y8ZFUWFuUvqvKc0F9NwHcnDwcjSYGGoBi9j12YKo7MjQoIy0DvnVMaZIpBsaMwUwO4sEdxoqQCJysjPGeJ+B39xxZVatkq7mttzvIg1AmJ8HoQ7ZSRGPMfXUTENblcJ5O0VieNJowhMiodBGH+JTR3o5xE91sV57Hvr/qxuuxFEu710SOu71X9121NmmRr5HcDV/BKkTRVrUP9vdOfTVru3p9QG7o1/bnXaKeU5qhQzHADPNDI5AVWsrETiQLZzKs9OGsr2r5FfsQlU8rXXh79Ed1SJDW1mzEb9CBiAttJjTTbqx9TXQsrUYj7sgJwotOo4kTPZVPMh0g3AJNhUrGbcY6MUukIhvNuQJ+t+Wqa3fby1K2dzocLPcvAsbDAYd+QSm1orRLDMjfSdqBNJpkEJTRvs7UorlF7fs4iWK0yqAb7DVFQZaG6aLFl4/X2+V4qIxrL/I1krvxK/gA2NFLe5EI4PjbeQjgIxN7mSeNJhZCkky2EtG9XippTqIc7s6LNmeoqgD2ptzKNVzpiitdazMQVsqDqaGKCjIJX76lGBE72oKVZ8yeBEkSTdbhDNt+alSNHUNrrZqY6ACqRCJMjSZO9OwgyXQAS2tgYROAVeokXNyV2Ct6BTRS9t2+KLJuT0CeJDSWNM/8uwfnUd+M7WQSlB+8jRLqe1XAo84gbM/067FtNy1HHU6KskYThqCM7iR5T8Rwymc0Sqr9GIlPHiIUU4/pwCsz8DZVjcB/sBsvXSGKayZdlLS1krUBkYCtxqEf0fTf3h/A76Aoy8+qYppeqRk0yaYZqP41lJ9GVJ4xydCn7MpuJAVQ7Z48rgDLHbcbyKGd7VRyKJZLr6ocS+/Zvba2pVJqz/UXjZIsrasewufsNDziGfG+znKkiZndUJXqPgwhRvS+y2BDK6VJZh4wLZfgym6yXHcTTVApVbPuyvfSzVH9rggoh6xJDZQW7iWflmD0bCQFPCacLFmqa7FHTICbffEnwdAMPYqBhVMRMupU4ihZuOmpDCbAIUBGl0oXe6kgFvkayd35FXyIUETVQDTVLbgPZPhCM/Da5V5aSY/xwhnfg8VL+9aeZmhwBFB+K1b2HXf/iipYY0osDhVOY5Da7xbyQmJGi812mhHWUVUZlUqkU+KkaJGKqSTctbjx6/FTEyNmVd6iVPdjCJGGVmmtlCaZAuDeNlhUA8IRZw9dePGY9UqdCE3yY5VrSWRNUomahKQH0k1X7GCNYJ3mdxVAHmRUNDOqZBc5tAcV0UTjxu+cfVftm6mUlo+Cw3fBuwnvhSYdaQDu2gDXHU2o9T2SdVCN+cThfTREK87hFEa/DAewlMAQN/c8GF2zT5havkAkLlIVUXVRKREi6weawD08EEy8JNOviWYCdJGJGz8dPtiiFVJNlLwLbLkJrpKLo85e6UDfa5dGQlVM40EVNT9uOsihAueEReox6t9EoMa72mnP3Q8PAWZPhTc3JLBRTZrTDTSHn6dpEksNcACkmwlGK6VJ5jnMlckA4FAOxglV+YxVEZWxYr2VhAlHj3hX1UKqTmbHw6FHrTEnmYGkKaNWNwJWoqNwFtNGMUl/dResTVpPNOlI8EGYh7iX1Hqgdvpq9I9GCXRqQ5Zlkf3zgCcQoMMdmqlayuMBB38BtyPKUdnDuWVMnjoC9HXNKyDaCTgoyPKZVEspw6jjY/SikSY2/CDu5WH0zAydZNSkStHEbUZKwiSVQS9dZNNOFc7KqNxX/Rsv8ni19Eu4R1CtVzgOV29It+muJrmYtvzy1PZiqND8BaZwppeE6pIw/cCZINI3Y03UEp24SC0vI8vDOBGTkhspC0IW5NNCJl09FNJ4FGmnl0qmzL4bxShdFVPrGg1cUQiMIjTDc6IcEwK2l1QQ+/oI8IPP7Q2xRkqkRTJEIXWHHhtT3Qv7NTjFw5pu/U79kbSQhx8326NsVqORnAaiXJMpo4NlRd2uEMptcvFGLQdjJ9bSNOFQExvZy9So27KBRvbHh5dXSbfprib5FEOlkepODAmy1SoYaYRWSvsZb4wZaHvDKWZLKqTyr1W9NPpZtmNJGAiZtItSLb6ga7HaRqztRUUWzn2S1txq0e7lxYltVpP+VDcBbeYHD0KB64/wb7v7b2/t2u77gLIQJXGqPxrclOxrMh9vTotuHgLUmKtzV8zo8bVGE5ECN6LckBKUGU6Zk4mD7K94lay+uARn2P6qyDFa7Vc3PfuZaB8k2RepMMt41WxgLYfTQTZTEtymZiiQAX5XqjsxJOjoJC0THWmltL9wyz+WouZkEfTjxoe3xytay6rd3hiPYhhiZZXugmqNUnN7F5nm2/BtJCMONtgvieybuWq0XWcN1MRDCZZCCpGtgn1Fni8WBdjeD09PF1lJphomYD+3/XOiZrxKWRiPw3POTYA9u8vwEGDbugS1qRkylBwHzLQ+91fFklgtsjI7rhr54qQQy6zUdmU1mTGxEL78jMzMKxeOapPYB00aU53qDgwNamUZuzQjDS9p4ONoyUgSUpmNWzlUXXhlWZis8LsnCzf+8HerVJy3io9v9lOfNBogdZXo/QSjuaV8y4luF5kifj1VfbPhkWViNmXhH+nWMqpJCJEsnzJ2M1UuqOESxUsCuMnEF4zvVOuPdjvsD9YQGI/Saq+xqg7taru7GIUftw6D0WgGMJXFpOUCgLaUpgB3jAqijNfsLe7SjmrxjOYYNdNvsCQM9LRKysy7OFt7k0EAT+QaAKa1dBS7mAZUJr1HmnSivBDhGqgSKbOuPUY0XMxlJFGXxzod74SDRVV9lqjvfXip6O9pZTSPgU4o40uOR8uoJg5sC6L+MC8IdZtVX7EiFcZocVKEnYYtH17GUBXTuWNdX3JyBfYgrKL2kt/yt+vCSxlfMhMto5o4aEx1B4YGrgMxy+9kR95xkKGV0iRzJmYszF7xWVpJIymMdtUzXsIdG06JVNtzuwPqAZZCKOuTmmm/nSyw8SjPaixs2GvJMnrOPNTMwMPgW/yTBmBcxBY1GotSIGM8IsW6XWScXGsT7crrdNs7bbMrrUpfpYVUfT+Mur5bSePItCKVY49NYc6kC0bATNbyPvB5H7umGToUgEjapWTdHehuXnYnBXuOvi4yGc7ekH3iseo6KZ4qdiusdC22JzySlFDHDNZRBeyOoz+aocpIID8lnnRDkh8B2+tT3YuEo5XSJLMFWKlk3LTq9w0An7poUYNj5N8oa1H1pmwCUSngATzgifCbZQHDxIS3Cng1uu5pNDQDL65FTHojZZzuT2TZl0g4fB/AjY9MArgZLlfCoiXc2lEsv0WgZ3iCVE67yIRhBjNZSwM6s6cmerqBV99FLO6aMiqVq/4gFgurvK+lMthh+1612ObTEpMc9OV61WPt16P2M59WvsU/aaZn3zWa8LQAn+vyB/3FDBAaRnpJqVZKk8xGzFDHXIBuAnjIpCuqGM94subGQiRLZiDgVneUHRLY4kr7kkzJrrCGu2YRU2prx49lufUARTAqsIt8gt7FGk2vdCDkFC8iWZaSsMfRHddt7usluoy58SD7EMml12u99ZEZlOUAbtoDOeTQ3rc+yLqoTomSwlmQw6wbSWV5v7x2ygI1Kdf5NYOLDuBjEC4wZkI7qcx5HF7JTBSk0puVUu5jt4Z6EAmFyqiJmJ03mnajdUuWfYjU326EojxcpznSxEwz0A2bUt2PoUHz5AxEheP+etr1D3pu0A8cAaK+Gh10kUk+LUB419dEocaIxtpOe6vip67GckpFME9MNP1KkhUnerV+OvTL6Xwh22Rcq903KguyW7uDHzWaaDkCnJMC9V9Osp70dhPnOidNC+ChpTGfkpI4XHvU0zl5SERy8PDbP1qyrD5vCmq1jVQTGxnAouEIpbQT8FvDUrgpWaJyfKmur/ZtvU0HZUZbzL8dgKxYVk9JD+Wvt/NFup54rLlOx7rxk9PWGcPZNBpJAUxKdR+GBi3ufNLNSgp67t4vjIaeSVTC4CHgqDCG2x4JJ4Uw2vN0tuaEbpAzAHnHDIuuD+EUY/WzU/mImKyvppKMBzLahJjqWBhNLISVUafbUIpPIma8kZJ3RULWbDRR40nd+An43ZRGsnao1+UOsz3cPjEi5TmAWyRQq0rHoVSTTLpBKKRNRC0vyQqQiWVJpQDLliFFXSq0LeRT2rYv7LH2/IL2bYlE9gvASxdZ6zCXzjWaWMiOOrRL0zd8ZBKdr8bgQiul/YUb1JsnHotosi2rkgAe2OMQrS6TnkiX2SjwmsG0kfoZ9TX4w+wnR+xhQLOYCGilVBMzdtNKb+si9v0j3cbhzuXkHhvteszwUGVUTaL2VWMumaVdzsfZz++z9acvRDi+Cy/dnZmQfrkZNP1A/RookcnIlLhSid2iGY1xXxJukUS1xEpxj8UiWQo94qczEBbUOkrw+hwP63FdkeJBY0Fad51+E9mvLZRBG+QjHDI1mpioS3UHhgYt5DMg6r0lGB1T2g9sB2gT790RLJXRJAWKhXhjUd34heJpncgaFVsRKb9bw7vaqqgxq2q8qP0VFX6P1R+7hcmDqNmUC2fNiO50Go1kO1gxmk7WS6dnfyzjgTvCSw2Gi5YAPeK6c+jAQ0AkFNpO9DGlavvh+mjfrxfcplxL2feRSTs5UJ1F9xEwLbqeaTRB1geAnQTvP9W6J1HjTJNBNLe/VPykDcPuYuxBuPB+RiUuc14QydaREeZ9pP6psbWqC7EMyulQvlfrpE4DNjIZcuGSub00ptH0oDkY861JLrsYhVg6Si+0UtoPbAexXIo1WXNCph1KVHIjVfmN+Zx2xU91360WfwN4EmKpjeYcPfZRY93yEEr0dqAJ2rf0uUuaIUZQRsMFokWjpPaFOEqvSGQJlkBQAfTCBunekySiKGNj71c9JbAOMlbB7F/C4p8mr3ua9CKY4aAVcZ8FeoqLGuMpxakDSzmM5OgWTtGUyppMVqSeUxLp/OGSC2UA2zkoarf4WJIZ2aum2XGyvMpMu1PGwD+a5ohF9NnR9U2jsdCBGf1FPq2k4++t3XeTzDxg9gzM+C8/7ebwGikBkJMFsi/Knz1mM8qDnDpmTdr3hPatL0p0tJmIe/RF/Wsmv+Bd+H1b3F3RDEGCMurFsj62EfvTMVoRsItgb8qo3N9+/jC5SNrJhnXQQU7isr0QxXkc6qZ6COClCx+ZNFIEG8R+t96cbpEwmmSy6Ah4bvUJsOFVWBd5X/W+st+y4URaVfrs2XLtQ43TecLFfNrPJS2TI4Ftqw6le2qYDsWIvR2VSNesWlX9AGOgc3UxVMFd/5OYvmmGCtnASChKdT+GBp9xEOZyelqhLaVJpgqoXYcZRyXsldIaCs4ZaCG0XEtvimRvLrHRnkfSo09OPkudhFxHsvHjBr8r8k4jgFy4aRTM6Y9OadKCKkwZbSC6JA3x3PKRyqjEg3T7DX60stz2yFQNyV1+dHisBMyUSyqZdIlaTW1wcRK7o0k/Vr8Lp896Fd5A5A5oFY5r4ayHfXA8AHp6qsebTkTaMVQxDPZLib3rz6IOOVgKqfydgjVffYjfdxJcN0aXVtPEgh9oYezVn6S6I0MCUcWjApFFJX3QSmmS2Q78XX4oKsGLL6j0ecxMmX0hGUphALdlhbGP7nKU7mOd0tj75LH6oyJH1ixgPLAGntkFK5PeI026EJRRN8Js2oRVg7Q/iEd8PASz76oKoMf8JLc7mnmSdV1hfjPZNy8+UfB7k/JM1Gii4E1g6VqEB8Px0P1l5P37sgaTYXt5iN591o4aV6oquNmmnHgC/esxoPZH/Rzsgx8Kp+6BVfDqTrFgp9FEh7iLPqvRNWH6AzHO15Ju6ci0+24/MBNgKjBPWAu8+EKyZcblXpsEpOLXTo5zsLqHqFwzkqakOiWgyUIkXvKY79eko5e9JtnMBJgMGd9uhiUIRVEmPpK3s+pGm+hb3H4+p8eA2n4uZu3jUPxSQS2CvEhFHRL9mFETNjn0yUNAPFfyoPuVYIi9RhM1xwBMhWnfXc3HTeEtoTLJUKImN+GUUadxRs3OqyYVyiY03rUgDygCVwoyUXebfZIJjmScbDZALmR6u+DddJvqavqNRanuwNBAKKUyICB90Eppkgm6xXwdKLe2B8LU44ynHqmK/dhwZWSkG7FKyGd79l2VYQSvxe+gWEfbT3lMTHGu9gRMHoQCbdYqrV6nJ7ya2PEATICDSz4VszE31qw30Qpcgp66hkfIjhdR+sVHpuUyWwljqIqtLoYdKWsBoi93Y4srVamhDDrh4yZdA1ETO6UzofNYmMiWiDnJIDHusKro2M8Xzropt0slVO2fzHgL0O2HrBkN8LbVVrw+U71ZWtVkS2rCJntGXgAOgy5fJvVv6bJqmjgJU+ZIkziOAI796HXg1lR3JeFo990kc9MoGDMVto4fHXR59ZkmmP6Kx1SRCmCvbsNhkqjQCZRD3qx9CS1fExNqs62I39WMzykfLwRWo4mFjcDu8cWijEqiM+v2RakNOLwAPNCeu5+5S2gDftwwC6Y3fRT7eUNPJHCH2d/pGIdHglROP+XrUC3Ws0aG75lG04MTABrg09xxePGFzWqbaoKL0Cb299KKm+GBiYWb4fXEtBkJtTyMalexu+76AWZC06YRFORBZd+7phlSVALT0rF05oBjCsAC0CVhNDGzehfQBm8yD/ZYE8hIyYci1fOMq76njZjqoapLqp0IBXAElOSG9zuyJ2kKd52xJV9y91SUpcuuBxEY2Am0wcxJttVfjSYCclL3D77DfygKlpwAnF1SI9UcDVfjUyURg7Zy3qDLrkmH6SabsSvMseEeG/btUdYkDdnfK2TVR2bQciv79iVlsEdEwZw/FxavieHcmiHNNqB7L6zkO2bR+FCntWQsj0ZKliTrfzq91Cy+9hqjsp8ZMjfJTqsteUw8inZv/VHbtrehVntjFrAVOjrh5F9oGdXEQgswXCul/UB+LqI0I+NS3JPEo5XSJFMLkGsWpG4VLnZefHjp6pNiGQ4npVVV/mRyJbUeqrpvAI8oKWHP2ik/1wHVmFNNf/Ccfe1nby/H5Evy5UF8N1V8Xb8FFs2FyTH3SjMUKUbI6UYmBye8QfqaxjMcvZ1Xyl045VZJNKaGArgJiNIr6xAJm2Rbfe1jNMq3uUhkd+mXn/24YaqYENe+DdynZVQTHX5gfRNUUaEs7IZ+PxCwK5TdWLkxZSxnNkAZrP/siBBXRxnjmQzkubvN9u0uyVKp7S4AKqHWB3wIvKhlVBMtHcB2HRTYr9QDpanuRELRt09/UAi1DA+x9Nld7hKFanmMRVlUj+vw5fRMKiQ/VwOb+trLOJHJl9Rc9vL9MCg8ew/Nl8ETASh421wQ0Gh6IRuYBqylRHgQpC7XWHS4gUJo9+aYHx1iN1cSXKTp736pWOECYnFp3HEf0YLIJVW6VMuoJjrygZmj4AGKlEWPgYeq6ElvHbuimgFC01vaS4mzJGDPIqxadaXledrM1XQAf3gJil/SsaWaWGgemIKZZvj9gK8b4SLYnwWlkk/UltJAIMBhhx3G/PnzAdi5cyczZ86ksrKSs846i64uM9mGz8dZZ51FZWUlM2fOpKqqKikdHyzsBWhCJCMpEn/Dubf29nJC/d6HN8S+2Jt7rP3c0qXX15kpFGgnxbQToJsuMsO6ACfS1Vjiw2v1KfQiBFlwmfdBCiaLdaMq0i0nWe9oGY2PBoS1NJMuhsng5EhxlJFeTkSzjypKAYQFJdJxXugi0zzUIWFYHeHdb2NxNY6FLDDMMjV2eQ/gZicVXM6DDEdM2KvQMqplNDp2AwTEfTWM5KesdRKdWD3Z7YmOQs6TixCAzv6dUnoITcbkwbKceoB/Fh7OBSxhynDxTNzO0JJRLZ99oQMYFz4fiSbBBP0bUt2RhBK1UnrPPfcwYcKE4OdFixZx7bXXsn37dvbff3/+/Oc/A/DnP/+Z/fffn+3bt3PttdeyaNHQzg/dDVBvWkaHiW1euuJKEtRb/KVdjY2VkGPsCqkcpYsAMmgP5ER1zt7iSWNRmkPcd9V+AVTBDNaBO91ENHq0jMZHB7AFIaPD2Rt/uRfpwtobDkmLQv721oZJONnJpwXyCM0gnCwclGZVIZXv28lh/e4ZHM5aNjJ0s+9qGY0PP2B0Cov7KHYFs8jGQzRiFq48dzR0296rpWCCfzsR8wGftX+sIdzxIvthVzaLgTc5mhmso3rv0Mxir+WzL+RjpuDRJJn8XICPGTiBC4kjKqW0urqal19+mYsvvhgAwzB4++23WbBgAQDnnXceL7zwAgDLly/nvPPOA2DBggW89dZbGIaRhK4PDjIAyswP48Wg2hfX3ViSAyXyWPMEwZEz0+3Di69/Mwirk3f1lQVsFddXvRY+778eDRi0jPaNkUAmPr7FP/v3OW/3ROgNm/LnVFIqgBsqgLYoz5kE7AtK7WTDm1kiCdMQRcto/HgAV6FYcDmSd4LlVfrbcS1W5dSejTdIFjAbqLFENIOe7rXJwr5wm42IfV3Jd2gnhy0MvYUjLZ99pQUwhuZqRkqoIh1NMFEppddccw233347++0ndq+vr6eoqAiPRzxuy8vL2b1bRB7s3r2bUaNGAeDxeCgsLKS+vqe7zUMPPcSMGTOYMWMG7Qm5lIFJN8Au+JDDgjFefty48cdlLXVKXhRp33iUxs49xbKjoZNaWXplFuxPY1QKbrg+xOrWG9by22r1MZ8WtkR1tvRDy2j85AMTiuEzKvk2/2d9Eev6TQCrrqfdghjOXVbKmI/I7r12ykTSNKekQh9yGBxPMLNnv+GXf0KzAcukbtTJ2NKhGXakZTR+/ED7XtjOQRzZ9B7NRFD4IiAtrHZrpoyptL/UcinR5DyzTxE7sJS7bOW8HAUHnPIF2/bGeAEJRr2mYmAXo3AToDmFfUoVyZBPCJVR0lpKsyn217D63VT3I/1xZYFQStOPXpXSFStWMHz4cKZPn57Qhi+99FLWrVvHunXr0n/tPBd2vH4IlHeGZKyNx8VWVQR7U2pjtYwGzF7JsLoep/cDjUClUAD7w0oaUr7G6XL9CGW5Ag5jA8eMScfKTZHRMtp3XCXw6u4ThfuuFMt4bm/7Mb3FasaiiEo8wHDro13ONzCVrNkNZkB7P6Ao2C6/fLY5XNQkmMhmzhgz9Eo2aRntOx2d8HrTcWTstFxP7TU3e8NvHmO3RibKoUC1dMqapCrZCNFtOC2LiWzutyRCciFIxpGC9Zupw2oRjRzMp5wxxMbRZMknhMooaS2l3Vzl/gNvprobQwE/wATSLckRRLHQ+O677/Liiy/yyiuv0NnZSXNzM1dffTWNjY34/X48Hg/V1dWMHCnKoY8cOZJdu3ZRXl6O3++nqamJkpKSpF/IQKUDaK8B3gQqsvAQ6LsbrYKqmMaj5KoEj29VNtotpesQtcx6wW7BSSj2eNdOoAhGPtUAhTATWMvQ8SLRMto3WhA1EHkzi67zMq2MzskmXtHwAblW1t0A7hAl8L1P5zL64K3CfXcAEMBNOzlQBCOWNmkZ1TIaMx2APwCdK4thRGLPLRMS2aufxYMsuQLC8tiA9TiR5WBKgT/yI0qpFaUG+xF7NTU1Q7DpH8WIJUNPRrV8JoIOdjGK8lR3YwiwrzYPXOmnkEIUltLf/OY3VFdXU1VVxdNPP83cuXN54okn+M53vsOyZcsAeOyxxzjllFMAOPnkk3nssccAWLZsGXPnzsXl6v/U5wOFM4GcmQjrY6M6kRRDYLR1Op2INrFRtFlwA3jwysJpTkmOsghaS9sjrPipCne8WYWd+ha8RCcLrgfIhVs3iDIT6VW5KTJaRvvG4UDGTGCPcl97AC/R1eeMlL1WWkJ9yiucdTSaDLjS5TegbrI+BHBDFeTQHj4LYqKyCtvJAiPMMmcAt1jQ0jKqZTQOzgRKZ2B58RAaU9qXWEy7NVNaFLOjPKfq+iv74jQaZ5j7NCDqrRbR6OgyrLoNJwO767Lsa7kXPvpgFhQOPRnV8pkIRlLSD5mxNTD8nhZgJamJrE8uUWfftXPbbbdx1113UVlZSX19PRdddBEAF110EfX19VRWVnLXXXfx29/+NmGdHYyU5mItNWaJODAgqPyFy0ybCOKJKW0hP3zaQQ8iY6AH0/k4fiUzGgJ4QhVuNX2hGgzTiqid+rQYZNfDkI0tVdEyGh0VIGQ0D8pk5hH1/nJStJy2RRI1NTGXSm/lWJy+KxSlV5wSprkJQJYob9MvyC6Y1+5396ybCuZz5WngWS2jKlpGo6MW4GzEwugasS2eRDzh4pnjjXF2ilGVSZiksiqnjFLR7UDIZya+sNNJec5EKKdqWW978iWpKGcABWXAHWgZVdDyGQtTxGKoJvnskW+SvYTV/8T0LJ4zZw5z5swBYOzYsbz//vs99snKyuLZZ59NSOfSgZzhCItLHlAkbp5IimKsSp10B5YKnLo9Hv5DUchqdAid5muq88Qz0ajJoLrItCyi9r9ZiFI1xdaxTvE8QwEto7Ezrgz4AhgBBzWZuZsDCLkdCNhFbTj8pzgrzK5u8EAl2/vHDTmApZi6IRAM/xbPJfkcyqZdyKmWUS2jcTB7FMKX9DLgtfhvayclUL0P7d/b789wSqSq6HUQcpv3wIOQ08P4MOL9nyj5UF2T1f6rdUqDHcsi5Lk3FGVUy2e8NDOVDXyY6m4MBWakugPJI25LqSY6mmuAk4E9MHr0Z8Ht4Vxco8HuiqsmTYrWOhqSQEihK+ANn2aw1XzN610pVfsWj2uyHR9eyx3RXkYjD7gYYS3VaGIlFzgNaIWMt7HuLyeX20i3qxsxoYvF7bc3nNrLha4wGnM9w6AOTuUF6/hYsgHH2083kAddWda0V5XtRorgcmBDFOfSaOwcSDB7PW+IP4nO4BzJahlJCZbWV+lCbO+XXambAqxlJpfsXRrc3/6SimIiHfPUc6tlaILJj4YjZFSPo5q4yGaqVkn7hzROX6+V0iRTUAjdPwK2m66BURBPCRWn73pTdO1xqG78uN2286u7NCKU0srOHn2y9y9RbrwhfXSaGWQhJrrzu1m9KiFNaoYYa7dB2z37iQzr68yNUrF0QpZ+cSKauhF9wYxPtS8KSdlrpAiq4DD75MAd5n2i+mSet93tHGu+ku9QfOpuXS5AEx9NsObGQ6EOVppZpaUrbCIseZEU0miOs1sg5bHq3FH2szIXNtZOhnWWO639lShUF2B7NEKPee3FMHbmJ6zUMqqJiwZW8p1Ud2JosDrVHUgeWilNNoVQVVgOjVacVyLjLuMl6ky9akrCVqCxm/08yXfdVX8jN34CAXdo4hZ1hN0KecMah0SWQE3iqQU+9E4Viy5NJF+xVImnJIxb/ul5oI9MyxrpJ9TS2Vsypmj6aX/ZYkqd4lz9uHmFEylyaxnVxMkv4JvPbIBW+jWVSjQGCVWJlAqgGrvqt+2bMxy+WpcLWVZypP5ELhtJ5bkZKAA+On8cObTrVDWaOGlgHYkvqaMZWmilNMm014iC1LSKuMjeaovGSiJLywTwUF9b0nNCLifpwwAy+KoxN2qlNhrX5KiTJYWzlBZBRW4VhnFscIIw1OJgNPFTAbzDt8WiiyqeyV97ia+t4WaMtQMeAuDpxb0+XGbdBNRlFfHtPWV4V9soSqnFb5ygZVQTO4sIanpqvrtkI91bo83Eq2beVRdgPCgKaKH5tzYBHYwCu1Js356NkMUPmMEoduHR46gmLg6PO5eJRiPRSmmSyfBAKbXB2mp9rSUqscekOhHOpTccAdx8VZfb0+9ItRzlwX5FbcFEJvH2Pa5j7ZmAOwkqy2fxDFNcb+hBVBMzHuBkXhT1d3NJXLxGWD85Bae4zUii4QZKrSze4vSWLNZQBiNg/K7P+6ZUx/kbqAmO3OYLoCS3nu/zJIe5XtUyqomdMbDljAqYZSlKMsvtQCqIIGM2CwhVBgtQ+jkGkZjv2f5RrNXfqAOC+VG7Cc2FlkkXp/G8Hkc1cdLBZDamuhNpz0kgQo3SFK2UJpkXm6COYVBhTST7upokJ6DxKoVO1lq3aeMAek5Is8xtVcAImFP6j5DMmilBzcC7AebxJmPSOCOZJnlswcw6PYvkJRCI9by9iLaTJdSPm+1UQjnwSO/nSCbqs6mRIj7/dDyVbGfM3NT1STN42fm2qCE87uCPYj62m+jKqyRC9P1YFlF7PdBglttZwAiD1c8noMFesMeoymu0l7ApBT5gOl+jhjHHJr9fmnRkAguynkp1J9Ke6VuAZdtS3Y2koZXSJNMBPM65MN/a1psy6WRJtLu2RuMGHI1brGpNDWCL2xQ7CLdGP+K77dBBDgE8MdUpjUeBVdMntTTmO12giAOsFtl524d6UTVNXLQAL3AaJxzyXM/7PxxOcZh2t1iZtTeSOSRcrKaKakn10KNUjR83XjNefSOTRUypvI7ezq2ev69K7PCemwK4gzVKP+VgEcCm0cTI+8AyFnAWzwSVvliUSLVOZ6R9EoWsX6qeW7bdfRmwzsXuBLYXLX7E805m4JV9rAAeabtYfNjQ//3SpAM5POBLdR/Sn63jRwMrU92NpKGV0iSzcJxI/06R+ByuFIsTkRS9WEvAqHjxOR7nI1MoeXayzJc5grXjnGFT4pSR134t0fRZdXXurisQb9QER7JUYx4cte19Hmnr9ZQaTQ+OQMhoGTW9K5F2oikVQ4znlDi59XqBktCEQur7YKxpb4+YcIqoqlDH2s+S0AU3H5mWwtwKVzU8xDPrwp5FownLWWXwDkdyMP+mQNkeznXXbh1VEw8lm2yHz2rbNYUHAPHFa9pLx8R6rOybjCPtwIqZbd16APN3vc0f9sbRMY1mRP/lBxzKiPl3Kpa0+getlCabXLNGnymtUjVLNvG49gbwQB2hS6iqm2wrMF5MfL0xzVoTQKP51x5XCiIB0ytitVejiRUPUE9J6GJLIj3Tw50r1jYCQBZ0FsuPQsbdBPCRaSUYmkNqZgeFzpsDuKECXG9pGdXETy3D6SAbD5EVOrUEilqPM9HlVsLhAUoI7aO0ToKQh6zjG8ggdsW0wzyXfMVKvtKmmsSpOBcY0QnbxCKdRhMzeanuwNBAzL3tS1/pQxqXYE09xQBtUL17FNSJgveZijInLaZu/L3W94zGspiQTLz25Cx+LCvpduAGyKcloWVtwl2bH7elwIebZLciXBVfSVh3NEOIYmDMKKgNlIoavfbbOlwJlXD0JhZ9UXbdgB/cwQWu0JMF8PBO/bc546yl8C8S45Krth0O2Q2vmHDb+7WWmbAJ2NFvCUc1aUQxwInQyP6UUB9M1BMOp9qh/YV0220mdMiSw2k+8CQ/4JeFN4ckbIqFeCZtakIj6Uos288Gcs4H3syC3eiyTZr4KEp1B9KfOcCkcz4DbktxT5KHtpQmkZkA44AVWTBCTCJVt1lpNXVSytRtkRTSaEquRItTjcHgcrMfMbEsl/uGHxrDxZl6bNffe3/E3rLMhWO/OoE9wN7U1HzTDG5mApwIDW+OZDIfhyqNthqcIdudxC2cCEbr4hsNHgiEEb0uMul+rYAKqvovyZG8JmUGbn92becgUez7KD3h1cTOTIAxsO+tA5nJ2uBzPpLSGY97a3eYV6zYj1OVzwLgGc6iks+A+B0aYrH62hPpq387ZP+OAtYAO/U4qomHbKhMdR/Sn+EAT3dDSBBDeqGV0iSSDVAGLIHiBbtpJxsf3qByKokm8VF/4BhTqlpMPQS/7w8XZKnS+vCGL07nAY4X289K38UjTZLIBtgFLIHTeEHcX70pj3LG6xSP6YQ7wisWAkAutOTmhVgjrUWu0L/BY6J92fsaC15xDtm2uvjUhVckesuF82+M8byaIU82iOQ7L8DIZxuirqEZywjVQej6q+r6GytqTVO7hbIAaCHf9DbqH9RrURXmEItyCXAqsBFOfrSfOqZJL36rCwn1D82kcwVhrZQmm1xgDTT8diR7faWAiDENl103HL3VIo3lFY4AHuEOG9qwIA8REJZFD6U6WUhrbAv5obGuaobUapj0+L/4YBMwKeld0qQjY4AVcB6PwcWY/oL0NLX0Zn6JZ+0oVmXVA+22eBJZnslHJuQhasXF4+PXF5EuxPrdsJRTH5nsYhRn/GYp3IMOWNPEhxd4Gm743q84/3swBaHg2SOr1DVUmcgnmpc9gVC0llb71NCp/Ir6OR9Rt/yYnatpxkqCFMsrWgupvW/FhNZLzVZenTPhiuPugnHQfO5AqvyqGTS8pu+b/iN9f2utlCaByeoHOTK9AE15I/jokllseXcaXXiDrqlSXfTSFSzt4KSExlKCJR5amvJCs9rKeNJO8zq2AlO7yaSLTLOf4hJDrSOxZgQOVwJHnjOAWyjLctlZ9qcKWAlz+ActwAPfjfGCNUOWEBltAPzw3mNzcd1v8LUbP2PVHYcLZVWWYPERajqRoeGJjNu04yRCxT3d7D0EcBPgS8rgBVGzN0giLLRqfwIO782swG2F+ym7uvGRyT85glefOJ1R7OKunXCbllFNlITIaC7ggTvX/hzXUQZ/Nh7nig/hB17h0jYca3hQEx2Bs3KpuudKRS/cqzdU5U/2QWa1VY/PAKaPgvffOgoeCbVUxvKKFal4NiOUUqnc5iN+4/NPhFm575FDO39bCs940tcKo0k0yh2p68QnHfFrryedA2G0UppgsoGT1SyUo4BhULh6j4jJ9AOnwqbJ3+CjW2fxcdNkuszMmTKDpr1sjKrqJZPOuv3FaCUtkVnYlo2rwe+hg+xg6QlVIZXEqiyrSqw81kOAfFpwExDJoTqxXIurgPuAO5qhupZh1HN4bjo7NGgSSQ8ZHQ8shI4FLr58oIj9aWTOf6/FlW1w6q1PwtXABMTE2I9zuZRkKKZOSZfKeiY48uOmnWxqKIN1UNrQ1Htt1Hj74zaPVxVccxHL582kCy+7GMXvuZaDPvqSc7+3DC6GTLq4bpQuGaCJjh4yOha4EoxVLow2F0U04vrAoPDTLuqNS1l4NZyACGtTDPYh7rMqqoIXjKuMAnu8aIZtux+h7Km1VOWoPRLgTOAFoD7+0i7RYldgM8y2JgA/LoaFT8KLxm24fmjw0TdmkUkXZ5QlqTOaNMXyVTBGufQcLMmIZ0Ut6Tzb1UppgvEDa5vE+ypg29XlMB4qvFVMO3g10x5dzYR96+FuYDt0ji9my+RpbLriG6x/eTbbA5V0kRmM2VQV0XBxnE5W03BKYUQr6x6XUPxaEX8bgZXAb4FrAJphqwsf3pDyGeq5/CHpnETfnSynah98eIPvu/AG96mnhDpK2PbZFNGPR4Ab2mGJ2cdrCmBBKT/kj+xu0+UmNNFhl9E9vyiEUyHreRhxUxObb56OcbiLJ39wKmuZieteA1erwdRfvMeK2+bCicDXsDwK7MhbPR5/QPUcAdtngEJrAaiDHKoYwx/5EePrP+Wia5+Eanii+Awx8yxxON6JaC2osn6pVEw9CBPVKNhzfSHn8b98/fVdfPOYDdx5zs8hC3767C9haze/bFvMyl1mogaNphd6yOhPC8m4vJn2/4E/LIITXD/GuNWFkZ3J6xyH60iDr79p8HfjNi7ZAtdNFbl7irEshfnmS/0sv48GqXSq1liwFFzpiluibK9AKIBXPQnbjStw/bgLXoPu22AelhtyPn2rQYrtOPk+G6EMnwRccSPsb4zlV8YL7Pc/Bq4cAwAjz8Up/3qKWxt+BcO1h70mFjqsv4+ntCNDgvJCsJ5g6YkuCZNguiHoPLceyOQgyBO1haQFMJt2Dj16DV1HZ1IbKKXhzZHwGnAxNPhH0lA5UiTvmQHFx+8mx91OCfV0kEORaS4MKEpcJj4zpsyLh0Bwe8DcS7oE+xCWDLe5HUQh3hbyhZJZh1BE1yBcdfcgYknLgVnAMj8shI9GzBJL0rPNCz0VRhy8g66Al3x3Czm0004Obul6a2J3O5T1FXPoIICbdnIIBNw0PD1S9KET8bs0Iu7UScD8HNGfVrNv6+CAVa28Duia35posMtoHhPFPVVlbvQD6+Ccdcs5p2w5nAHLpx7LT7idk257S+wzD06Z/hQXsIRT1r4hFi8bEErbF1iJwdT4ZzlTDGcutCcb8pjn8wIHis+7JxXzPKfxB37MtlWHwjIgC/a7oY2MnzfT/UgB5167jHMrgaPhnOl/oYQ6ruJexq2tFv1pwBIW2Y5Tn9T+gNAoS8Tr2fHzeZGTeZ3j2HfngfDfZj8ub+Oqv/+BI3mHiWwG4Pbqm8naJ35rndlTEw12Gc1mMmUlNexuE7fq58AfdkJGKfyKM3jlKOBPsIjFuAIG/BaK5+3mFvdNXLfpMbgeutfCx6YTwRZCFctwIml3CQ4Xw1qAWAfKBqYcARwNb//ym/yRH3LKZz9gv7x2fsH/cN7oR3is6AoyXzNgHYyd/gk3cSuT2cysJR+Jif1e6N4F25qsvkmFONyETVpFJxeDaxzCsnwHLC07gz/xfV5dfjpkQV7bPm7M/TWvjzkVfg0rT4UPgHpjGC2FGby6oZvdYdrQaHqSvha7gcjvG68E1+ek80iqldJ+QloQ1XIw2fipcO+k9LhaOA7yf9/C5raJtK48QIzI90HDqSNpGA/VFeOEInYxQnkcBoUL9uD2hJpAMt2+oBIqFVcPAdoDwrLpdgfoaMum9bUDLHfYuxE1plYjrD9SCZ0EjDDbWwHMm8Kxf1/O/zUdSefKYvHdEuAG2LNnLGyFhnJEbEEnoRZXewIlj9nmMPO1AdjaDJUFMBUxAl8MLIBxx33EtgcPFf0oMr+TyvLPxOmmAc9H/+/QaIIEF0u8WDM/OUutAZ6FU556g1N4Q7jwngvPjpnPn7iMUz9fAUszxD17fCf7eQIsKr2NfFqoYCfn7FwulNQAQgZkbGqb0gEzXo5Cpe2p8Jfh51BLKTV8jfs++CkUGXCuS5hfFsCxRy3n/KMe5du8QyZdHMFqtq08FGONC46FFePmUs8w7uAGngz8gIbOkUKOZ8OIy3bQ4cuhafsIIVd19JTRfISMVXSSkdVF97IC+B0ik25+JyNG1nArNzHh+s3MXrqehoVZdJAT4oGxi1FwC/AzIaMr+/av0gxRMumiiMYQ91n5933g3VXABJjMYl5hMSfMBcbCLeOuZ+KkD9hy4TS4C8Ye8gn5tPA7fkIZNRyycwf8AhFa0wRGE7S0Qbcfas2hNQModkNBHmQUY8nrEcCNsLVsNBuZzALuwoeXffcfSMbZzVzL73mq6VwyzjuXv78r1q1ONCbx/r9msrl0OhwNXAdtk/fj595b+Mn5v2PdadPpfLMYZnQzd/TrdOGlnhJqfGU01RVBa5a10OUBijopHlFPqVtUAN7y1jThUXQWjCv7iDFU8QCXMzb7DHYeJ9ajtgMPYE1rrxsOq+8/hid+9H2KeSyNp7sazeDmDn4C/CXV3UgqLsMwjFR3oszl4tJUdyIJTAY+M65k0bX3cvjvV+HDG7SY2pEWTunyKmM2awOluN0B9n1woFAaRyBGlRVYiYjk0oJ0JxyhvFez1jYiBrRO8/N8hPK5HaEYVuFcALkIoXzmwbRXV9OFlxza8eElgJtMfLSQH8wunO1tZ8/no2BPhmi/GjHhVSe9WYjJ9XhgmJjgdgW85LjbKaKRAO5gPOkuDmTfYwdaFlNpgSoCXgBjtgvugiU1lrFrMPIQUJN6cXQknWW02riU1zmOV24/Q1gQ1bhJuxVRbgcxOc1FmEiGw7YZ5bzCiQCsZSZPfX4uVGeIBZQsLDn0wH7D2vjK7wa/G+oyQq2oWYgbuRWmnbGaE3mF/WlkOh/QSBFFNDKMOvJowUtXcPFpfNNWujq9BJbmieuQllYZZFeCqJvsFtuNGfBh8QQ+4yA+5WAaKQoq6G4zpruCKg7mU2Y2fIRrA0JxrzFfPoRy3SbO23b+fjR6iwDhleEmwF5KOfy2jRjbXTz8CIPeCqNltP+ZDOw1zqOR/Znhupv1tu8zEAqqPfNtNuLWLwVmD0fc+xfDnvMLaSebt5jHI1zM9kAlmW4f+aY8gbj/S6kNjsl7GR58L7NfNzYVEfB7uKzkT1zAEkaxiwMeaYWnoPZtYeGtxio3Uwx8ZZzDMhZwo+sMtiOSD2UgXGwLgNHAmDGIBapchOI7Q/wIn48/gL2UBj2jAIpoZGRNg1Cq3wDWAW3QvU24P7eYfWhRfo9upU/dwFXjwbXEwHjKBc/CH2oGdxqVgSyjLlcZpKWUnoDxo1ksvj/V/Uhv3jNe4A3XOIQJZjBbqR/CMGocv9GW0iRzL1fBJIIus2pWWTtqXb9s2vEQINMtBslR07/AM91KBsRNkEMHObTjx81eSqmjhAAeunyZ+Doz8XgCuM3XKPcu8mkhE5+Z4zcz6F7rx8363TPgtSxLcVSVv1bECGZmV8vEZ9Zb9QfdgPNpId/bElSuy0bXEBgd/vaS7auuxLjtMbTielua8sQGdWLfilC+FwDL4W+DXCHVpI77+SEX8wjUYymkErtfn1RIfearGfhSbBr3bDVX85C5w0M86bnIsopK5XUCYmbYBUYuuPyI2WgDYkJZg1AoixET00Xm6TzA0bB7bnHIopaPzGCG6s7GfM4Y/YxlhZUJmRqUv1sIPvVdb8A09xamBbYgVrmU6+stBjVg+zwcWrz5+MjES1dQdgO44exuuFC712vi516uYikL2YYQqWxCLaYZyucMc58WhPK1G3h3L7AXst+FjAuagCZgKVewFI+5XzHCmj9mHCJBoVQMfYhnw17YtkmIUK3SVjPwd7NPsqR9M6HZfz3m+T9kFBfwKC3mPlI53GLuuxbI2Gkdx7vivTjXPmCf46TN/piS+8jkRnJdqtn8XbpRsgPnwaEz19B+NFS1DW6FVJMirplJ+8Op7kT600I+wjdkMCukkdFKaZKpfmwceDAz63rCJitSyTRnk37cEfdvJ5t2sgngIRMfZdQIpdDrxuMNzYYr95eWEJ+ZUMiLTyiC1VmWlcaJdcDPhNKYTwtdZIYtWyOx910qnG78ZDp8rx7jxh9MetTZmhMam4fZz3WI2NsaYezVaOJh2+uH4j2uy/lLu3Imb28voVbTcHiw3P22YM0+A+CSmWvtYlBs7t9EqMW2LHypqHqGwcoMzjrvGTHzVDPl2vsT6frsOCmpTsfkEvRuEM2IePFlLBDfz4Dst9N5KNUkky1vTaPk6Do+VrZJT3u1tIpE3md2V1SpBKqfpVIqXVsztglLozyfKjKqoiktjfYst1Lxk8fJeNCZwFVcwM6GCTxitunUd3tb0W7vtr2XyrlH+St/jwKscjj8SCQV3N6GWkxKo4maEb/fwSN3p7oX6c97L88FFqe6G0lFK6VJogA4xkuwpqa9nEukkim9Ka/28ivqvtKCaT+/PMZnugUDwf26yLTcfJ3uiCKC9UGlUhttyRe11Isbf0jf1e+ccBMQrlLVNk1Z1indBMW/3Q3bouqKRhNCiIyCs6uuHfu2cEorWJlq5Xunc9kXWyRqPzyAF4zhoYqf9bVQAENWZqTrbjQ4iZ+TQhuOXMBWSsJv9nMdM5gweiN/vz2dUzNokkVQRv2wf6Ax6nsoUj1Pe4Ijj/JePV5V7JyOlcdkYFlI1ey32cqxGcDwYvj8s4NxZVrKcbh+duOsfKpKeG/YFeZihLeCVMRlvzq/ByXU04xeNNLEx4HsoiXVnRgKhDMapRG6JEySKAYKZiHiIGcR4uraG9Hu19uxVmGWnoqgXZFlD6FxbfLrLISrrAfGnfUR0DOLrp1w7Tr1IxJeGTuzx9YfCCZn+aX7Zp7ZG19Rcc3QphgoOALww5G8E7ogk4i6o9G4wjoRUF6KZfY/xVnBmDewZMpNgFbyIQu+t9N0w+3tERJNGRi37X24VwAolMnc3MGwgC1MZDMTOYtnOGaqXgHVxE5QRoGCx4XKlG9+F839lBHhZT+Hx/bZaUxRjw1aGpXjs5X9VLIBVxnsl9cON1rbYkXNBOz0nf2lWoZVBTwbEWJ7/gz4Y+4V3MAdbCT0+jSa6KjkcNbqBY0ks3ghSMejdEbPE5JEPsBC4GUovGZP1K67/U0wcYNpCQ0qfaYiCohgTX87h7GBTzm4X/vXQr5QQGV862qE224VcCpcuerP/AG9wquJnXyAc4AqmLZzS3irZSqRCm0WQXd2GbcNVkKhtcwUyU5eJDEKdbh+SNQ2cqFhVBZdeKmigge5jL+9vhDuAybBzT+8HXLFZFdbSzWxkA9wLiJbz8pQK5/E6dkfjWIVq/Jlb8fuLqxaN6WCmq3udw58tTqX6qU9HSHinRnY42nt28GKv5VxpZeMB96C75f9mRP/fCHcA8ZUF3fF2QeN5kvKQspiaxKPcQ+w9A+p7kbS0UppkpgGcDLwS2iqGkHg4F20k00OHXiVmFEnorEixrNvOPbsLrOy81YhFNMNWBbKPcD4HGooo4X8oAVT7X88/ZDlalTUuFMfXqo/HSdysKwB9tQiMk6Ya8CdM3n4qIVc9cultN8Ob7bRIzOjRhOOoIxeDauvn8bs4euDSYvwEN7CGavS11cl0QOMEQrol5SxjhmsYzovBU6mYd1IIbfrgLOBT7FqmyaqH5EU0hJou3o/Tud5Vv35eLgGaG1HaBHdwBj+MuocLpz1FNcVQ/VLomKFRhMN0wBORCT8uhoOXxr6jLdXcFJJhsVPVTpVOhDJ5D3AD9xQcg1wNvx9xmz+wXfYxSgubjuV4qzdIWVtIvUx3ORMtdSq161aXvOVfSuBY74H//rrJG7mHs4+aS6M7EbEveyEeWO47+qLuO6Xf2bpzTo/gyZ2vsU/aU51J9KcjSVwm7GNRd+7F5YtTnV3koZ2300CGYhEB88Onw/V7TAeNv2/b9BCPl1k4sPba0ymPW4MoovjVPfxB52GQ1+Wc63HjCfNgqWI+Okl1fCnalizDao2Q/U28G+DSVBDGUX8B7etfI1TH+Qr0nb1+C5lFh3AzfrXZ/PRSbNEyZgXNsOej7EUUoB8eG0bl7rux7XLYEHr3zj5Rlj8CzgJa+CehxXvo9FIQmR0GRx5zAdMvf49OA0r0ZCTqyrE7o6rIt1y7Z/V7bIteasXwr4T85jLP/jmTzbw41GP8JjrCho8WTBrJxy/DX5eD5MMIS+y3inK+exKqr3NSH2U58A8TxlwBDx723xcP+gg79QAq1xHw8U7obXa7HgBUAIr6rnI9RiuNoPhL35O+Z+EjJ6JNYnWMqpxIkRGl4DrNoNXjP/HVUeI0inZyqs/VtdlJluP8l6WWZkJnPU9yDWOYthaA9dnBq5vGhzrWsZvXGez1DWN1jwvo9y7GDNJKIrSgumk6EZyOba7DYP1G3gQ5WVmAleNgyt2w0+M93CVGhzu2sh7rhGw4mOsjGvAm9v4ses2XNsMNhqLWTxXlNFR0TKqCYtnIdeWPJDqXqQ9zwHtrvsw1rq43vAA52H5P6QPuk5pEpgDzJkLrksNuBiYhLA8dgI/Ay7vZtLoDcEsu114Q5RQ6ebbVyuopYBayVHkufdSSvW74+BPwNJmhGUjG6sehZ1uGDYRlsG0o1aHdUeO1GcnRdaLj/9QxLbdB8OKLGEVXQGwEysqpgNrCLdHAymfR4zh51/eyK/O/A3NL0KVTxh+tzA43AYHcn21dJPR04EpJ4Lrh4ZYjDkbeBrwwNz3VvBa00lk3E9oBtxE4iQmqtnHC0yFt8/5JsfXv0b3+AKoqyU0cs2egiUDLi/grw+cxPd+vUKkE5X9jsdHUF63D5gEzRdkcKv7Jm7/9Gbxe21oRzRSTOiUGSynQn/o9vIS/nvXL/j1Db+C5+DjnVpGE0W6yegcYM5R4LrWEOPmqYixoRx+/eq1/PeVd7P6flEgwSlZUaKxi1AxcF4xuN6CI6e+weoJx8DWWkT+XQ9CNlT7ZYY46u4SOi528UkerMIa3WIRUSlZUikHsRhb/lNYf9sEFrKULd+cBmuqzX7IsdMpataWEqloHL/6zw38/LA7eXGDUEab0TKaCNKvTulIuPIS7rnPpUsJ9SPZwKKpcPGH9/Jn13eBl7DmyoOB8HVKtVKaBE4AZt4Krt8YYkl0BGIs2INwswMxqbsBRk/fSo5Z3EVk0fQSwB1SINuOk9urH3cwCYqaYVd1h+3CSy2l7HvmQLgSqKvGGhKl84VMVN8dPHPokDkSbilh3E0fMYz6YKkbiRdfMNGJ7JeKhwC1lBLATYsvn6ZbRog89OsAfzcUZQhrTzVQ3Q18TM8Jr0Ttpxyay+HuAjoudpF1NFADz+wStepQrnIgMpAH03ST0R+7oeQecN1tiMnuDEQc9QZE3HIljHh2B8/yPWY/u17MyGSpFZnZti+KqmoVVcu+FIu+/PKon7L4z7fBDUBjvbmzjFBzKkShKICVBczf9iwvvXEmvGHrp9quRJ0Ny5jyMcCB8PncA7iS+1nx+vfgboQGWYH1e61E/GZ0Yz1L7P1SMa2oj0DH2S6y5gA1sKTGmsLXMnDRMtp/nAeMuRtcdxhCQ51hfrEBEc4xD8659y88+eJFcCX8bZdYUlXjLNUlEadlk0jYpUwuB00BZh4Bb6/+Jkev/ad4fuypR9zBHcrRqizYokhnTOSP/zqfKyY8xpKtVl1TtdSMUx+llTZbXD7lM4AfwX3nX8R19XfRfUOBeH6VA1MR+RhWAI1yrLdH5dqjWyXlcF8BHeebMvoFLNmrZbSvpJ9SWsy/jd/xV1e1zuuRAiqA8x8GV5MBN9QCTzCwZ7kSrZT2K3OA/Y1xTHVtgONzYBhW4qBOhMK1CfDXQ2WJGNQWQOHUPRzkFREdqvXUjT9EuZTIzJtSCVWVWpEHU+z777aDaV15gLCKrgDhBltidqQDa0IJPdORyKFZKqbm9yOmwGLY79Q2MrN8eLO6GO6tZRj1ZNJFC3m0kE99YBjtrdl01u0Pb7rE9f/J/B2qDMhyCUtyHkJ5l2kD5ehchTnp3YmYcsg+dCs7SjKUA6dwrLGc1y84FTZB/YewPQCv9v7vSxkDeTBNNxk9AhhljGZCdhXcghUQJhN+bQVeQ9x7t8A3F73NjdzK/G1vw7MIC6qqzIWzpsp9VMXTb9s/CzgKXpt7FN9re5bWsw8QCzV5QJ2UTXnfS5wUU1VuPbA0hzt/8EO+z5OM2NUkQsi2IMRIJjUbj0jDWQp7RhXyKBewlsNZ/sQ5YnK7AiGXs8zfqBxLcZW/1SashaXg1ESdojhVkGwBTymndD/FC9//PqyCZlP3vivaUjYpQMto/zEHOMAYyyTXZ/BzxH0I1ji6HXF/1gF3w5UX3c697y6Cm2DtKjF0SBshhI8HBTG6qdKj7luAcGc9YTzwLBw56Q1W//gYWGLu0ChzHahjpzpOyTNKtdZv9qwSNpTw2aFfY+yde8SzZhNs3gAbzTOVAoe7oWQWQk5nwLYflfMKJ3LNJw+KsJsliGfFLPM3qrD9Tn5xXl7DVJ6lShlOIUW5linMN57lpZPPhLXQ3ATdfri376ksksZAltH0U0orMR4/l8XnprofQ5uLgSuNJ1nuOhsRdf8uDGjbtVZK+5UjEHEcH7lmCYVTPu/VSWwjVhKhrQAGeFxidXMY8FugE7LGN1BU2EhXwEuOu518WnATIBMfOXQQwE07OUHLZB0leOni84/GC53zt4jBew9iMjkJUXc0y9y+tRsxfEslz8n8r0bRgGURySA4my9yiQnueHOXPeb5q83PeYjJg7k75eZfe90l9bM6ZlZhKqfbsNaVZd8kqmtvNlAKK3MwNrngTqjeKbq00uEKBwIDeTBNNxmdCSw2VvL+qKOE+24RoT6AUuGqQ8jnGnNbJbAAMuY385eSC6lkO7NqPrI8IJqBGvPYNoTyKeejxYi1oGIgF7adWM5K5nDpp4+L7D8rEff/bIR85CHu+RcQ9z/tRFfZ0IOQ0WagFCpyxPlmmOeuNNuRnhvbsZ5H1QgZzjP3KzLfhwvaU3+rTQglYWssfc2H1S6MNS64Har3ahmNl3ST0SOAnxnvsH7/2cJ9t8j8Qo6j8iVldDVi7JwHGT9v5sSSl3m67ftkrQUeB94Cow12N4h7rJ6eimg+YoiaUggZo4CroeHiLGbzLlsenCYUQD9CloqwkgKuQCwyh6jBKuoCqrqomk9QRmcgNPH53Ywd/W8AdtWPont1gZDTPYjF7Sqzk1kIJbQIS0bt67Tq79WIkNEXMGO/o7GoZIj+rSzAWOeCu6C6RstovGilVJMsJgNnvAWuRQasW4J4xuyOfFDK0Eppv5EBXO6GYS8bwkX3ePMLp2CRTqzsBI3ma7u5vVOuvBaIAacVobBOQgy89iAaad1ZgxiwtpqWlGFYk0tVOVb7sB3YLqNGpMuRvcS4eqC66tsBw6aLfoEYKOVkodH8XGS+WpVTOg2c9qAadfIhV303AVX1ZqfDzZRV5bQDLp6OcY6Lj4+GCYVwe9PALCEzkAfTdJPRm8aA6ylDWGAupufiiP1elAtIdVgTxA3mcVMRk8MshLzP6WT0yCqKaAwuInWRSQ1lfP7ueGGxyCMYw0oFQhGswJp4yz6AkKM1iOOqDCwHPyelzx7TacZ8Hp8jJrx5hE5cW81+5yGeFXbsk1ynzyqtZl+XYVp5w6F+1wLXlGIc7mLt92GaltG4SDcZvdwNw94yhAv7+TiPGWAtingQ8ikXW6QCNwyh8FWY7882OPyg/+Pr/Jsi/oOHAJlm6MtnHMSbvnk0PT1CyN2fzDYqsORTLhipinEj1gKSf5t5kOoqG8kqCVAAs8qFjGYpu/vN65DyOcxsS46Xcp9wQ6FsTvYTrOfJChAeSLKv4TCfJVdOxDjGxcen6HE0XtJOKb14McaLLhbvTXVHNJLFfwXXdQZUr2Xg+gZqpbRfWTwVXPMMYf2YF2HHcIOJHGSlNcOPGIzqsKwaKiMQk1o5KEs32EgWDqf2tgJVMumRnPjKHexkI1Z5zcRIU8dZVlKn3RNJI2JVvHMnVnnwSMNjBsyegnGZC66HpXvFUQNtDWkgD6ZpJ6MzwXWSISZn5xNb+k7VOgiWuGSZ77dieQhgnns8YuFGTjilK2JRlG3Lie9qhMLXqrrJ9maR7AZK4HKEi18WPZXwvuDktFCNmKC/CcIiEymVi+miPL8E4xQX3KRlNB7STkangutUQyzGLCT2FLuqjO4x3xdheSfZZbQSIaNyAVSOo0UR2lbvfVVGX4PQ8Bh1ZztyIbgCFmYIbwa7Ltub4hkN6jnkItsLwKZmhEtvbypmBswZh3GeCxZpGY2HdFNKsxqvYlGRrlA60Fj8MrguMmCPrGs60Fx5tVLab2QANz0KrvsNywoSq5Im91djt1SLof186qop9BzAohnQ5D6NmBPJzfRMeuSEdOMtgBmllltuuPknDt85LSb31lcQCvqmbqz09k5JVaTrMbB0CsaHLrofgTebYG2UzfUXA3kwTUsZ/ZshJqGz4jiJkyKmble/U2W3LxNLeZ49CMV0NQg3WehdMTUj1G5AXG8yZVQe24qwWC3FtJo6NaimpWmBp0sx3nPRvUTLaKykpYw+YViJtWIlkox6cB5PE6H4+REW2hcwvXrCufSqSMV0jPDckNebbBltRMjoMhChMTj0VfWMApaNwXhHy2g8pJtSWuy/hB97ylPdDY0DTcavuds1Fyu//UAivFKq65QmkJGI+mkMR6y0DqNvVsNOrJVeD0JJ9SAsoHmEWjzCtRPtCqscpIqA+cCkiVgZE1Tfn3AH18K6amGpjdQf9RB1YhzL7ySPqwBmZyDyIdpLicsdMb/rhoU7yf5/9WSMFzbekTE0qUkPpgGHA+QiZKuv42m4BSK7a10WoXLoD/M+Eup9fzFwDTAsByspibTKqC95YDZQLzLobo2y3XhlVO6bh3BH/DkwKwNw0XPCa8tvenYz+bfu1TI6hAnKaCGWxbIvhBsWspTPTgtGiZDRs0sQGYoK6Fl1VC7oykUjP7AZHjFEmEo07fZFRkGM97MR2fjLxyknsjcCwWfMgmqyf6nH0aGNKG90lfsPve6pSQ0XuG6Ep2cikljYs+IPXLRSmkCCNcMmIAaVzoi7h8fJ8un0Crd/uPfRtCv/jgfmlSAUPrnRqZR3B6LEuamYrjYs9+JILk9O1xErHiwl2jOdnvUb1ZOLiXtnUTE71oxgZqEuBj4UKQWOmYSwRGwlfitJuIms0369bY9HRosQFs8bgBkyCZk6M3V6SGSDv17EyVURWfYSJaNgTdDnAeTYvlRjYEUt4ta8A/h8zQFaRocopcARuQgZ3UToPZhIGY1G4XN6H227RYhruBIoL8dyYVc7pb6XcZ1bROhPVS99TOQ4WomQ0fFj6FmnXB1PhQKtx1ENzOTmWbenuhOaMDwHGO+5YP4xaKV0iLLdfK0eMw1RX7OPeMK8+gNpNV0A5M0kshuvXOXNBtbDm93Oc+JYiWbCLy1QpwIVUwiNXXPyZ/qYg277kozvwQlePaAONV4Ftm0yZbTadj/3Vfnqb7IQk8krgfk5CIUvktCYil91M9yHlXFXkkgZtW8vQsQFni37ofZJfZ8B1FJxz14yThOGVi2jQ4tXgTfbYM2oQ0WN3nCP8oGMHKuljF4OTCpH3M12bdLuep8h8iUsoaenUzLH0TyEjM6W/SRMBzzAZj2ODmlEOMaLA813WxPCXffAeS89gFjqGxxopTQJNFLEYFqZCIscM2cD5VLhs7sGghikpPtsBvCxVSJDPVc87UeDHDOnAiMm0vO3l/01B9iftbP7YbEarF2Phh7PAa3k038rPEkkCxEmsACRsIkcQi0ykozQv9ubzeybCsmW0SKEV8Opan+cdvTANdDwqPCv1DI69NiCMo4OZjGVITZ5mNn4ZU0o6DmOghAoM/HXnp0iLrXT9nWsRBtjmoeQ0eOBGeWIiWy4Hz8DftbNnocLAS2jQ5OBljxHY6cZWDLhh5B3FuHH3IGFVkqTQAAPUCwe8pHoT8tnLG3ZLbN5CFfBiok4r4nKUU9xxaveaWU37I/VbalAzwLyJhIaG5NBaCeqKP+knoKSno5KmqGBHzd4XINXRiVqbNg8TMXU7mZvH4zMRaQXEK4d4fqSKFTRy0IopfNlP528LzKAeko+a6d0uJbRoYofN5ATWibJiYEso/Lez0MsHh0PzC/BUuOkEmo/yA+0wMr2nmEGal8SheoeXYRY5JpRgiisrJZYA8vNuJqvfdpIQdlgssNoNEOLD7ZiJi8dHCOpVkqTRhQrvImI14qW3tqKFIommYGZDMFpkiuRWTZ3i3Ib/TVhUN2l5gBMp2eiF4W7gXHwbj90TTNAsScfcmIwyKgkD6GYLoTeV0WF4scynGPfE3nNdu+/PMTkfKrsR5j+PeKCSfB+AruiGWTIZ3okBpOMZiFkdF4OQuFzco1VX7uFR4PT+ZJ1zaqMjpDqpl1OzbH1bmDGwMvAq9FoBNNvA2a1I8o+DXy0Upo0WuJPdDSQUHMcdCImknlTCD+ZFIkQhEV1mygLYT9XspDG0SyEyzEjsVyKFcU0byJ3P3wZD69Kcn80A5tWBpeMRkrYolpk5qFYIp2Q8oBws69WvuqPyb0HYTU6GyiSfVRd7LuhsoC//eZElr7dezENTRojx53Bjj1Z0zxgainhozEVQaxqF2Wg+juutgjT1b6SnlJYABVjePKBU3nxWct2qtFoBg7nAa6zuoB7U92VqNFKaRJw4wfqxaR3sCVmCGfZlCvWQUvkZPMLOal0WsrtENZS+XV/xgaNACrHQDB20JyIL5jI31pO5OqvPzTgin5r+g8vXUC7mPAOFhmF8DKqfs5CKKUz5IZwal0G0AwrsX6H/pLRLERW3lNlP+TzwwNXlrBy20xOn/xqWO9iTfojZLS+Z0KugUykcdSj/M1D3PsjynFePFIPrhU1iftTRtUkTfNcWMqzWZP88nLe2zmVs0uWs74fuqPRaGLjJOBp4xqo+JjBtGw0mFMIDEimAFPYgHDNUVBDHBNBKrMRZgGzXbC6nPAuAeYF1ykf+xM/MAnYPhHYDHTDinEYo11wMizdFvlwTfoyBZjMRiCnp6t6OsiojAs7G6jKsGQwSHfo++1YHgb9iQehOK9ElL+gG5YVYExxwdGwZFM/90czYLBktDjUUpouMgpCMV0A3FeBVdze3iFzwWa77ev+QCrWsxBjfedO0Z8/lWOc5oLZsETnuhnCpEEyzzQkG1j0BbjaDXCtBF5KcY9iQyulCWQmcMJc4N0GKxYjWYNeb3Etyf7PDgMqS0UWz2AcqVPHqqGuXOyfaMJdpx9hpZaT2tkT4Xi47bs/Zj0T+PilLWIOrBlyBGV0VZMZ00h6ymgWUI6Y9P4pUjknRCKVPQjLZTL7pCoUnQi34TcRlrBTC2AO/OqMG3ibb/LF2+9pGR2iWONoE4x3hd6T6SSjHoSMHp8Br40kYszXHsTiUnkS+2On02xzpfl5/hgxjl72Y1ZxODvffV/L6JAlA2jh5B2wfmyq+6IBkWzsih+B68cGPztwNXAXIv/u4EK77yaQbIBCoB7hPuqh7+ncE3FsopF9mQQgEx/ZM/TJuLXu0GPiIZziaacTYXFZgZjsjoAJxnree2cqRpeLn667j+k/2TxIcpBpkkFQRhuwZDQe+jpR7g/lT1o5xoOllHZjyWuizU5hUBO/NCLiWO8Gfiu+/uZ/3mbT8wdhbHPx85o7OfqYf2oZHcKEjKN9Wczsq4wlW0ali+xsoEjNcmvXhrtDj0tkHyRq9E0rsAFRJ/URoAi+2fE2/35pFMYaFz9ddR9zrlirZXTIU8vRYwaXFS4dyQYWXw+vG0/iun8PjF+MSOE5OLMxaKU0gdSD8MIJ0HNFM5q5nzpI2JXZWAajZAym4ZIEzgARt9lBaAmKZvE3a0x0WU4jtasmW1J/x07EJLcasZr7JrCuGx6BjlYXRpmLzY9MZ9avPwK3OJdxgIuNcXZFM/ipB9gJbSfuZ8moKl+93afyflRfA8XfxElGpYsgOViDVIf5agGKRYx4UR/adIqfkwlq6hDyuQ64D6GM3mLAHHho37kYZ7j4581Hc8jlO8RxDWCcpWV0KCNl1JiNsN5LopUzu+fDQFrQtcuorGE6H6zCKuqqUrfYPgNLRmN93kSSUblQVIdwEX4aWAr8CTgVHv9yAcbxLv656GjGnVsdPNQYr2VU08xmJqa6E0OSbGDxEbD4X/CzFQauO3ew3PUF8IC5R7j03wOfgTKdSgs2Alu3wk2/gDM2LuVv+QtFooAKojNKyHFoD2KAmEF8k141y1+yqQDWjQH2Ko36gXEwqUBcf6R+9NZX9TfLQgyg0jW30dw+FTGx7oS/vXQKRTTibgImKN0C1kw9lFlffDRI1480iWAjsHUD3DThK87Z8ReemnyhuHfkpK+T8PeiKsNbEdaE2cRvce0PhdaDsJTOBlZnYCmkQF6piDudjZgYR3KHp5fvwPrt6hAyuhrhuVCN+H2HiXaWfHg2mfg4Z+dyeAPINY8LwNZJoxm/43Mto0MYS0bhnNq/8NSYC8U9OgMxBvQmN/KerEKME/L+HojjqGxjPFBeANXZysYMYJyQ0RlYNZWd5hHRyqj87RqxvBaqEfI6AzFet8JfPzyJOkqYyGZ4nZB6zp8fdQCjG/ZpGR3SdAMN7Fk7ljOBv6a6O2lOBqLKaCUw2Sjku6zgZ2NmwzceRiiiDfTIFTFI0UppEjBqYNk3zuW1lkc44dqVwkIwFWvVVx1U7YNJNbC6HtgN1ZNhjit2K4bTf7UvcXOqdUieR2YCLEIMqFvlFxOF5FTazqEu3NgVdHuCFWkBlRNcEEp6J0IB6ATug6N+8BoB3Lzz4rFC+SwEfg0cAR8dNY5Dc7eF9HnW/R/RfH2sF69JN7qBJTvhyQkX8V9b/pcTblspLANy4htpgcSPmOwuBjprYU0p/AzLzbAvHg19kVHVKuS0AFYOwdjvYaXCejqbUCuKtG469cOuCEgLix9rUrsV8dsMMz/fARO+ux4fXrY2TSLjEYSsX660lxvazfGLPqf29lgvXpOO1NebMrrTlNElCHf0SVEcXI3pHl4Na8rFPTfC/C5Wi6vTtniNEOo4ave2GA9UZwA5YsFoPuJ67ZZOp/mDE3Ic9SMWumV4SzXiedAK3A3HHrWcFvL556aj4TmEjJ5r/nXTY3wefeU+qu+P5+I1aceslRzycwPjPy7+cL9QjTSJoRg43wsFq2DFzLmc9MxbYoHKtQRYhXANBKGyDl4l1I5WSpOAqxBogm/nrcL4qYsbu/8fv/nx/4j4jKmEDo7q4NKJWUKlCpGCfSOsniKKWPf1P9UXS75aNsOPNUhVE4zd5NTp8IL53R4IZkAYZn5fZH5W3SRV96Eq83x5sr128OSIybN0QawCZsCWH1Uw/p7P4fuIkFa3ec4a8+8qOHTVNmu77HsT1Pri/A00aUMGcP4YIGDK6I9c3P7elSy6817hXjoHIafyPrdbA98EOpsBD1TVwiOlcCWh93hfFMt4sbu5NyIsIbIs06k5It46D2Hl3YC4xhFYMurk6teJmMBWIRaHPMrnIqzn0yyz3YWw97J8DljU2jPxX8D21/5cawotm6oZupQciCWjF7u468MruP62P1rK6Xicx8VO4DWAbWKHup3w9Bi4mPjd1CWJlFGw4jc3IGTx7HIxjg5DLPJsQlyjk4xC6GKSVDqrsPJZVJvHzTOPnYd4HpwNHQtcZC0C/gfhOSzHSymbbUobKk3ocmoakyq4ZTOu8Qa3GT9mpOu+tL03MhCFELMRwWkdWGvU8TISK7tDiXnuOf+GI8e9wepPjuHqu4FZd5mtLQ5zlvRRSAFchmEYqe5EmcvFpanuRILIQIx9zYib9YhcyCkEvge3330li/7bnPiOJ9StNwsxiLywDXEDZhMsJl8+RQzCkUiEK2Bv56jDci32ABUwYct6JrKZZU+dyy3nXM87HMkbL5/CCd99DjcB3Ph5pf67dA8rEAOtnOjL624E5sGxzy+nllIO5lP+wXcYw04qqOJI3qGKCqqoYNmD54qBUyqfAcCr9D2ANbCGYdvN8ESMP0t/8RBQk3pxdCSdZXQ3cDgw8Xz4y6PncNGDT4oFJGmVGaYc3GgejMw67Qey4ewCUXewv8uqSKQiWo2YzK5BTHiL4PAPV/EfivgFv+JBLqOeErZcO435v3+WAG5KqOd1jmNfxoHWRF9dLKsG5sH8p56l3nTpW8tMimgkEx+HsQEfmexiFC/8z/eFHNYox3uxJrpRPKc+eGTgJrHXMto/RJLRBx49jx/euUTIqHQ5LVIObgV+3o41UJnTvjljepfRZI6jUhGtRlzUBnPbCJj9zt9pIZ+nOZtHuYB3OJL3HpzLOZf9hS4yyaOFt5hH9f7jQpVx1cNqDpzz8F+op4QKqniRk9jzwVgrp0Oj+Gv81SWO2aX0K0YZXfsUvBrlz9HfDGQZdbnKIG2kFMRqRjciP8FpnGn8i2eOPp/Fb6e4WwmkALjuNPj7c7M59sh3YPVO+NkYs4ZvN9WjRzByl7ARN5dlUPBFt4hB+BLYAZQBBwKTwCgB1+vAUbC1bDSHNa2nc3uxeGYtxFyRXY2whKaXshnKQxhGjeM3WilNMhWI53s2cEYZcBks/cUZnHvPMsvtrxyxmrkd2PSBubesAdUhdphjKnVSgbWv2DrFlNi3RRpswrnW1pmvrQDdUJkBP4cl553FSbxI8YOdIjOFH7EwPQs4DeFG+4V5jqNh1dWHU0otmfjw0oUfN114aSGfCnZS/P1Oqz739bBj3Aj+h1/waMMPcd0DT/3yFM75n+VhOh8FzcCH8MDbERPvp5SBPJims4yCmLaOBE4ASq+H5+44gTMee0W4AI5HWE7LEcreI/XKkWaCr6xSuAErDlwlGvnDtk9vE1uphEqLZTVWfNh4YAE8uehUzm5YjusexE0fQPgElUHJldXU31kObyFc34+GT+4Yy6jALjI7u/H6wO+Grqz9qPUOZ0zDHlznINxt/fDRi+M4nefZ8dlEjMz94ETEMrLNHTcm2oAt8IcNA9cNTMto6pAyepIbSq6HZ2+bz5l/fgluQcjmJPPvOszFXXVSlw2MgWsQ8tEX5bO3Y+3yLy2YexCK6B6zrwvhhR8dxyk734D7sWS0HjgCHvvFmZx3yV/FBLcNOAp23DeCUU17yPABPsANRhbUFedxwK5WOB1rHP01TJ35Hh+NmcW/d44SiYpKsRaM4sF00//DNi2j8ZB+SqlKNlAM4y/hv7f8gl+P/BVLamKzJBYwMIqYTEaUphrWCtkrDOH+36iWWJEus3KeLpOU1SKeUhPMbeUIgd6NyILaABwFvI/4ZTLMc8jFswpzv4HwKyQTrZQOCE4HpoxHDDBjoXs5HF/4Em/fOV9MaAGh2QF4YMQYMQjMQrjxzCDyYOikkKrbI8WItSIGS2kZ8SNcFIcVQDkc++Fyvs6nANw7Z5GQ2EJ6DsAAzwNNiLiUSJbLcG6O28B4BVxHQfXzUD4XMv/aRFegUMT+xUoN/P1BkSR7IDOQB9OhIqPTgJOHmx/GAX+FBWWP87fHFsLPEXLSWEtQeCaVCAtEJWLyuZCesWuRXP7s8uwUuymPr8OKrd6KkNetiHEsD07Y+BxT2cAuRvH47ZeKR4kbMdG1nffzhw9g9Lp98GCEvqEcb+cL+OANWI8YZjsQmQCpIT4zZy28+JI430BGy2jqCcqoBxgDPAcnDf8rK/78PTGOdiLivSWTSsW2BQgjxPFYbrB2nOSvNxmV28AKRZEy2oiQ2fHAMDjlnaeYzEa+pIxHbvqxtXDrIKOOOO0TQUaXvivWnDoQU+jF1yOea6t6aceJWvjb2wz4rLsDWUbTWylVqQTPQqZ1r2ZN05FkXAN3LQlV6cBaNroYKN8B28aU84QrNQEcpwNT7oaPrh7H1Hf/DbNrgbUIJbEjzFFSqeyLEimTm8lfo5iBu+STKLRSOiAoAEZjFUwBWDgeoXQeDQyHI499g3xa+D5Pcu4Fy5j06L/YdO43RMmTRsTg1oiwlpYTOvG1K52Y+0nXYKl41inbqwAMwAWYcZxLgGFgZLnEYk8xYps9HiYcbbD5dpi4EDEAxsrzsHkDfA6ccCy4LjTgGrjoy/t45PYfW+Vywim1NYAPPl4i1qeaEY+Vgc5AHkyHqoz6gfPHI5ZOjwLKYOZpKymhngt4lDOveIlvPvA275071/QmwHK1lzJqj02137N55l+ZmKTKfMnt27ESftUhPCYeAUaAUe8SrneF5jZ5bh9iNloW5kIL4bE7zuS82/9qrYPFQPPjsMQnhs4M4KbL4Ot/2sAfuJrjL1/lPElWMa1Cq18RbzvMyxzoaBlNPWHHUSmjY2Dyie9TQj2l1PLX75zH7H/8ndU/OUaMo37EAm8n4WVUJvySSqB0gW3F8k7Yo2yvwhpXGwmV0X+bMloCPIqQTcy/tVhGlgRT+5RVIEJSaZzBPN5kxLlNUcvoylXC1tNC3+Ln+ouBLKNDRymVkZIyEvMYuAXG3fQRD3Mpv+caXm86js66/eEFl4ijXr0SyOc94yI2uj5KWmzqZOCEXMgpBi6Hv984m+/Wv0z3nwrg5/WIbF+xtJ5NeKU1VooRy27vJvCcAxGtlA4YihHG/d2IwbXK3F6JmOCNwxoLmxHj1ZxRsOeLQt5kHjm08ygXsOKX3xOCXGSeoBVrQN1EqFJagbDeNGJNbrMQA+cdcNER9/Hnr10JlTDinR18+exBYqIqB2SZNAEsJbjQ7Ow6ek6yo7EQqftJ/OYFz4WPvw4fA+euM2DGYmAynHoGxo9dVuIWlQ0EV38f2DtwXXQjMZAH06Eso7sRt+ocxFAxwdyv3fybA8wrhIx/w4rhc8mhg0e5gKUPXiJkVAq0nOiCUGBlArEsxANgGNakV06Ei6Bw6R4e9l7Cmd98CZZ1ctvIn/DTe+4Tch4OP/AKwViWHniwvBiiSf6lynQ93PqSta5bAZx/K9xy4/X8gzm89euTQhw+gs+BbdC8Trx9wqdlNNEMZRmtQkx/RyPWYiYo+7Yj9MEjCiFjM7xWdhSZdIXKaBFW3KVkE1YCoSyC1k46sbyKisSr8GlTRo98CZ7u5M6R13Hd7Q+IcUniYNHsfgUyRiFmyn1FPX8t3Pp2z6i0xcvh2pN/ze9vuhF2OpxjG9R/KN4+ERic9pqBLKNDRymVSOU0m553k6rMVWAtT1ayybiZQ17cYe3ahggN+TpC/m6HB55yHkMWDwcehe4jIGMXsA2658KDhRfRTjZ38BP2jTkQqj5AZEQbKLGbBUA+4umWg7DSpitaKR3UjAROd0OzOeCMkYkOShCxXKNg4jkfsPmN6aFlFnzw1LGn8D4zyaSL212HI4Zo6TzRYZ79COCXwE/5wJjBtF9vCe/+K98fCMxFrAbb8RCMPQtm8IuEev51wC54cQN83RjNBNcfgHkwLweAxX9fxM3fV2pGfAjPbBWPu8E4yVUZyIOpltHIVACne6HaBxPHQXsN+P1QMBU4DjHOAEjXYOn6HoAVp83lA2ZwLv/LQS9/Ccuwsm42Iqw65UAddN3hIuMwhGeFipObrvQ+OpGeC0DAJw+LGNKCi8MMyqpCqcrou7DYVDonA2dchpi0z4BvLXyLv3Ah42d/bh2zBZbuFTI6GCe5KlpGBy8jgbOkjI4HGkTZmZLJwLFACXzrp2/xz6eOFrKUi5gA++Dv589mHTNYwDK+/stdIov1BoRXxGpM/0OgEYyfuOAbCKutil0pdYtz04Z4Hthxw+7Hixm5t0Fk97bj5MaLOOcHzzp70Z8H/MM4hwtrnhL+iibdW+GJJrEQrmU0eQw9pTQeKhHLSlKhBbImmoaRlcDhMCJHLLZWIhZxt2Mt5m4HWmWKtHyspeWPEfZ+sOp1R6uQJqPsiqqUSzdgSTGizwNFYU40WilNGxYfBR+sErfryccCDfCiaX04+XvANqjdID5XATMnIQa8y2HRwsXcvupmWAln3vwYM1nLy5xIAA+T+ZjftS3CPVIc260opRkea1uGw+RW3Vfuv63JTEwRReIT9fx+v7CidANXXQyvPXwUx1+zisX3wOL74NUr03f9aCAPplpGe0cu9dz0FnxslvyTFp0MrEQtHcDkXKhtExPA6WMQMnos/OW2c1jGAiqoIp8WyqjhdY4DYA7/4Kc33EftnYnpb2kZ4IfqvZGvR6UbMeavND/PRFiJVzYJK/LiE2HpK4PDFTcetIwObuQ9PdY4hWM9y7k3IBaUShEuqtnAHDfUmsqjzN93RhlibvtdePiOhdRQhpsAmaabwT/5FgDfYSVXX/MQO++x2usmVJbsn+U2p77GMiVV4/TeJLwD4uIyeLgmfcu6DGQZ1UppLISL1/wxYmStEnlX9gA8gxWkJY+Tkiaz5EP6KnmDDa2Upg2VWOspLYgJbq3tu3KEQlqBmChetxEaJmWxx9XJxMfFvvXnw/aAOH6bea50z/c10BnIg6mW0ehRZdSeFCQDYSydhlDcKrBk9PNJB9Dm2sfEE4FcMN6C9xuEXG7Hqo2mSR1aRtOD0xFjZDc9ZVQ60U1BjI0ViFyZ162BfTPzaHS1Mm48GHvhzQbL3qFldGAwkGVUK6WxYk+JFO77cMmGsrEUUy2ZA4fwSmm8SdE1KSKSBUJ+JwdZuW60eDLIoNDF5gruq4H0tWZoNKkkklx1IywU0koRKqP7xHvTcvlEg5ZRjSYZPBfhu2bzJWVUyuDiWSB8BGFxHrjyoFbLqEaTRHqzbHbb/trxo5XRwYVWSocYi9elugcajSYSWkY1moGNllGNZjCg3XUHG/ulugMajUaj0Wg0Go1Goxm6DAhLaXNuLivGj09pH/bt28cBBxyg208hqe5DqtvvqqpKWdu9oWVUtz8Q+pDq9rWMRibV/5+h3v5A6EOq2x/IMpqb28z48StS1n6q/zcDoQ+pbn8g9CHV7VdVdYX/0hgATJ8+PdVdSHkfhnr7A6EPqW5/IDMQfptU92Gotz8Q+pDq9gcyA+G3SXUfhnr7A6EPqW5/IJPq3ybV7Q+EPqS6/YHQh1S3HwntvqvRaDQajUaj0Wg0mpShlVKNRqPRaDQajUaj0aSMAaGUXnpp6us2pboPQ739gdCHVLc/kBkIv02q+zDU2x8IfUh1+wOZgfDbpLoPQ739gdCHVLc/kEn1b5Pq9gdCH1Ld/kDoQ6rbj4TLMAZolWGNRqPRaDQajUaj0aQ9A8JSqtFoNBqNRqPRaDSaoUnKldLXXnuNgw8+mMrKSn7729/2S5sVFRVMnjyZqVOnMmPGDAAaGho45phjGDduHMcccwz/+c9/EtrmhRdeyPDhw5k0aVJwW7g2DcPgqquuorKykilTprB+/fqktL948WJGjhzJ1KlTmTp1Kq+88krwu9/85jdUVlZy8MEH8/rrr/e5/V27dvGd73yHiRMncsghh3DPPfcA/fcbhGu/P3+DwYqWUS2jWkYHNlpGtYxqGR3YDAUZTbV8huuDltFBJKOpSvtrGIbh9/uNsWPHGp999pnh8/mMKVOmGJ988knS2x09erSxb9++kG0/+clPjN/85jeGYRjGb37zG+OnP/1pQttctWqV8cEHHxiHHHJIr22+/PLLxvHHH2989dVXxnvvvWccfvjhSWn/5ptvNn73u9/12PeTTz4xpkyZYnR2dho7duwwxo4da/j9/j61X1NTY3zwwQeGYRhGc3OzMW7cOOOTTz7pt98gXPv9+RsMRrSMahnVMjqw0TKqZVTL6MBmqMhoquUzXB+0jA4eGU2ppfT999+nsrKSsWPHkpmZydlnn83y5ctT0pfly5dz3nnnAXDeeefxwgsvJPT83/72tykuLo6qzeXLl/Nf//VfuFwuZs2aRWNjI19++WXC2w/H8uXLOfvss/F6vYwZM4bKykref//9PrX/ta99jWnTpgGQn5/PhAkT2L17d7/9BuHaD0cyfoPBiJZRLaNaRgc2Wka1jGoZHdgMFRlNtXyG60M4tIwOPBlNqVK6e/duRo0aFfxcXl4e8cdLFC6Xi2OPPZbp06fz0EMPAVBbW8vXvvY1AEaMGEFtbW3S+xGuzf78Xe677z6mTJnChRdeGHQnSHb7VVVVfPjhh8ycOTMlv4HaPqTmNxgsaBnVMqpldGCjZVTLqJbRgc1QltGBIJ+gZRQGh4ymPKY0FaxevZr169fz6quvcv/99/N///d/Id+7XC5cLle/9ikVbV5xxRV89tlnbNiwga997Wtcf/31SW+ztbWVM844g7vvvpuCgoKQ7/rjN7C3n4rfQNM7WkYFWka1jA5UtIwKtIxqGR2oDDQZTYV8gpbRwSSjKVVKR44cya5du4Kfq6urGTlyZL+0CzB8+HBOO+003n//fUpLS4Mm8y+//JLhw4cnvR/h2uyv36W0tBS3281+++3HJZdcEjTZJ6v97u5uzjjjDH7wgx9w+umnB/vQX79BuPb78zcYbGgZ1TKqZXRgo2VUy6iW0YHNUJbRVMun7IOW0cEhoylVSr/xjW+wbds2du7cSVdXF08//TQnn3xyUttsa2ujpaUl+P6NN95g0qRJnHzyyTz22GMAPPbYY5xyyilJ7QcQts2TTz6Z//3f/8UwDNasWUNhYWHQ7J9IVL/1559/Ppit7OSTT+bpp5/G5/Oxc+dOtm3bxuGHH96ntgzD4KKLLmLChAlcd911we399RuEa78/f4PBiJZRLaNaRgc2Wka1jGoZHdgMZRlNtXyCllEYRDLa/7mVQnn55ZeNcePGGWPHjjVuueWWpLf32WefGVOmTDGmTJliTJw4MdhmXV2dMXfuXKOystI4+uijjfr6+oS2e/bZZxsjRowwPB6PMXLkSOORRx4J2+ZXX31l/PCHPzTGjh1rTJo0yfjXv/6VlPYXLlxoTJo0yZg8ebJx0kknGTU1NcH9b7nlFmPs2LHG17/+deOVV17pc/vvvPOOARiTJ082Dj30UOPQQw81Xn755X77DcK135+/wWBFy6iWUS2jAxsto1pGtYwObIaCjKZaPsP1Qcvo4JFRl2EYRupUYo1Go9FoNBqNRqPRDGWGZKIjjUaj0Wg0Go1Go9EMDLRSqtFoNBqNRqPRaDSalKGVUo1Go9FoNBqNRqPRpAytlGo0Go1Go9FoNBqNJmVopVSj0Wg0Go1Go9FoNClDK6UajUaj0Wg0Go1Go0kZWinVaDQajUaj0Wg0Gk3K0EqpRqPRaDQajUaj0WhSxv8HYazYYIRUqtoAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "filenames": { "image/png": "/sdf/home/l/ldomine/lartpc_mlreco3d_tutorials/book/_build/jupyter_execute/Prerequisites/Python-04-ScientificPython_9_0.png" } }, "output_type": "display_data" } ], "source": [ "fig,axes=plt.subplots(1,data.shape[2],figsize=(16,8),facecolor='w')\n", "for ch in range(data.shape[2]):\n", " axes[ch].imshow(data[:,:,ch],cmap='jet')\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "3a740866", "metadata": {}, "source": [ "But what are the pixel values (pretend you don't know the answer please)? Let's slice then reshape into 1D array, and histogram pixel values per channel." ] }, { "cell_type": "code", "execution_count": 6, "id": "6ef5725b", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7cAAAD4CAYAAAA3ghEnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAA4w0lEQVR4nO3dfVCVZ5rg/++ZnJisXSuCo5HlmET6YWzB2DGBQO9L1peliGQWazOMkkkFbLTZIfbo2NtVWmOSX6jqWUlXTXrTrXYVWcbGnWlZ41Z5uroVTbAyXZUKsmhX7yrVyXEWd4UwllHQ2cToQJ7fH27OaEDbIHgAv5//uHherlu95Fw893PfkTAMQyRJkiRJmsB+J9UJSJIkSZJ0u2xuJUmSJEkTns2tJEmSJGnCs7mVJEmSJE14NreSJEmSpAkvmuoERtvv/u7v8vDDD6c6DSmlTp06xUcffZTqNIZljUrWqDTeWaPS+HajGp10ze3DDz9MR0dHqtOQUio/Pz/VKdyQNSpZo9J4Z41K49uNatRpyZIkSZKkCc/mVpIkSZI04dncSpIkSZImPJtbSZIkSdKEZ3MrSZIkSZrwbG4lSZIkSROeza0kSWOourqaWbNmsWDBgmSsu7ubr33tayxcuJB/9+/+Hf39/cnvbd26lSAImDdvHgcPHkzGW1pamDdvHkEQUF9fn4x3dXVRWFhIEASsWrWKK1euAHD58mVWrVpFEAQUFhZy6tSpMR+rJEmpZHMrSdIYWr16NS0tLdfFpk2bxvHjx/kf/+N/8Hu/93ts3boVgM7OTpqbmzlx4gQtLS288MILDA4OMjg4yLp16zhw4ACdnZ3s3r2bzs5OADZt2sTGjRs5efIk6enpNDY2AtDY2Eh6ejonT55k48aNbNq06c4OXJKkO8zmVprghnsqNDAwQHFxMTk5ORQXF9PX1wdAGIasX7+eIAhYuHAhx44dS57T1NRETk4OOTk5NDU1JeNHjx7lkUceIQgC1q9fTxiGAJw/f37Ye0i63pNPPklGRsZ1sWnTphGNRgEoKiqiu7sbgHg8TkVFBffddx9z584lCALa29tpb28nCAKys7OZMmUKFRUVxONxwjDk8OHDlJeXA1BVVcW+ffuS16qqqgKgvLyc1tbWZP1KkjQZRVOdgHS3eHjzL0blOqfqn77u69WrV/Ptb3+bysrKZOzv/u7vqKioYPPmzdTX11NfX8+rr77KgQMHSCQSJBIJjhw5Qm1tLUeOHOH8+fPU1dXR0dFBJBLh8ccfp6ysjPT0dGpra3njjTcoLCyktLSUlpYWli9fTn19PcuWLRtyD2miGqsa/W3+8i//klWrVgHQ09NDUVFR8nuxWIyenh4A5syZc138yJEjnDt3junTpycb5WuP7+npSZ4TjUZJS0vj3Llz/O7v/u6QHBoaGmhoaADg7NmzXyp/6U5JVY1ONP456W7mk1tpghvuqVB/f3/yic0Xn+RUVlYSiUQoKiqiv7+f3t5eDh48SHFxMRkZGaSnp1NcXExLSwu9vb1cvHiRoqIiIpEIlZWVwz4VuvYekm7dn//5nxONRnnuuedSmkdNTQ0dHR10dHQwc+bMlOYiSdJI+eRWmoQGBgbIzMwEYPbs2Zw5cwa4/kkO/ONTnpvFY7HYkDjAmTNnhr3HcHwqJA31k5/8hJ///Oe0trYSiUQAyMrK4vTp08ljuru7ycrKAhg2PmPGDPr7+xkYGCAajV53/OfXisViDAwMcOHCBWbMmHEHRyhJ0p3lk1tpkotEIskPzqm6h0+FpOtduHCB73//+/zsZz9j6tSpyXhZWRnNzc1cvnyZrq4uEokETzzxBAUFBSQSCbq6urhy5QrNzc2UlZURiURYsmQJe/fuBa6+O79ixYrktT5/f37v3r0sXbp0zP8vkCQplWxupUkoGo3S29sLQG9vL7NmzQJu/FToZvHPF7q5Ng7wwAMPDHsPSdd79tln+cY3vsH7779PLBajsbGR06dP8/d///cUFxfz6KOP8sd//McA5OXlsXLlSnJzc3nqqafYvn0799xzD9FolG3btlFSUsL8+fNZuXIleXl5ALz66qu89tprBEHAuXPnWLNmDQBr1qzh3LlzBEHAa6+9dt32QZIkTUZOS5YmoenTp9PU1MTmzZuHPMnZtm0bFRUVHDlyhLS0NDIzMykpKeHP/uzPkiseHzp0iK1bt5KRkcG0adNoa2ujsLCQXbt28Sd/8ifJaw13D0nX271795DYj3/8Yzo6OoY9fsuWLWzZsmVIvLS0lNLS0iHx7Oxs2tvbh8Tvv/9+3nzzzRFkLEnSxGRzK01wzz77LO+88w4fffQRsViMuro6Zs+ezVtvvUVjYyMPPfQQe/bsAa5+ON6/fz9BEDB16lR27twJQEZGBi+99BIFBQUAvPzyy8lFqnbs2MHq1au5dOkSy5cvZ/ny5QBs3ryZlStXDrmHJEmSlAo2t9IEd6OnQq2trUPikUiE7du3D3ud6upqqqurh8Tz8/M5fvz4kPiMGTOGvYckSZKUCr5zK0mSJEma8GxuJUmSJEkTns2tJEmSJGnCs7mVJEmSJE14NreSJEmSpAnvtza31dXVzJo1iwULFiRj58+fp7i4mJycHIqLi5N7Y4ZhyPr16wmCgIULF3Ls2LHkOU1NTeTk5JCTk0NTU1MyfvToUR555BGCIGD9+vWEYXjTe0iSJEmS9EW/tbldvXo1LS0t18Xq6+tZtmwZiUSCZcuWUV9fD8CBAwdIJBIkEgkaGhqora0FrjaqdXV1HDlyhPb2durq6pLNam1tLW+88UbyvM/vdaN7SJIkSZL0Rb+1uX3yySfJyMi4LhaPx6mqqgKgqqqKffv2JeOVlZVEIhGKioro7++nt7eXgwcPUlxcTEZGBunp6RQXF9PS0kJvby8XL16kqKiISCRCZWXlddca7h6SJEmSJH3RiN65PXPmDJmZmQDMnj2bM2fOANDT08OcOXOSx8ViMXp6em4aj8ViQ+I3u4ckSZIkSV8Uvd0LRCIRIpHIaOQy4ns0NDTQ0NAAwNmzZ8c0F0mSJEnS+DOiJ7cPPPAAvb29APT29jJr1iwAsrKyOH36dPK47u5usrKybhrv7u4eEr/ZPYZTU1NDR0cHHR0dzJw5cyRDkiRJkiRNYCNqbsvKypIrHjc1NbFixYpkfNeuXYRhSFtbG2lpaWRmZlJSUsKhQ4fo6+ujr6+PQ4cOUVJSQmZmJtOmTaOtrY0wDNm1a9d11xruHpIkSdKd8IMf/IC8vDwWLFjAs88+y6effkpXVxeFhYUEQcCqVau4cuUKAJcvX2bVqlUEQUBhYSGnTp1KXmfr1q0EQcC8efM4ePBgMt7S0sK8efMIgsDFU6VR8Fub22effZZvfOMbvP/++8RiMRobG9m8eTNvvfUWOTk5vP3222zevBmA0tJSsrOzCYKAb33rW+zYsQOAjIwMXnrpJQoKCigoKODll19OLlK1Y8cO1q5dSxAEfPWrX2X58uUAN7yHJEmSNNZ6enr44Q9/SEdHB8ePH2dwcJDm5mY2bdrExo0bOXnyJOnp6TQ2NgLQ2NhIeno6J0+eZOPGjWzatAmAzs5OmpubOXHiBC0tLbzwwgsMDg4yODjIunXrOHDgAJ2dnezevZvOzs5UDlma8H7rO7e7d+8eNt7a2jokFolE2L59+7DHV1dXU11dPSSen5/P8ePHh8RnzJgx7D0kSZKkO2FgYIBLly5x77338sknn5CZmcnhw4f56U9/Clzd0eOVV16htraWeDzOK6+8AkB5eTnf/va3CcOQeDxORUUF9913H3PnziUIAtrb2wEIgoDs7GwAKioqiMfj5ObmpmSs0mQwomnJkiRJ0mSWlZXFd7/7XR588EEyMzNJS0vj8ccfZ/r06USjV58PXbvTx7W7g0SjUdLS0jh37tyX3k1kOA0NDeTn55Ofn+/iqdJN2NxKkiRJX9DX10c8Hqerq4sPP/yQjz/+mJaWlpTk4uKp0q2xuZUkSZK+4O2332bu3LnMnDmTe++9l2eeeYZ3332X/v5+BgYGgOt3+rh2d5CBgQEuXLjAjBkzvvRuIpJGzuZWkiRJ+oIHH3yQtrY2PvnkE8IwpLW1ldzcXJYsWcLevXuBobuGfL7Tx969e1m6dCmRSISysjKam5u5fPkyXV1dJBIJnnjiCQoKCkgkEnR1dXHlyhWam5spKytL2XilyeC3LiglSZIk3W0KCwspLy/nscceIxqNsmjRImpqanj66aepqKjgxRdfZNGiRaxZswaANWvW8PzzzxMEARkZGTQ3NwOQl5fHypUryc3NJRqNsn37du655x4Atm3bRklJCYODg1RXV5OXl5ey8UqTgc2tJEmSNIy6ujrq6uqui2VnZydXO77W/fffz5tvvjnsdbZs2cKWLVuGxEtLSyktLR2dZCU5LVmSJEmSNPHZ3EqSJEmSJjybW0mSJEnShGdzK0nSGKqurmbWrFksWLAgGRsYGKC4uJicnByKi4vp6+sDIAxD1q9fTxAELFy4kGPHjiXPaWpqIicnh5ycnOSKrABHjx7lkUceIQgC1q9fTxiGAJw/f37Ye0iSNFnZ3EqSNIZWr15NS0vLdbG/+7u/Y9myZSQSCZYtW0Z9fT0ABw4cIJFIkEgkaGhooLa2FrjaqNbV1XHkyBHa29upq6tLNqu1tbW88cYbyfM+v1d9ff2w95AkabKyuZUkaQw9+eSTZGRkXBfr7++nqqoKgKqqKvbt2wdAPB6nsrKSSCRCUVER/f399Pb2cvDgQYqLi8nIyCA9PZ3i4mJaWlro7e3l4sWLFBUVEYlEqKysvO5aw91DkqTJyuZWkqQ7bGBggMzMTABmz57NmTNnAOjp6WHOnDnJ42KxGD09PTeNx2KxIXGAM2fODHsPSZImK/e5lSQphSKRCJFIJKX3aGhooKGhAYCzZ8+OaS6SJI0Vn9xKknSHRaNRent7Aejt7WXWrFkAZGVlcfr06eRx3d3dZGVl3TTe3d09JA7wwAMPDHuP4dTU1NDR0UFHRwczZ84cvYFKknQH2dxKknSHTZ8+PbnicVNTEytWrACgrKyMXbt2EYYhbW1tpKWlkZmZSUlJCYcOHaKvr4++vj4OHTpESUkJmZmZTJs2jba2NsIwZNeuXddda7h7SJI0WTktWZKkMfTss8/yzjvv8NFHHxGLxairq2P27Nm89dZbNDY28tBDD7Fnzx4ASktL2b9/P0EQMHXqVHbu3AlARkYGL730EgUFBQC8/PLLyUWqduzYwerVq7l06RLLly9n+fLlAGzevJmVK1cOuYckSZOVza0kSWNo9+7dQ2I//vGPaW1tHRKPRCJs37592OtUV1dTXV09JJ6fn8/x48eHxGfMmDHsPSRJmqyclixNYj/4wQ/Iy8tjwYIFPPvss3z66ad0dXVRWFhIEASsWrWKK1euAHD58mVWrVpFEAQUFhZy6tSp5HW2bt1KEATMmzePgwcPJuMtLS3MmzePIAjcQ1OSJEkpZXMrTVI9PT388Ic/pKOjg+PHjzM4OEhzczObNm1i48aNnDx5kvT0dBobGwFobGwkPT2dkydPsnHjRjZt2gRAZ2cnzc3NnDhxgpaWFl544QUGBwcZHBxk3bp1HDhwgM7OTnbv3k1nZ2cqhyxJkqS7mM2tNIkNDAxw6dIlBgYG+OSTT8jMzOTw4cOUl5cDUFVVxb59+wCIx+NUVVUBUF5eTmtrK2EYEo/Hqaio4L777mPu3LkEQUB7ezvt7e0EQUB2djZTpkyhoqKCeDyeqqFKkiTpLmdzK01SWVlZfPe73+XBBx8kMzOTtLQ0Hn/8caZPn040evV1+1gsRk9PD3D1Se+cOXOAq9uUpKWlce7cuevi155zo/hwGhoayM/PJz8/3z00JUmSNCZsbqVJqq+vj3g8TldXFx9++CEff/wxLS0tKcnFPTQlSZI01mxupUnq7bffZu7cucycOZN7772XZ555hnfffZf+/n4GBgYA6O7uJisrC7j6pPf06dPA1enMFy5cYMaMGdfFrz3nRnFJkiQpFWxupUnqwQcfpK2tjU8++YQwDGltbSU3N5clS5awd+9eAJqamlixYgUAZWVlNDU1AbB3716WLl1KJBKhrKyM5uZmLl++TFdXF4lEgieeeIKCggISiQRdXV1cuXKF5uZmysrKUjZeSZIk3d3c51aapAoLCykvL+exxx4jGo2yaNEiampqePrpp6moqODFF19k0aJFrFmzBoA1a9bw/PPPEwQBGRkZNDc3A5CXl8fKlSvJzc0lGo2yfft27rnnHgC2bdtGSUkJg4ODVFdXk5eXl7LxSpIk6e5mcytNYnV1ddTV1V0Xy87Opr29fcix999/P2+++eaw19myZQtbtmwZEi8tLaW0tHR0kpUkSZJug9OSJUmSJEkTns2tJEmSJGnCu63m9gc/+AF5eXksWLCAZ599lk8//ZSuri4KCwsJgoBVq1Zx5coVAC5fvsyqVasIgoDCwkJOnTqVvM7WrVsJgoB58+Zx8ODBZLylpYV58+YRBAH19fW3k6okSZIkaRIbcXPb09PDD3/4Qzo6Ojh+/DiDg4M0NzezadMmNm7cyMmTJ0lPT6exsRGAxsZG0tPTOXnyJBs3bmTTpk0AdHZ20tzczIkTJ2hpaeGFF15gcHCQwcFB1q1bx4EDB+js7GT37t10dnaOzqglSZIkSZPKbT25HRgY4NKlSwwMDPDJJ5+QmZnJ4cOHKS8vB6Cqqop9+/YBEI/HqaqqAqC8vJzW1lbCMCQej1NRUcF9993H3LlzCYKA9vZ22tvbCYKA7OxspkyZQkVFBfF4/PZGK0mSJEmalEbc3GZlZfHd736XBx98kMzMTNLS0nj88ceZPn060ejVRZhjsRg9PT3A1Se9c+bMASAajZKWlsa5c+eui197zo3ikiRJkiR90Yib276+PuLxOF1dXXz44Yd8/PHHtLS0jGZut6yhoYH8/Hzy8/M5e/ZsSnKQJEmSJKXOiJvbt99+m7lz5zJz5kzuvfdennnmGd599136+/sZGBgAoLu7m6ysLODqk97Tp08DV6czX7hwgRkzZlwXv/acG8WHU1NTQ0dHBx0dHcycOXOkQ5IkSZIkTVAjbm4ffPBB2tra+OSTTwjDkNbWVnJzc1myZAl79+4FoKmpiRUrVgBQVlZGU1MTAHv37mXp0qVEIhHKyspobm7m8uXLdHV1kUgkeOKJJygoKCCRSNDV1cWVK1dobm6mrKxsFIYsSZIkSZpsoiM9sbCwkPLych577DGi0SiLFi2ipqaGp59+moqKCl588UUWLVrEmjVrAFizZg3PP/88QRCQkZFBc3MzAHl5eaxcuZLc3Fyi0Sjbt2/nnnvuAWDbtm2UlJQwODhIdXU1eXl5ozBkSZIkSdJkM+LmFqCuro66urrrYtnZ2bS3tw859v777+fNN98c9jpbtmxhy5YtQ+KlpaWUlpbeToqSJEmSpLvAbW0FJEmSJEnSeGBzK0mSJEma8GxuJUmSJEkTns2tJEmSJGnCs7mVJEmSJE14NreSJEnSMPr7+ykvL+drX/sa8+fP57333uP8+fMUFxeTk5NDcXExfX19AIRhyPr16wmCgIULF3Ls2LHkdZqamsjJySEnJ4empqZk/OjRozzyyCMEQcD69esJw/COj1GaTGxuJUlKkR/84Afk5eWxYMECnn32WT799FO6urooLCwkCAJWrVrFlStXALh8+TKrVq0iCAIKCws5depU8jpbt24lCALmzZvHwYMHk/GWlhbmzZtHEATU19ff6eFJE96GDRt46qmn+M1vfsOvf/1r5s+fT319PcuWLSORSLBs2bJkbR04cIBEIkEikaChoYHa2loAzp8/T11dHUeOHKG9vZ26urpkQ1xbW8sbb7yRPK+lpSVlY5UmA5tbSZJSoKenhx/+8Id0dHRw/PhxBgcHaW5uZtOmTWzcuJGTJ0+Snp5OY2MjAI2NjaSnp3Py5Ek2btzIpk2bAOjs7KS5uZkTJ07Q0tLCCy+8wODgIIODg6xbt44DBw7Q2dnJ7t276ezsTOWQpQnlwoUL/PKXv2TNmjUATJkyhenTpxOPx6mqqgKgqqqKffv2ARCPx6msrCQSiVBUVER/fz+9vb0cPHiQ4uJiMjIySE9Pp7i4mJaWFnp7e7l48SJFRUVEIhEqKyuT15I0Mja3kiSlyMDAAJcuXWJgYIBPPvmEzMxMDh8+THl5OTD0g/PnH6jLy8tpbW0lDEPi8TgVFRXcd999zJ07lyAIaG9vp729nSAIyM7OZsqUKVRUVBCPx1M1VGnC6erqYubMmXzzm99k0aJFrF27lo8//pgzZ86QmZkJwOzZszlz5gxw9RdWc+bMSZ4fi8Xo6em5aTwWiw2JSxo5m1tJklIgKyuL7373uzz44INkZmaSlpbG448/zvTp04lGo8D1H3av/YAcjUZJS0vj3LlzX/oD9XAaGhrIz88nPz+fs2fPjtWQpQllYGCAY8eOUVtby69+9Su+8pWvDJneH4lEiEQiY56LNSrdmmiqE5Ak6W7U19dHPB6nq6uL6dOn84d/+Icpe9+upqaGmpoaAPLz81OSgzTexGIxYrEYhYWFwNUZE/X19TzwwAP09vaSmZlJb28vs2bNAq7+wur06dPJ87u7u8nKyiIrK4t33nnnuvjixYvJysqiu7t7yPHDsUY1ETy8+Rejcp1T9U+P+Fyf3EqSlAJvv/02c+fOZebMmdx7770888wzvPvuu/T39zMwMABc/2H32g/OAwMDXLhwgRkzZtz0A/VwcUm3Zvbs2cyZM4f3338fgNbWVnJzcykrK0uueNzU1MSKFSsAKCsrY9euXYRhSFtbG2lpaWRmZlJSUsKhQ4fo6+ujr6+PQ4cOUVJSQmZmJtOmTaOtrY0wDNm1a1fyWpJGxie3kiSlwIMPPkhbWxuffPIJ/+Sf/BNaW1vJz89nyZIl7N27l4qKiiEfnJuamvjGN77B3r17Wbp0KZFIhLKyMv7oj/6I73znO3z44YckEgmeeOIJwjAkkUjQ1dVFVlYWzc3N/PSnP03xqKWJ5Uc/+hHPPfccV65cITs7m507d/LZZ5+xcuVKGhsbeeihh9izZw8ApaWl7N+/nyAImDp1Kjt37gQgIyODl156iYKCAgBefvllMjIyANixYwerV6/m0qVLLF++nOXLl6dmoNIkYXMrSVIKFBYWUl5ezmOPPUY0GmXRokXU1NTw9NNPU1FRwYsvvsiiRYuSK7WuWbOG559/niAIyMjIoLm5GYC8vDxWrlxJbm4u0WiU7du3c8899wCwbds2SkpKGBwcpLq6mry8vJSNV5qIHn30UTo6OobEW1tbh8QikQjbt28f9jrV1dVUV1cPiefn53P8+PHbT1QSYHMrSVLK1NXVUVdXd10sOzub9vb2Icfef//9vPnmm8NeZ8uWLWzZsmVIvLS0lNLS0tFJVpKkcc53biVJkiRJE57NrSRJkiRpwrO5lSRJkiRNeDa3kiRJkqQJz+ZWkiRJkjTh2dxKkiRJkiY8m1tpEuvv76e8vJyvfe1rzJ8/n/fee4/z589TXFxMTk4OxcXF9PX1ARCGIevXrycIAhYuXMixY8eS12lqaiInJ4ecnByampqS8aNHj/LII48QBAHr168nDMM7PkZJkiQJbG6lSW3Dhg089dRT/OY3v+HXv/418+fPp76+nmXLlpFIJFi2bBn19fUAHDhwgEQiQSKRoKGhgdraWgDOnz9PXV0dR44cob29nbq6umRDXFtbyxtvvJE8r6WlJWVjlSRJ0t3N5laapC5cuMAvf/lL1qxZA8CUKVOYPn068XicqqoqAKqqqti3bx8A8XicyspKIpEIRUVF9Pf309vby8GDBykuLiYjI4P09HSKi4tpaWmht7eXixcvUlRURCQSobKyMnktSZIk6U6zuZUmqa6uLmbOnMk3v/lNFi1axNq1a/n44485c+YMmZmZAMyePZszZ84A0NPTw5w5c5Lnx2Ixenp6bhqPxWJD4sNpaGggPz+f/Px8zp49OxbDlSRJ0l3O5laapAYGBjh27Bi1tbX86le/4itf+UpyCvLnIpEIkUhkzHOpqamho6ODjo4OZs6cOeb3kyRJ0t3H5laapGKxGLFYjMLCQgDKy8s5duwYDzzwAL29vQD09vYya9YsALKysjh9+nTy/O7ubrKysm4a7+7uHhKXJEmSUsHmVpqkZs+ezZw5c3j//fcBaG1tJTc3l7KysuSKx01NTaxYsQKAsrIydu3aRRiGtLW1kZaWRmZmJiUlJRw6dIi+vj76+vo4dOgQJSUlZGZmMm3aNNra2gjDkF27diWvJUmSJN1p0VQnIGns/OhHP+K5557jypUrZGdns3PnTj777DNWrlxJY2MjDz30EHv27AGgtLSU/fv3EwQBU6dOZefOnQBkZGTw0ksvUVBQAMDLL79MRkYGADt27GD16tVcunSJ5cuXs3z58tQMVJIkSXe922pu+/v7Wbt2LcePHycSifCXf/mXzJs3j1WrVnHq1Ckefvhh9uzZQ3p6OmEYsmHDBvbv38/UqVP5yU9+wmOPPQZcfXr0ve99D4AXX3wxuZLr0aNHkx+cS0tLef311+/I+4HSZPHoo4/S0dExJN7a2jokFolE2L59+7DXqa6uprq6ekg8Pz+f48eP336ikiRJ0m26rWnJ7qEpSZIkSRoPRtzcuoemJEmSJGm8GHFzO5720JQkSZIk3d1G3NyOpz00GxoayM/PJz8/n7Nnz475/SRJkiRJ48uIm9vxtIdmTU0NHR0ddHR0MHPmzJEOSZIkSZI0QY24uXUPTUmSJEnSeHFbWwG5h6YkSZIkaTy4rebWPTQlSZIkSePBbe1zK0mSJEnSeGBzK0mSJEma8GxuJUlKkf7+fsrLy/na177G/Pnzee+99zh//jzFxcXk5ORQXFxMX18fAGEYsn79eoIgYOHChRw7dix5naamJnJycsjJyUku6ghw9OhRHnnkEYIgYP369YRheMfHKEnSnWJzK0lSimzYsIGnnnqK3/zmN/z6179m/vz51NfXs2zZMhKJBMuWLUvuIX/gwAESiQSJRIKGhgZqa2sBOH/+PHV1dRw5coT29nbq6uqSDXFtbS1vvPFG8ryWlpaUjVWSpLFmcytJUgpcuHCBX/7yl6xZswaAKVOmMH36dOLxOFVVVQBUVVWxb98+AOLxOJWVlUQiEYqKiujv76e3t5eDBw9SXFxMRkYG6enpFBcX09LSQm9vLxcvXqSoqIhIJEJlZWXyWpIkTUY2t5IkpUBXVxczZ87km9/8JosWLWLt2rV8/PHHnDlzhszMTODqnvJnzpwBoKenhzlz5iTPj8Vi9PT03DQei8WGxIfT0NBAfn4++fn5nD17diyGK0nSmLO5lSQpBQYGBjh27Bi1tbX86le/4itf+UpyCvLnIpEIkUhkzHOpqamho6ODjo4OZs6cOeb3kyRpLNjcSpKUArFYjFgsRmFhIQDl5eUcO3aMBx54gN7eXgB6e3uZNWsWAFlZWZw+fTp5fnd3N1lZWTeNd3d3D4lLkjRZ2dxKkpQCs2fPZs6cObz//vsAtLa2kpubS1lZWXLF46amJlasWAFAWVkZu3btIgxD2traSEtLIzMzk5KSEg4dOkRfXx99fX0cOnSIkpISMjMzmTZtGm1tbYRhyK5du5LXkiRpMoqmOgFJku5WP/rRj3juuee4cuUK2dnZ7Ny5k88++4yVK1fS2NjIQw89xJ49ewAoLS1l//79BEHA1KlT2blzJwAZGRm89NJLFBQUAPDyyy+TkZEBwI4dO1i9ejWXLl1i+fLlLF++PDUDlSTpDrC5lSQpRR599FE6OjqGxFtbW4fEIpEI27dvH/Y61dXVVFdXD4nn5+dz/Pjx209UkqQJwGnJkiRJkqQJz+ZWkiRJkjTh2dxKkiRJNzA4OMiiRYv4/d//feDqHtWFhYUEQcCqVau4cuUKAJcvX2bVqlUEQUBhYSGnTp1KXmPr1q0EQcC8efM4ePBgMt7S0sK8efMIgmDIVmCSvjybW0mSJOkGXn/9debPn5/8etOmTWzcuJGTJ0+Snp5OY2MjAI2NjaSnp3Py5Ek2btzIpk2bAOjs7KS5uZkTJ07Q0tLCCy+8wODgIIODg6xbt44DBw7Q2dnJ7t276ezsTMkYpcnC5laSJEkaRnd3N7/4xS9Yu3YtAGEYcvjwYcrLywGoqqpi3759AMTjcaqqqoCr+1a3trYShiHxeJyKigruu+8+5s6dSxAEtLe3097eThAEZGdnM2XKFCoqKojH4ykZpzRZ2NxKkiRJw/jTP/1Tvv/97/M7v3P1I/O5c+eYPn060ejVDUdisRg9PT0A9PT0MGfOHACi0ShpaWmcO3fuuvi159woLmnkbG4lSZKkL/j5z3/OrFmzePzxx1OdCg0NDeTn55Ofn8/Zs2dTnY40brnPrSRJkvQF7777Lj/72c/Yv38/n376KRcvXmTDhg309/czMDBANBqlu7ubrKwsALKysjh9+jSxWIyBgQEuXLjAjBkzkvHPXXvOjeJfVFNTQ01NDXB1/2pJw/PJrSRJkvQFW7dupbu7m1OnTtHc3MzSpUv567/+a5YsWcLevXsBaGpqYsWKFQCUlZXR1NQEwN69e1m6dCmRSISysjKam5u5fPkyXV1dJBIJnnjiCQoKCkgkEnR1dXHlyhWam5spKytL2XilycAnt5IkSdItevXVV6moqODFF19k0aJFrFmzBoA1a9bw/PPPEwQBGRkZNDc3A5CXl8fKlSvJzc0lGo2yfft27rnnHgC2bdtGSUkJg4ODVFdXk5eXl7JxSZOBza0kSZJ0E4sXL2bx4sUAZGdn097ePuSY+++/nzfffHPY87ds2cKWLVuGxEtLSyktLR3VXKW7mdOSJUmSJEkTns2tJEmSJGnCs7mVJrnBwUEWLVrE7//+7wPQ1dVFYWEhQRCwatUqrly5AsDly5dZtWoVQRBQWFjIqVOnktfYunUrQRAwb948Dh48mIy3tLQwb948giCgvr7+jo5LkiRJupbNrTTJvf7668yfPz/59aZNm9i4cSMnT54kPT2dxsZGABobG0lPT+fkyZNs3LiRTZs2AdDZ2UlzczMnTpygpaWFF154gcHBQQYHB1m3bh0HDhygs7OT3bt309nZmZIxSpIkSTa30iTW3d3NL37xC9auXQtAGIYcPnyY8vJyAKqqqti3bx8A8XicqqoqAMrLy2ltbSUMQ+LxOBUVFdx3333MnTuXIAhob2+nvb2dIAjIzs5mypQpVFRUEI/HUzJOSZIkyeZWmsT+9E//lO9///v8zu9cLfVz584xffp0otGrC6XHYjF6enoA6OnpYc6cOQBEo1HS0tI4d+7cdfFrz7lRfDgNDQ3k5+eTn5/P2bNnx2SskiRJurvZ3EqT1M9//nNmzZrF448/nupUqKmpoaOjg46ODmbOnJnqdCRJkjQJuc+tNEm9++67/OxnP2P//v18+umnXLx4kQ0bNtDf38/AwADRaJTu7m6ysrIAyMrK4vTp08RiMQYGBrhw4QIzZsxIxj937Tk3ikuSJEl32m0/uXUlVml82rp1K93d3Zw6dYrm5maWLl3KX//1X7NkyRL27t0LQFNTEytWrACgrKyMpqYmAPbu3cvSpUuJRCKUlZXR3NzM5cuX6erqIpFI8MQTT1BQUEAikaCrq4srV67Q3NxMWVlZysYrSZKku9ttN7euxCpNLK+++iqvvfYaQRBw7tw51qxZA8CaNWs4d+4cQRDw2muvJX+hlJeXx8qVK8nNzeWpp55i+/bt3HPPPUSjUbZt20ZJSQnz589n5cqV5OXlpXJokiRJuovd1rTkz1di3bJlC6+99lpyJdaf/vSnwNWVWF955RVqa2uJx+O88sorwNWVWL/97W/fdCVWILkSK5BciTU3N/d2UpbuSosXL2bx4sUAZGdnJ2vsWvfffz9vvvnmsOdv2bKFLVu2DImXlpZSWlo6qrlKkiRJI3FbT25diVWSJEmSNB6MuLl1JVZJkiRJ0ngx4mnJrsQqSZIkSRovRvzk1pVYJUmSJEnjxW2vlvxFrsQqSdKtc0s9SZJGx22tlvw5V2KVJGlkPt9S7+LFi8A/bqlXUVHBH//xH9PY2Ehtbe11W+o1NzezadMm/ut//a/Xban34Ycf8m/+zb/hgw8+AGDdunW89dZbxGIxCgoKKCsrc9cBSdKkNepPbiVJ0q35fEu9tWvXAiS31CsvLweubqm3b98+AOLxOFVVVcDVLfVaW1tvuqVee3t7cku9KVOmJLfUkyRpsrK5lSQpRdxST5Kk0WNzK0lSCrilniRJo2tU3rmVJElfjlvqSZI0unxyK0lSCrilniRJo8snt5IkjSOvvvoqFRUVvPjiiyxatOi6LfWef/55giAgIyOD5uZm4Pot9aLRaHJLPSC5pd7g4CDV1dVuqSdJmtRsbiVJSjG31JMk6fY5LVmSJEmSNOHZ3EqSJEmSJjybW0mSJEnShGdzK0mSJEma8GxuJUmSJEkTns2tJEmSJGnCs7mVJEmSJE14NreSJEmSpAnP5laSJEmSNOHZ3EqSJEmSJjybW0mSJEnShGdzK0mSJEma8GxuJUmSJEkTns2tJEmSJGnCs7mVJEmSvuD06dMsWbKE3Nxc8vLyeP311wE4f/48xcXF5OTkUFxcTF9fHwBhGLJ+/XqCIGDhwoUcO3Ysea2mpiZycnLIycmhqakpGT969CiPPPIIQRCwfv16wjC8s4OUJhmbW0mSJOkLotEof/EXf0FnZydtbW1s376dzs5O6uvrWbZsGYlEgmXLllFfXw/AgQMHSCQSJBIJGhoaqK2tBa42w3V1dRw5coT29nbq6uqSDXFtbS1vvPFG8ryWlpaUjVeaDGxuJUmSpC/IzMzkscceA+Cf/tN/yvz58+np6SEej1NVVQVAVVUV+/btAyAej1NZWUkkEqGoqIj+/n56e3s5ePAgxcXFZGRkkJ6eTnFxMS0tLfT29nLx4kWKioqIRCJUVlYmryVpZKKpTkCSJEkaz06dOsWvfvUrCgsLOXPmDJmZmQDMnj2bM2fOANDT08OcOXOS58RiMXp6em4aj8ViQ+LDaWhooKGhAYCzZ8+O+vikycInt5IkSdIN/N//+3/5gz/4A/7Tf/pPTJs27brvRSIRIpHImOdQU1NDR0cHHR0dzJw5c8zvJ01UNrfSJOVCGJIk3Z5/+Id/4A/+4A947rnneOaZZwB44IEH6O3tBaC3t5dZs2YBkJWVxenTp5Pndnd3k5WVddN4d3f3kLikkbO5lSYpF8KQJGnkwjBkzZo1zJ8/n+985zvJeFlZWfIXvU1NTaxYsSIZ37VrF2EY0tbWRlpaGpmZmZSUlHDo0CH6+vro6+vj0KFDlJSUkJmZybRp02hrayMMQ3bt2pW8lqSRsbmVJikXwpAkaeTeffdd/st/+S8cPnyYRx99lEcffZT9+/ezefNm3nrrLXJycnj77bfZvHkzAKWlpWRnZxMEAd/61rfYsWMHABkZGbz00ksUFBRQUFDAyy+/TEZGBgA7duxg7dq1BEHAV7/6VZYvX56y8UqTwYgXlDp9+jSVlZWcOXOGSCRCTU0NGzZs4Pz586xatYpTp07x8MMPs2fPHtLT0wnDkA0bNrB//36mTp3KT37yk+QH76amJr73ve8B8OKLLyY/eB89epTVq1dz6dIlSktLef311+/Iew3SZONCGJIkfTn/8l/+yxu+btPa2jokFolE2L59+7DHV1dXU11dPSSen5/P8ePHby9RSUkjfnLrlEdpYnAhDEmSJN0NRtzcOuVRGv9cCEOSJEl3i1F553Y8THnMz88nPz/fKY/S/+NCGNL45ormkiSNrttubp3yKI1PLoQhjW++3iNJ0uga8YJScPMpj5mZmbc85fGdd965Lr548WKnPEq3yYUwpPEtMzMzOdPpi6/3fP5zsaqqisWLF/Pqq6/e8PWed955J/l6D5B8vWfx4sXJ13uA5Os9/hJKkjRZjfjJrVMeJUkaHb7eI0nS7Rvxk9vPpzw+8sgjPProowD8x//4H9m8eTMrV66ksbGRhx56iD179gBXpzzu37+fIAiYOnUqO3fuBK6f8ggMmfL4+VZAy5cv97fNkqRJZ7y83lNTUwNcnZEhSdJENOLm1imPkiTdHl/vkSRp9NzWO7eSJN2Ohzf/YlSuc6r+6VG5zp30217v2bx585DXe7Zt20ZFRQVHjhy57vWeP/uzP0suInXo0CG2bt1KRkZG8vWewsJCdu3axZ/8yZ+kZKySJN0JNreSJKWAr/dIkjS6bG4lSUoBX++RJGl02dwq6W6eHihJkiRpYhvxVkCSJEmSJI0XNreSJEmSpAnPacmSJOmW+QqLJGm8srmVJE14o9VwSZKkictpyZIkSZKkCc/mVpIkSZI04dncSpIkSZImPN+5lSR9ab7jKkmSxhuf3EqSJEmSJjybW0mSJEnShOe05BRzv0BJkiRJun02t9It8P1CSZIkaXxzWrIkSZIkacKzuZUkSZIkTXg2t5IkSZKkCc/mVpIkSZI04dncSpIkSZImPJtbSZIkSdKEZ3MrSZIkSZrw3OdWkm5iNPY4PlX/9ChkIkmSpJuxuZUkSROWv4CSJH3OacmSJEmSpAnP5laSJEmSNOHdldOSncIkTX6jUeeS9GWM1v87fsaQpJG5K5vb0eAHZ0mSRs6fo3cX/74l3QnjvrltaWlhw4YNDA4OsnbtWjZv3pzqlDSB+MN07I1FjU62vzef5iiV/DkqjW/WqDR6xnVzOzg4yLp163jrrbeIxWIUFBRQVlZGbm5uqlMbdyZbM6CJwRq9s6xzfVnW6K2xtpQq1qg0usZ1c9ve3k4QBGRnZwNQUVFBPB634Mc5PyTcPaxRaXyzRicmf47ePcZzjY6nf4fOXNKtGtfNbU9PD3PmzEl+HYvFOHLkyJDjGhoaaGhoAOA3v/kN+fn5N71uePYsM2fOHN1kR+isudzQeMpnPOXy0EMv/NZcTp06dUdysUbvLHO5sfGUz2Sv0fFUnzC+/u7N5cbGUz7W6J01Gn/3+fn/37jJZbSMp1xgdPL53VHK5XZqdFw3t7eqpqaGmpqaWz4+Pz+fjo6OMczo1pnLjY2nfMzl9lijo8Ncbmw85TOecrlVX6ZGx9v4xlM+5nJj4ymf8ZTLrbJGR4e53Nh4yud2chnX+9xmZWVx+vTp5Nfd3d1kZWWlMCNJ17JGpfHNGpXGN2tUGl3jurktKCggkUjQ1dXFlStXaG5upqysLNVpSfp/rFFpfLNGpfHNGpVG17ielhyNRtm2bRslJSUMDg5SXV1NXl7ebV/3y0yPHGvmcmPjKR9zGZ41emeZy42Np3zGUy5jUaPjaXwwvvIxlxsbT/mMp1ys0TvLXG5sPOVzO7lEwjAMRzEXSZIkSZLuuHE9LVmSJEmSpFthcytJkiRJmvAmbXPb0tLCvHnzCIKA+vr6Id+/fPkyq1atIggCCgsLx3w/s9+Wz2uvvUZubi4LFy5k2bJl/O///b9Tlsvn/tt/+29EIpExXRb8VnLZs2cPubm55OXl8Ud/9Edjlsut5PN//s//YcmSJSxatIiFCxeyf//+McmjurqaWbNmsWDBgmG/H4Yh69evJwgCFi5cyLFjx8Ykj7FkjY48l8/dbTU6XuoTrFG4szU6nurzVvL5nDV6PWt0dFmjI8/nc9bo9SZFjYaT0MDAQJidnR3+7d/+bXj58uVw4cKF4YkTJ647Zvv27eG///f/PgzDMNy9e3e4cuXKlOZz+PDh8OOPPw7DMAx37NgxZvncSi5hGIYXL14M/9W/+ldhYWFh+N//+39PWS4ffPBB+Oijj4bnz58PwzAMz5w5Mya53Go+3/rWt8IdO3aEYRiGJ06cCB966KExyeVv/uZvwqNHj4Z5eXnDfv8Xv/hF+NRTT4WfffZZ+N5774VPPPHEmOQxVqzR28slDO++Gh1P9RmG1mgY3rkaHU/1eav5hKE1ao2OLWv09vIJQ2t0stbopHxy297eThAEZGdnM2XKFCoqKojH49cdE4/HqaqqAqC8vJzW1lbCMVpb61byWbJkCVOnTgWgqKiI7u7ulOUC8NJLL7Fp0ybuv//+McnjVnN54403WLduHenp6QDMmjUrpflEIhEuXrwIwIULF/hn/+yfjUkuTz75JBkZGTf8fjwep7KykkgkQlFREf39/fT29o5JLmPBGr29XODuq9HxVJ9gjcKdq9HxVJ+3mg9Yo9bo2LJGby8fsEYna41Oyua2p6eHOXPmJL+OxWL09PTc8JhoNEpaWhrnzp1LWT7XamxsZPny5SnL5dixY5w+fZqnn356THL4Mrl88MEHfPDBB/yLf/EvKCoqoqWlJaX5vPLKK/zVX/0VsViM0tJSfvSjH41ZPjfzZf9NjTfW6O3lcjfW6ESqT7BG73Qu1xrL+rzVfKxRa3SsWaO3l481OnlrdFzvc3s3+qu/+is6Ojr4m7/5m5Tc/7PPPuM73/kOP/nJT1Jy/y8aGBggkUjwzjvv0N3dzZNPPsn//J//k+nTp6ckn927d7N69Wr+w3/4D7z33ns8//zzHD9+nN/5nUn5eyINwxq93niqUetTqa5PsEZvxhqVNTqUNTq6Jk6mX0JWVhanT59Oft3d3U1WVtYNjxkYGODChQvMmDEjZfkAvP322/z5n/85P/vZz7jvvvtSksvf//3fc/z4cRYvXszDDz9MW1sbZWVlY/Ki/a38ucRiMcrKyrj33nuZO3cuv/d7v0cikRj1XG41n8bGRlauXAnAN77xDT799FM++uijMcnnZm7139R4ZY2OPJe7tUYnUn2CNXqnc4E7U5+3ko81euNcrNHRY42OPB9r9Ma5TIoaHa2XgseTf/iHfwjnzp0b/q//9b+SL0wfP378umO2bdt23Uv2f/iHf5jSfI4dOxZmZ2eHH3zwwZjlcau5XOtf/+t/PWYv2d9KLgcOHAgrKyvDMAzDs2fPhrFYLPzoo49Sls9TTz0V7ty5MwzDMOzs7AwzMzPDzz77bEzy6erquuFL9j//+c+ve8m+oKBgTHIYK9bo7eVyrbulRsdbfYahNXqnanQ81eet5nMta/QfWaOjxxq9vXyuZY3+o8lQo5OyuQ3Dqyts5eTkhNnZ2eH3vve9MAzD8KWXXgrj8XgYhmF46dKlsLy8PPzqV78aFhQUhH/7t3+b0nyWLVsWzpo1K/z6178efv3rXw//7b/9tynL5VpjWfC3kstnn30Wbty4MZw/f364YMGCcPfu3WOWy63kc+LEifCf//N/Hi5cuDD8+te/Hh48eHBM8qioqAhnz54dRqPRMCsrK/zP//k/hz/+8Y/DH//4x2EYXv1zeeGFF8Ls7OxwwYIFY/p3NFas0ZHncq27qUbHS32GoTUahne2RsdTfd5KPteyRq3RsWKNjjyfa1mjk6tGI2E4RsuPSpIkSZJ0h0zKd24lSZIkSXcXm1tJkiRJ0oRncytJkiRJmvBsbiVJkiRJE57NrSRJkiRpwrO5lSRJkiRNeDa3kiRJkqQJ7/8HGxMY8pWtncIAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "filenames": { "image/png": "/sdf/home/l/ldomine/lartpc_mlreco3d_tutorials/book/_build/jupyter_execute/Prerequisites/Python-04-ScientificPython_11_0.png" } }, "output_type": "display_data" } ], "source": [ "# list comprehension to make an array of 1D array data\n", "data1d = [data[:,:,ch].reshape(-1) for ch in range(data.shape[2])]\n", "# histogram values\n", "fig,axes=plt.subplots(1,len(data1d),figsize=(16,4),facecolor='w')\n", "for index,ch_data in enumerate(data1d):\n", " axes[index].hist(ch_data)\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "d7a5d388", "metadata": {}, "source": [ "The last channel (right-most plot) is almost entirely 1.0 and 0.0. That channel shows the blackness, so it's basically all background pixels vs. foreground (Hormer's) pixels. But it seems there are some pixels in between those values? Zoom in:" ] }, { "cell_type": "code", "execution_count": 7, "id": "de42b3f2", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD8CAYAAACb4nSYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAPMUlEQVR4nO3df6xfdX3H8edLKjpRKUJHWNutLNYxollkN1hj4pw1DspCSaYEM0clzZo45pyYzW77g0X/gWyTSWJwnTDL4hiMmdFMNkMKhmxZGy/ikB9z3CHQdmCvAt0P4pT53h/fD+5aW3vvPd9+L9fP85Hc3HM+53PO5/O59/b1Pd/POd/TVBWSpD68aKk7IEmaHENfkjpi6EtSRwx9SeqIoS9JHTH0Jakjxwz9JDckOZjk/jllr0pyR5KH2/dTWnmSXJtkJsl9Sc6Zs8+WVv/hJFuOz3AkST/IfM70PwWcd1jZdmB3Va0Hdrd1gPOB9e1rG3AdjF4kgCuBNwDnAlc+/0IhSZqcY4Z+Vd0NPHVY8WZgZ1veCVw0p/zGGtkDrExyBvALwB1V9VRVPQ3cwfe/kEiSjrMVi9zv9Kp6oi0/CZzellcD++bU29/Kjlb+fZJsY/QugZNOOulnzzrrrEV2Eb584NCi9x3idatPXpJ2JY3XUmUIDMuRe+655+tVtepI2xYb+t9VVZVkbM9yqKodwA6Aqampmp6eXvSx1m3/7Li6tSDTV12wJO1KGq+lyhAYliNJHjvatsXevfO1Nm1D+36wlR8A1s6pt6aVHa1ckjRBiw39XcDzd+BsAW6bU35pu4tnA3CoTQN9Dnh7klPaBdy3tzJJ0gQdc3onyU3AW4DTkuxndBfOVcAtSbYCjwEXt+q3A5uAGeBZ4DKAqnoqyUeAL7R6H66qwy8OS5KOs2OGflW96yibNh6hbgGXH+U4NwA3LKh3kqSx8hO5ktQRQ1+SOmLoS1JHDH1J6oihL0kdMfQlqSOGviR1xNCXpI4Y+pLUEUNfkjpi6EtSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqiKEvSR0x9CWpI4a+JHXE0Jekjhj6ktQRQ1+SOmLoS1JHDH1J6oihL0kdMfQlqSOGviR1xNCXpI4Y+pLUEUNfkjpi6EtSRwaFfpIPJHkgyf1Jbkry0iRnJtmbZCbJzUlObHVf0tZn2vZ1YxmBJGneFh36SVYDvwFMVdVrgROAS4CrgWuq6tXA08DWtstW4OlWfk2rJ0maoKHTOyuAH0myAngZ8ATwVuDWtn0ncFFb3tzWads3JsnA9iVJC7Do0K+qA8AfAo8zCvtDwD3AM1X1XKu2H1jdllcD+9q+z7X6px5+3CTbkkwnmZ6dnV1s9yRJRzBkeucURmfvZwI/BpwEnDe0Q1W1o6qmqmpq1apVQw8nSZpjyPTO24CvVtVsVX0b+AzwJmBlm+4BWAMcaMsHgLUAbfvJwDcGtC9JWqAhof84sCHJy9rc/EbgQeAu4B2tzhbgtra8q63Ttt9ZVTWgfUnSAg2Z09/L6ILsF4Evt2PtAD4EXJFkhtGc/fVtl+uBU1v5FcD2Af2WJC3CimNXObqquhK48rDiR4Bzj1D3m8A7h7QnSRrGT+RKUkcMfUnqiKEvSR0x9CWpI4a+JHXE0Jekjhj6ktQRQ1+SOmLoS1JHDH1J6oihL0kdMfQlqSOGviR1xNCXpI4Y+pLUEUNfkjpi6EtSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqiKEvSR0x9CWpI4a+JHXE0Jekjhj6ktQRQ1+SOmLoS1JHDH1J6sig0E+yMsmtSf4lyUNJ3pjkVUnuSPJw+35Kq5sk1yaZSXJfknPGMwRJ0nwNPdP/GPD3VXUW8DPAQ8B2YHdVrQd2t3WA84H17WsbcN3AtiVJC7To0E9yMvBm4HqAqvpWVT0DbAZ2tmo7gYva8mbgxhrZA6xMcsZi25ckLdyQM/0zgVngz5Lcm+STSU4CTq+qJ1qdJ4HT2/JqYN+c/fe3su+RZFuS6STTs7OzA7onSTrckNBfAZwDXFdVrwf+m/+fygGgqgqohRy0qnZU1VRVTa1atWpA9yRJhxsS+vuB/VW1t63fyuhF4GvPT9u07wfb9gPA2jn7r2llkqQJWXToV9WTwL4kP9WKNgIPAruALa1sC3BbW94FXNru4tkAHJozDSRJmoAVA/d/H/DpJCcCjwCXMXohuSXJVuAx4OJW93ZgEzADPNvqSpImaFDoV9WXgKkjbNp4hLoFXD6kPUnSMH4iV5I6YuhLUkcMfUnqiKEvSR0x9CWpI4a+JHXE0Jekjhj6ktQRQ1+SOmLoS1JHDH1J6oihL0kdMfQlqSOGviR1xNCXpI4Y+pLUEUNfkjpi6EtSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqiKEvSR0x9CWpI4a+JHXE0Jekjhj6ktQRQ1+SOmLoS1JHDH1J6sjg0E9yQpJ7k/xtWz8zyd4kM0luTnJiK39JW59p29cNbVuStDDjONN/P/DQnPWrgWuq6tXA08DWVr4VeLqVX9PqSZImaFDoJ1kDXAB8sq0HeCtwa6uyE7ioLW9u67TtG1t9SdKEDD3T/2Pgt4HvtPVTgWeq6rm2vh9Y3ZZXA/sA2vZDrf73SLItyXSS6dnZ2YHdkyTNtejQT/KLwMGqumeM/aGqdlTVVFVNrVq1apyHlqTurRiw75uAC5NsAl4KvBL4GLAyyYp2Nr8GONDqHwDWAvuTrABOBr4xoH1J0gIt+ky/qn6nqtZU1TrgEuDOqvpl4C7gHa3aFuC2tryrrdO231lVtdj2JUkLdzzu0/8QcEWSGUZz9te38uuBU1v5FcD249C2JOkHGDK9811V9Xng8235EeDcI9T5JvDOcbT3Qrdu+2eXpN1Hr7pgSdqVtHz4iVxJ6oihL0kdMfQlqSOGviR1xNCXpI4Y+pLUEUNfkjpi6EtSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqiKEvSR0x9CWpI4a+JHXE0Jekjhj6ktQRQ1+SOmLoS1JHDH1J6oihL0kdMfQlqSOGviR1xNCXpI4Y+pLUEUNfkjpi6EtSRwx9SeqIoS9JHVl06CdZm+SuJA8meSDJ+1v5q5LckeTh9v2UVp4k1yaZSXJfknPGNQhJ0vwMOdN/DvhgVZ0NbAAuT3I2sB3YXVXrgd1tHeB8YH372gZcN6BtSdIiLDr0q+qJqvpiW/5P4CFgNbAZ2Nmq7QQuasubgRtrZA+wMskZi21fkrRwY5nTT7IOeD2wFzi9qp5om54ETm/Lq4F9c3bb38oOP9a2JNNJpmdnZ8fRPUlSMzj0k7wc+GvgN6vqP+Zuq6oCaiHHq6odVTVVVVOrVq0a2j1J0hyDQj/JixkF/qer6jOt+GvPT9u07wdb+QFg7Zzd17QySdKEDLl7J8D1wENV9dE5m3YBW9ryFuC2OeWXtrt4NgCH5kwDSZImYMWAfd8E/Arw5SRfamW/C1wF3JJkK/AYcHHbdjuwCZgBngUuG9C2JGkRFh36VfUPQI6yeeMR6hdw+WLbkyQN5ydyJakjhr4kdcTQl6SODLmQqxeYdds/u2RtP3rVBUvWtqT580xfkjpi6EtSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BFDX5I6YuhLUkcMfUnqiM/e0Vgs1XN/fOaPtDCe6UtSRwx9SeqIoS9JHTH0Jakjhr4kdcTQl6SOGPqS1BHv09ey5v8LLC2MZ/qS1BFDX5I6YuhLUkec05eWGa9jaAjP9CWpI4a+JHXE6R1pkZZymqU3/qzHx9CXNG+G7/Ln9I4kdcTQl6SOGPqS1JGJh36S85J8JclMku2Tbl+SejbR0E9yAvBx4HzgbOBdSc6eZB8kqWeTPtM/F5ipqkeq6lvAXwKbJ9wHSerWpG/ZXA3sm7O+H3jD3ApJtgHb2up/JfnKgPZOA74+YP/lprfxgmPuRXdjztWDxvwTR9vwgrtPv6p2ADvGcawk01U1NY5jLQe9jRcccy8c8/hMenrnALB2zvqaViZJmoBJh/4XgPVJzkxyInAJsGvCfZCkbk10eqeqnkvy68DngBOAG6rqgePY5FimiZaR3sYLjrkXjnlMUlXH47iSpBcgP5ErSR0x9CWpI8s+9I/1WIckL0lyc9u+N8m6JejmWM1jzFckeTDJfUl2JznqPbvLxXwf35Hkl5JUkmV/e998xpzk4va7fiDJX0y6j+M2j7/tH09yV5J729/3pqXo57gkuSHJwST3H2V7klzbfh73JTlncKNVtWy/GF0M/jfgJ4ETgX8Gzj6szq8Bn2jLlwA3L3W/JzDmnwde1pbf28OYW71XAHcDe4Cppe73BH7P64F7gVPa+o8udb8nMOYdwHvb8tnAo0vd74FjfjNwDnD/UbZvAv4OCLAB2Du0zeV+pj+fxzpsBna25VuBjUkywT6O2zHHXFV3VdWzbXUPo89DLGfzfXzHR4CrgW9OsnPHyXzG/KvAx6vqaYCqOjjhPo7bfMZcwCvb8snAv0+wf2NXVXcDT/2AKpuBG2tkD7AyyRlD2lzuoX+kxzqsPlqdqnoOOAScOpHeHR/zGfNcWxmdKSxnxxxze9u7tqp+WP5rp/n8nl8DvCbJPybZk+S8ifXu+JjPmH8feHeS/cDtwPsm07Uls9B/78f0gnsMg8YnybuBKeDnlrovx1OSFwEfBd6zxF2ZtBWMpnjewujd3N1JXldVzyxlp46zdwGfqqo/SvJG4M+TvLaqvrPUHVsulvuZ/nwe6/DdOklWMHpL+I2J9O74mNejLJK8Dfg94MKq+p8J9e14OdaYXwG8Fvh8kkcZzX3uWuYXc+fze94P7Kqqb1fVV4F/ZfQisFzNZ8xbgVsAquqfgJcyehjbD6uxP7pmuYf+fB7rsAvY0pbfAdxZ7QrJMnXMMSd5PfAnjAJ/uc/zwjHGXFWHquq0qlpXVesYXce4sKqml6a7YzGfv+2/YXSWT5LTGE33PDLBPo7bfMb8OLARIMlPMwr92Yn2crJ2AZe2u3g2AIeq6okhB1zW0zt1lMc6JPkwMF1Vu4DrGb0FnGF0weSSpevxcPMc8x8ALwf+ql2zfryqLlyyTg80zzH/UJnnmD8HvD3Jg8D/Ar9VVcv2Xew8x/xB4E+TfIDRRd33LOeTuCQ3MXrhPq1dp7gSeDFAVX2C0XWLTcAM8Cxw2eA2l/HPS5K0QMt9ekeStACGviR1xNCXpI4Y+pLUEUNfkjpi6EtSRwx9SerI/wFItOk4WcTUcgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "filenames": { "image/png": "/sdf/home/l/ldomine/lartpc_mlreco3d_tutorials/book/_build/jupyter_execute/Prerequisites/Python-04-ScientificPython_13_0.png" }, "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.hist(data1d[-1])\n", "plt.ylim(0,1000)\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "de418f0d", "metadata": {}, "source": [ "Indeed there're some. Where are they? We would guess those must be the \"boundary\" pixels where the background transition into the foreground pixel values. Let's fine _where_ they are." ] }, { "cell_type": "code", "execution_count": 8, "id": "007bf7cb", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAKoAAAD8CAYAAADnoT9oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAkLElEQVR4nO2deXgc1Zmv31PVm9Tad9mSJXmRLRmDd1sOCQnghCWENQSGDARMmJksQ8gkQJ6Q5JKFG5IAk8WTDNuEEELgsgSGJQRsIMbYxtgWXiRblldJ1mbta6ur6tw/1HaE1LbaxupT7a73efrp6tPVql9LP5066/cJKSUODnZHUy3AwSESHKM6xASOUR1iAseoDjGBY1SHmMAxqkNMMCFGFUJcIITYJYSoFULcORHXcIgvxKkeRxVC6EANsByoBzYC10opq07phRziiomoURcDtVLKvVLKIeDPwKUTcB2HOMI1AT9zMlA34nU9sOR4H/AIr/ThnwApDrFGDx2HpZTZo8snwqgRIYS4BbgFwEciS8R5qqREhJacTN95ZSSvP4DR1Dz2BCHAmY7+yLwhnzkQrnwijNoAFI54XRAq+xBSygeBBwFSRIbt/8JtV57B6h8/wMqOOfz5v5cz6eUGpMeNmZ5I6zw/3dMkpQ8dhsYWzO5u1XJPOyaijboRmCGEKBFCeIBrgBcn4DpRQfP7cRVMpm2u5J7WxTz50HLy3ukEw6ThohxcDe1kVAcwkyz2X51D+yXl6OWlaH6nKXMqOeVGlVIawNeA14Bq4Gkp5Y5TfZ0JRQhchQWYn5zPrp+dwSV/q0SY8MEVJfgbTcxEN1ZbO5Mf2Y7V1k7dci9FL0qmvNrNhbf/nVteeIX+c2er/hanFRMyjiqlfEVKWSqlnCal/MlEXGPCEAItKQmZnMjeyz3kT2vlF69cwswH6th9yySEhKF0D8Ljxuzuxurvp+S5bvzbGjlwcQp/v62CpmAqH/vhelyFBWh+P5rfj1g0B4RAeL2g6aq/ZcyhrDNlV5pureC2f32GH22czqy7m5GHmklN7KL+izNJbISUbW1YKQk03Dib3PV9uFq7qf+eRcJzheiD4Kuq5+H7P0fbQpOEG1yYvkI+sXwrRQkb+cNLn2Lq0oPUrS6i6P5KOi89k5SnNoJlqv7atscx6igGsyQvtpzF9JUmtTfnkb05l66pGskHLdJX7UVmZ3DgwmRKVu6k+1Mz8PhdFHz5IFjNpLW1YwCZDzeT+XDoB2o6Db/OpAE/kxYadM5N4IYvvM6q1ctI39qB6Zg0IhyjjsJyweCKZHZ/103Wm5C2oYEhfwFp/7uDPXeegemBqc/1YXX34n9mAwDHtZplYja3AOB9uQXvqzp/+9QnOLzIyyU3buaJ9RWU/ut7zvDWODhGHYGem0Pxy4OYmUlkr/aQVtOHTPTRPQ0CX55D9maTlNerMbu7OWlLWSauVZvIf9vFOzVLKfxGK2LBbCyPC7Hug1P5dU4rnNVTRxCCAzdNx9PQQd3yJLLWHGL/bdBbmo6nW1Dw6A78z244ZWOk0jDwvrqRxLuSyPjVIWqv9aH5fKfkZ5+OODVqCOFyM5hjIXWN7C0G5iMG87z1dL3WT8KLAcwJui3Ljdtou20OZ/58P0P+RBgcnJDrxDpxXaMK14j/U00w+W0Lc88BEvd3E7R0ur+chTU4OPFtx/e2UfenqXQ/kYareMrEXitGiWuj9lyxED07tP7BkvTl6OgpSTSfnY731gTMqpqoacl+ZCMdfQnUfnkyaDpacnLUrh0LxLVRk5/fjHn4MABC1+icJQmeNZX0miHMHbuiqkUaBkV39DP747Uc/P4SKJoc1evbnbhuo8rg0NFja3CQmf+nCpGRhrH/oBI9Zu0+dr26jMFCA7lrrxINdiWua9SRaD4fcmgI2dWjVEfx/+wBQJ+cp1SH3XCMGmLgvDmIJD9mR4dSHebhNkgwOXRRgbMmYASOUQGEoHOqG2GDcUxpGMx40MDfYjprAEbgGBVo/ZelaEGJUT9mfbcStPercfVZTo06AseogKdHkrEzoFrGUWRwiJYFbsSC8uFlgQ6OUQG83ZZqCWMo+sVmhlI91H1zgWoptiCujar5/ez/cQVts+03SmcNDuJetZn03SaHb6lAnzF1/A+dxk2FuDaq1dfHtP+sIZAhQahWEwYpSX5lG74rmtl/zfjDVS1fWYKemREFYdEnro0Kw8NBk9aYnPy6vYnF6u+n97U8fK3HF6j5/cz+p6rTtlaNe6MCtjUpDMcTkALSaoeOe541MMjWZ8shePzzYhX7Nc4U4F+/B+F2Y6gWEgarrx8tCGK8fybLJP++d4+/2yCGcWpUYOiMIqp+YNPldZbJpMd3cPDTnrheUeUYFXCt3U76pC5ckyeplhIWs7OLkr/0s+un5XEb2MIxKiBNk3k5Dcg0+9ZYYt0HlJbVw7TC8U8+DXGMGiLf18XeL9h7aCf4kzy01k7VMpTgGBVAWlR153HmuTVoiYmq1RwT99+3YTS3qpahBMeoIXasmU5dTxrG/FLVUo6JPjkPPclpo8YvUlL83XWkXLgH6dJsuxCk6vY8Bpfa9x9pInGMOgpX7xDmojLVMsag+f0UvC7wvbdbtRQlOEYdhdy0g5aFibYbBrLmTCNl3X7Mzi7VUpTgGHU0UuLtlLZrq3aXJA5vU4lTHKOGIXXfIHuvtFcc05Q9fViL4zc4sGPUUehpqdRe6+aHF/4/tDNnqpbzD96vwt0Un7d9cIw6hup7ZnLu3CpW/uDz7Pyq/8Nhf1RimdTdn4A+vUS1EiXY5K9gI3TJ6qpZzHx+C+nrczEMe6ypck2eRG99ClaqFpexVMetUYUQjwohWoQQ20eUZQghXhdC7A49p4fKhRDiV6EcqFuFEPMnUvxEMOMPQQpe0rEWllF1Zx56VqZqSQCYzS3ovRr99/TbevZsoojk1v974IJRZXcCq6SUM4BVodcAFwIzQo9bgN+eGpnRQ6ytJPH59xDrtpH3tkbzlaXo6emqZSENg2l3baT9zXw6Lp/D/p9U2EJXtBjXqFLKvwPto4ovBR4LHT8GXDai/A9ymPVAmhAi/xRpjRrC4+HwzYtJ/1sNqXuG6PyMPTpV0jAouO99Dp8luPfqxyHrw0Y9nQMBn2xnKldK2Rg6bgJyQ8fh8qCGDUsnhLhFCPG+EOL9IPbZU6/PmIqYNZWMXYMYMwvxbdqLa8CyTadKBoeY+cuD3F31WayUhKPlmt9P080x19KKmI/c65fDedRPuGUvpXxQSrlQSrnQjX3m1q00P0ayF+3tLbiqDyKS/Axk6uhTClRLO4pR30Dqg8kE7+1BT0sdLpQSd8/p28E6WaM2H7mlh55bQuUR5UG1M3LjNrR3KgGwenowG5vwdluYDY3H/2CU8b66mb0Hc2i4cTbC7cHq7yf9sXWqZU0YJ2vUF4EbQsc3AC+MKL8+1PtfCnSNaCLEFJrfj5g9g/YvLiJ17QFkwD7NEwAskynPawQq1IbJjBaRDE89CawDZgoh6oUQK4CfAsuFELuB80OvAV4B9gK1wEPAVyZEdRSw+vpg9wESmw2MxibVcsLiX7+PW8rXIhfMUi1lwhm3hyClvPYYb50X5lwJfPWjirILwuXCv+2QLbdRA1idXfzXXz9NaVXVabtN+gjOFOpxMLu7qb+ySLWMYyKDQ5T+fC8iK4OBSxerljOhOEYdh55ppq3n14+kr/TvOzWJ2uyKY9RxyH9HUH1npq2nLWV3Dztv82OdPXd4HcBpiGPUcUhbsx90yc5fl8PiObZb+Q9Qf8NMNp//a5oXJ7L714vRy+216PtU4Bh1PHxeyn7ew13LXuLepx4m/W8eXHm5438uCuhpqbTfVMFNN72CW2i4+yRl9zVFNZFbtLDHvKCNMfYdAOCJr1/MPRe7WXfVfdyQezM0NSvTpJfNoHVpFl2f6WP1sp9zzttf57H1F5H/dDWG4qwuE4Vj1Ahxv7GJmVsyWHnuYvZdkU6RgozletkM2u+TtHX6+XzZWlb/YhmfbPgWhatNvC+fvpH8wDHqCWG2tfOHjRXM/PgBRGIiVn9/VK/fcnYWv5y1knuWXUilzCO1eT2pT0RVgjKcNuqJYgq+V/y/aCnRD6g2mCGoC2YiU5OPDkvFC45RT5ApLwluWH9T1IeB9OxsUvdZPHLLZYihYFSvbQcco54giXW9mJ0emi+K3iSAXHYWNbdPJ/Vv1WhvbznawYsnHKOeIFZlFeU/a8LyROmCQqAFDGb+qi5uo6SAY1Tbo5eXUvTbvVjpSaqlKMUxqo0RLhc1N6Xz5htz6Z2eCkIc3RKjl5dy6FvLFCuMHo5RbUzwnLN4/apf4JnVTULTIP2XL6b9i4sAMKtqKPz9LsUKo4czjhohwutFS06i+YpSBnIESfUTvz/J/c52rvrJtzEnCXJ+UcX79YWUXL8bLT8PmZKEuat2wjXYBceoEVL3zQWc9dlq2n4HxSurMTs7J/yaMhAg68HhfVCHf+yipDyIsagMbc0WiMkNPiePc+uPAM3nI+2cJipfLSPt8XWYHR1RD6kjDQNr607Qhoer4g3HqBEgkvxcWVDJ5LeiO2UaDveWPbTO9f9jm3Sc4Bg1EoTGytc/jb5++/jnTjBmdzd5azvofSqDhjudXr/DCNo/M43pT/YhbRLZz/qgmpYNefgOSzr/uQI9K7QDQYjTNg2lY9Rx6LtyCQk3NOJqsdesUNH315HzTBVSg93fLuXQn4po+kYFma/p6OWlBM9fcNzPC7fHlrsVjoXT6x+Hxo8LPJ0pTDmg/rY/GrOzi/TH1pGu6eiZGTRenc6+7gxcU9NoWqJT/MaxP6sl+RGpycPxC2IAx6jjMH1OPfsPZ9g7cK5lYra2krOyFf1P6fR+IouhTJOmv5QR3JROyj6L1D9tBOsfS6vNjg6Iod0Azq3/GLjy89DmllOc3IarMnbm2c2ODhJeeI/Sr20i+z8TEHO7OP9ba6l5eB56pr1zvR4PIW1QU6SIDLlEjAm8ElVcebmYbR3UfXsh/YUGSEjd6SJnUz/ahu226UidKMLrpfFfF/Af//Y0TzctoumJYjIfsm8wtTfkM5uklAtHlzu3/hBWTjq9Hyumf+oQJU+DZ3XlUXOq/1c+eWQgQN4v3+VPay9g/+2Cc2/Zwv63p2HW7FEt7YRwjBpi35UZ6INQftd+jKbmmDZnOOT72ylZkcxr/1VG2id9ZGX44b0dH2q32pm4b6Pq2dns+2kFiY2Sgns3YCjcBj3RWD09zPzqHtorhth/iR+hxU5UFadGDQRI2wnZf92LESO1y0fB7O4ma40HT48VU+3uuK9R2z9XTsqBwGldk44m8/FNGAkarqnFqqVETNwb1XQLXO/uUC0jqsjgEOlPbcZqbUMsmB0Tw1ZxbVS9dBq+Tst+Yc+jgAwEsHp6wILO80txFdonmUY44taowfMXsOf6HPqz4/ZXAIDcsoOUPb2Ix02sj8+zbdjKSGL4Fwoh3hRCVAkhdgghbg2Vx3Sayby79/Kdq54l75WDqqUoR76/ncAP8uic7sM6e64tV2BFUp0YwH9IKcuBpcBXhRDlxHiaSU1I5nrrxj8xTtDe3kJmZTeD2R60lGQ0v99WmQAjSTHZKKXcHDruAaoZzsZ3WqeZjEdkZRWDaRp11xQztHQWIsk+ywBPqIEmhCgG5gEbOAVpJlWyYU0Z3z94qWoZ9kJKMh/fRP/8Aeb/fDNWsX3ql4iNKoRIAp4FviGl/FBmg5NJM6k6F+rUO9Yx8N08ZHd8JBSLFBkcYsb/HWCytwMjKVpxi8YnIqMKIdwMm/QJKeVzoeKPlGbSDrlQtXcqMbtP72wiJ4O1fScP/fEi1TI+RCS9fgE8AlRLKe8f8VbMp5nUkpNh6ZmqZdiS4t/vpXWeD+H2gKarlhNRjfox4J+Bc4UQlaHHRZwOaSYtCxE4/ef3TwajqZnuM4bYe/cC9LLpquVElGLyHeBYo8AxnWZSuF3svzSVom2umFqgERWkZPrvTVrneTB3qI9xFdfTMsLv55rL30KfYu/pQ1Xo67aRtW2QoQsWqZYS30YF+GxKJU3n22cYxk5oycksfWAjnVPdqqXEuVFNkzojg2nX19hqFsYumJ2dPLFxqS1cYgMJ6jCamrlt9bUsTduHsaRMtRz7ISVpW9zkrlUffCOujar5/RT8VWPV8lL2X+yz5WIM1WimRBtS39GMa6NafX0kPj+8T8pIM+i6eLZqSbZC8/kIpAk4rD5QRVwb9ShSUva9AzSeZ9o63Xm0Ef5EtCC2SL7mGPUIaSkIr4mxYKZqJbZBDgXxdMnh2SnFOEYF0HQSH+5E9rvQ1m5VrcY2tH7hDNoqgojyaaqlONuljzBoupn1m26sONgyHRGaTn+eoOxbu22RiM2pUQFXThYH/7cEa/tO1VJsg6yYw0BR0BYmhTg3qubzUfPwQtKfC1Dw1zbVcuyDEOz/ukXOGvvccOPaqNK0SMvupXUgyRYLL2yBptN4WwVPL3mIw/PsE4Erro2qZ2VwV9kr9DzkLEoBQAgCn5nPz77yCP/06G2U3rVNtaKjxLVR5cAAd7xwHSnPb1EtxRaI+eV8/ZdPcdvjKyj8yQZbhU2Pa6OKjHRSdxOXkVLCITdX8Z1nrsPbge3CUcatUQMXLWLftZPIe8OWu2TUICUzHjpE8JwuBi9ZrFrNh4hbo7bMd+OvOIx1qEm1FFth7DtAcHcK2bfvpffqparlHCUujarn5vCFz79F4u/SsAYHVcuxHdN++AE1fykl6en1qqUcJS6NanV2sbGjiMQ6Z09/OKz+fgoerVYt40PEpVFlIMDuNcXD2ZodwmJ2dOAqKhz/xCgRl0Y1zluAr13YO8mZDQhMzUbPylQtA4hDowYuXMTse7eSXhNULcX2eKsbOHTtTIRXTSSbkcSdUfWAxUvr55Owyj6zLnbF7OhULeEocWdU1+pNZG7SsJxB/nGRgQCmFzSnRlWAELj7nbZppGTsMsAG+ajizqj69BKS6gacjlSE+He10XGh+q3kcWfU3StyaV5kn0jKtsel012s3ibqFUQR4XKhlfQh1UdRjCmMub3Ks6XElVHRdfLTncC9J4p1wK+8qRRXRpWBAM3vTqI/X6Knp6uWExMM5SaRaoPND3FlVIDin39AYqOg+v6pqqXYnoY7l3Hz755HXN7m3PqjjdXXR87mQb40fx2uvNzxPxCvaDp9Uwy+v+USsu5yObd+FXj3tJDq6qd/7hTVUmyNr8nFtJtqsSqrVEuJT6MadfW82zGN/ZcJW8xj2xFr2RwGpwxh9ferlgJElhXFJ4R4TwjxQSgX6t2h8hIhxIZQztOnhBCeULk39Lo29H7xBH+Hk6Lna7kk1brQJzvRpsPRcE4ivjr1MaeOEEmNGgDOlVKeBcwFLgil5bkXeEBKOR3oAFaEzl8BdITKHwidZzusyioyq4M0XDxJtRTbIdweyi+oYbDYPushIsmFKqWUvaGX7tBDAucCz4TKR+dCPZIj9RngvFCuKuXouTlHQ6DruTm0zXYz5aq9ts9VH20GLpjLv09+gxkPqQ/ge4RIM/fpQohKhrPzvQ7sATqllEe+ych8p0dzoYbe7wLGrL5VkWJSaBpo2tHjzB1Bdh7KpW+Oc/s/gubzYX71MCvWfwlXTb1qOUeJyKhSSlNKOZfhdJGLgVkf9cIqUkwajU1HOwdGYxPelzcy/ev1BJN09FL1oRXtQOflc+ka8DHtviCyN0YDUEgpO4E3gQqG05sfiaI1Mt/p0VyoofdTAdtGIDMPt5H8whYGStJtEbBWJa78PG78/ouYm9OQm3bYaoduJL3+bCFEWug4AVgOVDNs2KtCp43OhXokR+pVwOpQNj/bIoeG6Pv3LhpuXahailKqv1vEb399GcXPHlYtZQyRxBXMBx4TQugMG/tpKeVLQogq4M9CiB8DWxhO7Evo+XEhRC3QDlwzAbpPLUJjWd4+im/cyKvvfALWx2fUaXeXRs7vNmDaLJwPRJYLdSswL0z5Xobbq6PLB4HPnxJ10UJabPnBIjYka3Qt1yjakYzVE397/qUAbU4p1gf22tMPcTozNQYp8b30HilProezuqn57fS4zDmVsUPSV2zP7+0YdRRFPzJJWZ/Awa/NUS0l6khN0FbuQp9hv5VljlFHYX1QTd6jlQhbd/8mBqnDnM/u5NAFeaDZaxuEY9QwSNNEWMNbV+KNjXuLmPTHaic+aiwggwaDWRI9O0u1lKgiLJCmhkhLUS1lDI5RwyB0HVkwoFpG1Ml8tRbvXi9YlmopY3CMGgZpBPFUxV9OVKu7m6F0C+twu2opY3CMGgYtIYGKz8bhoL8lyd6ErZJMHMExahhk0GDtwRLVMqKO0DVcX2yxTajJkThGDYMMDuHanEz30iLVUqJO8we5WIV5qmWMwTFqOISgb4pB22x7jSVGA0+ngO27VcsYg2PUY+BrdqHFYaxfM0GiTbXf7lzHqOGQkklrAqTX2GvQOxpcccla9nwxW7WMMThGDYNwe6hb7qF3cvzd+oNSZyg/aLsp1PibI4wAaZpkbpPKo4Oo4KUXKyj7Y6Pt1qQ6NWoYhCbQDGhdQNxtTxmcFEQealYtYwyOUcMgDQMp4Lrla2wRFjyaXDhvG1p6mmoZY3CMegz8TQE2ddiv9xuvOEYNh6bTOdVHwIy/Jnyaq59AqTPgHxMITeDpkxx4L/4iqHQbCQTS3KpljMExahikYZC6qgZ3afyFUV/94gIS//KeahljcIx6DERiImcX7lUtI+okLW1Fz7Bf2HjHqA4fonNrFlaX/e4kjlHDIQSDM3LxavaJZhctZNEAg58eE8ZBOY5RwyA8HvbfaPFSVfxtmdZ3J5K4p0O1jDE4Rg2DDASYfn0l3lqfailRR1jYcurYMeoxcE3Kp+x8+63LnGi0INDUqlrGGByjHgtNI9vXO/55pxlDadI2CSZG4hj1GFjtHby+7izVMqLOuZ+sxFo8W7WMMThGDYems+veM1i2aKdqJVHFCgTYc0cZ7qYu1VLG4Bg1HJZJyXMGaytLVSuJKprXy56rXZjp9ksT7xj1GPh2N+Pu1JFDQ6qlRA1RkI+3xYXctEO1lDE4Rg2HplN39RQSWoUth2omiraKPPRBlCfoDYdj1DAITcDHOwja7w44oUgdnrjlATquX6payhgiNmoo19QWIcRLodcxnWJyPAzDXpvbooGw4J82raBruv224JxIjXorw9lQjhDTKSaPhzQMzGp7hgifaIzaZIq/tw4ZtFfbPNLMfQXAxcDDodeCGEwxeSLEY8RpJCQ02vNPFelei/8EbgeOVDOZRJhiUghxJMWk/ZIXHQdhCDz2G06cUFJr+0kz7RcbFSJLiPZZoEVKuelUXlhFLtQTIbPKZNKTu1TLiCoNn/LTVJFsu+ATENmt/2PA54QQ+4E/M3zL/yUfMcWkilyokSJcLloWaiDia1DE8Ev8TRaywn7LGyNJg/4dKWWBlLKY4Sx8q6WU13EapZgcjfB4OP+8LQiX/WqWiWTa/zSR/NR6xNpK1VLG8FGqjDuAb4ZSSWby4RSTmaHybwJ3fjSJDtGi9RP22yZ9hBPauC6lfAt4K3R8+qSYdAAg49F1qiUck/hqhDkcF1lh32WNjlHDIE2T1ftmIA17RbSbSPTyUg5eaN9MMPEXsyYCZCBA8XW7MG02OzORDOUkEcix7z+mU6OGQfP5aLl5gWoZUcXT3MOs39l3641j1DBomRkMZtlzKnGi2HtNNn3FSaplHBPHqGFoXV7EQGF8ZZrQz+hC2jgWrGPUMEgNsO/fbMI4dLl92+ROZ2oEenY25rR8kKD1xteslGd1KgWb7NtGdYw6AuFPYCDPh7/ZIOuRHuy5jujUo/l86EMSYUrsOtftGHUExv6DJOw/CBA3JgUQRQUYCQJt3yHsOkDltFHDoJ05C1dermoZUaV3aT8i2en1xxSdZ6Rh5meplhFVZIsPs75RtYxj4hg1DEG/QOuxX/ylCUPXSN8mbLdPaiSOUUfhys+j/SwLs3afailR4+AlWUib91ZsLi/6SH8C0htPXSnI2GXg6rfQ/H6svj7VcsLiGHUUvWdkk702vsZQE1+uRM9M58DXz8L0waS/B3C9VQk2yofq3PpHUXeJRcYO+w58TwQyOITR1Mzke9eR/+4QU+6pofaxM7E+Pg/htcd+Nseoo/Ad8CA3VamWoQYpcf/tfVouS0Q0+fjUynfZc/d8WwzVOUYdgfB6h0ODy/hqo47GaGpm+nc2svrWj3HFZ9Zx6L/TlQdOc4w6AuFyUfynuriK4HcspGGgv7mZzf8+j5L0NrqvXYKekqJMj2PUEFpiIuaZ0+lcMnn8k+MIbc0WqlfNoOkcE5GYoE6HsivbjalT2PMVDX/DoGoltqPonveZVNRG42VTlWlwjBrC2r6TmT/uQduwXbUU2yGDQ4iHs1lw41b0zAwlGhyjjsDcVYs04i+tZCQYPsF1WesYXKCmVnWM6jAuWmIiU/9tFze+fjPu109prLzINSi5qkPMoPl8NK6Yy5dy32HWb7qVjYg4Rg0h3B723VOBNrdctRR7oOloZ85i/x3zWXDdVn54x01Y29Xl3XLm+kNoKUn86upHubNpBbmVqtWoQ09JwSqdQsO5KSQ2SgreGmDrwTlkPKs2LpVj1BBWbx/ffGwFIs4yoRxBL51Gz+wsDl0xRHZmD5O/D/L97ejlpTBVfZZtx6ghZCBAyR/qWPziHp4d+iQFj1Zjdtgvb/1HRgiEy42WmszQGUUMpbloWqqTUgvpuwaZdXsjDVdNRW4arkHlgQZy+gZQPRbiGHUUGa4+vnzTyzxw5nmUfTcRo75h/A9FAeFyoaWl0n7BDAKpGpYHUvcZJK3d94/leK4wf07DwJhZSMM5w7eK/ikGGQWdBN/MYvKqDjzbW5j6ai8yMBye3gByf9109ONWX58t1qg6Rh2BUXeIv150JhgmSdf4qLu6CKkXUfBqO3LnscdY9axMzLb2CekR66XTaDovh4Q2iT5kkflWHWZeOh1lydRfZpKWPx1v1/B1+7PH9o0TWywCqYKf3PQH/ti0lHTPAG98UE7p/e/G1E5bx6gjsUyMA3UA5N93CISg5reL8K7soGrdItKrwNtl0nRNgIzUPgKv5NC1aJCk1AEKvp2KuXvvyV87tDpJVpzJUJqH7iIXAzkCf71EH4TUbW2Y1buHb8H1DaRtErSfsZTMbQNo71QCcKwlI8Lr5ZtlXyRvHexLFZx/01YasjIxD49JrWBbhB3C66eIDLlEnKdaRniEwDp7LsKw0IImQ2legskuegp00muGOPA5nelPDHLwM370QfC1SSyPQB+UIMDbJUl6ZuPw7VkIXHm5NF5agnT9Y9mc5YbZV1XTa3hp+00R3g6DhNpWjFCMAYC+K5eQ+l4DRl390TJXUSHS58XcVXvcr6DPnA6NLbRdNpvHf/QLCnQ3Sx/4Bvn3vXvqf18fkTfkM5uklAtHlzs16nhIibZmy/Ah4A49joS8nfHa8HOBdz59+R6al0mkLil4XdA+S6f9LIukwiUgIb3GIKGxj/SrGvjtjCcp0N2sCyRgyuFb9r+s/hKlz7wHUo7pvKRsbUUmfrj3Lbt76fjYZFKOZ1QhaLgwh/zf7KflbIP/OnwOL2ycjygxh9P02Gi7yfFwatRTiF42g/6SNPzbhvfHmy2taEl++pZNx9MdxLOnha6lBSTt62XvlSk8ee0v+dLKb1D4P8MD6VZv39FOTaQIr3fczxw5R/P7QdOwensRLrctt0cfq0Z1jBoNxIh06qFjvXQaAyXpeFdVOgthRuDc+lUysjIIHZs1e/DUYNugZHbDFjWqEKIHiKV8jlnETm7XWNIKUCSlzB5daJcadVe46t6uCCHejxW9saT1eDirpxxiAseoDjGBXYz6oGoBJ0gs6Y0lrcfEFp0pB4fxsEuN6uBwXJQbVQhxgRBilxCiVgihPGW6EOJRIUSLEGL7iLIMIcTrQojdoef0ULkQQvwqpH2rEGK+Ar2FQog3hRBVQogdQohb7a75pJBSKnsAOrAHmAp4gA+AcsWaPgHMB7aPKPsZcGfo+E7g3tDxRcCrDGelWgpsUKA3H5gfOk4GaoByO2s+qe+p2BQVwGsjXn8H+I7yXwoUjzLqLiB/hDF2hY7/G7g23HkKtb8ALI8lzZE8VN/6JwN1I17Xh8rsRq6U8kgmhibgSBxGW+kXQhQD84ANxIjmSFFt1JhDDldDthsqEUIkAc8C35BSdo98z66aTwTVRm0ACke8LgiV2Y1mIUQ+QOi5JVRuC/1CCDfDJn1CSvlcqNjWmk8U1UbdCMwQQpQIITzANcCLijWF40XghtDxDQy3A4+UXx/qSS8FukbcbqOCEEIAjwDVUsr7R7xlW80nhepGMsO90BqGe//ftYGeJ4FGIMhw+20FkAmsAnYDbwAZoXMFsDKkfRuwUIHesxm+rW8FKkOPi+ys+WQezsyUQ0yg+tbv4BARjlEdYgLHqA4xgWNUh5jAMapDTOAY1SEmcIzqEBM4RnWICf4/vYvLQiqV90wAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "filenames": { "image/png": "/sdf/home/l/ldomine/lartpc_mlreco3d_tutorials/book/_build/jupyter_execute/Prerequisites/Python-04-ScientificPython_15_1.png" }, "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "where = ((data[:,:,-1] > 0.) & (data[:,:,-1] < 1.)).astype(np.int32)\n", "plt.imshow(where)" ] }, { "cell_type": "markdown", "id": "5b00f4a7", "metadata": {}, "source": [ "Woohoo! As expected we got the \"edge\" pixels. In the above, the variable `where` is a dense numpy array.\n", "\n", "\n", "## Fitting with Scipy\n", "\n", "\n", "\n", "`scipy` is built on top of `numpy` for statistical data analysis. Let's practice fitting a function to data points using `scipy`!\n", "\n", "We generate a toy dataset for an ionization of electrons. The amplitude of a singal is stored in a variable named `charge` as an electron count, which is 16,000 smeared by a normal distribution of a width 0.2. For each data point, we also simulate the time it takes for these electrons to drift before detection. This is a flat distribution between 0.0 to 3.0ms. During the drift, electrons might be lost due to positively charged atoms on the way. We model this process by an exponential decay _lifetime_ of 3.0ms, applied as a reduction factor to the number o electrons." ] }, { "cell_type": "code", "execution_count": 9, "id": "8dde441c", "metadata": {}, "outputs": [], "source": [ "drift_time=np.random.random(10000)*3.\n", "charge=abs(np.random.randn(10000)*0.2+1.0)*1.6e3 * np.exp(-1 * drift_time / 3.)" ] }, { "cell_type": "markdown", "id": "f07792a7", "metadata": {}, "source": [ "Let's first plot the data points" ] }, { "cell_type": "code", "execution_count": 10, "id": "c4c7515d", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA84AAAGBCAYAAAC3hOjIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAADUC0lEQVR4nOyde3wU9bn/PzOThWSzYC4kIJewJESjIupBBGmBIKQIilSOInoKtCDI6cFbRAUpSn9RwIKpeKxaEGzEVimKpWjQIpLoqYJo6wU1LUkM4Z6wCeBmE0l25vfHZCYzs3PbZG9Jnvfr5Ut2vzPf+c4k2dnPPM/zeRhBEAQQBEEQBEEQBEEQBKELG+0FEARBEARBEARBEEQsQ8KZIAiCIAiCIAiCIEwg4UwQBEEQBEEQBEEQJpBwJgiCIAiCIAiCIAgTSDgTBEEQBEEQBEEQhAkknAmCIAiCIAiCIAjChKgJ523btuGmm27CgAED4HK5MGLECLz66quqbXJzc8EwTMB/TU1Nqu2OHTuGm2++Gb169UKfPn2wePFi+Hy+gGNu3LgR2dnZiI+Px4gRI7Bnz56wniNBEARBEARBEATR+YmL1oELCwsxZMgQ/Pa3v0WfPn1QXFyMO+64A6dPn8bdd98tbzdhwgSsWrVKtW/Pnj3lfzc3N2Py5Mno0aMHXnvtNZw5cwb5+fk4c+YMXnnlFXm7V199FYsWLcLKlSvx4x//GC+99BJuvPFGHDhwAMOGDbNcb58+feB2uzt+4gC+OnY24L3LB1wQkrljlYaGBiQmJkZ7GRGnO553dzxnoHued3c8ZyB0511VVYXTp0+HYEWhY9u2bdiyZQs+++wznD17FhdffDGWLFmC22+/Xd4mNzcXpaWlAfs2NjYiPj5efn3s2DEsXrwY7733Hnr27IlZs2bhN7/5DZxOp2q/jRs34je/+Q2OHDmCyy67DL/5zW8wceJEW+tlmF4AUk22OG9rHnN6WIyH4hih4cILe+LEiR+ivYyYga5HG3Qt1ND1UEPXo43U1POG92ZGEAQhwusBAJw+fRp9+vRRvXfHHXfg448/xnfffQdAvDn36dMHr7/+uuE8r776Kn72s5+hvLwcQ4YMAQD8+c9/xqxZs/Cvf/0L2dnZAICLL74YP/rRj7B582YAAM/zuOKKK3DFFVeoBLYRV199NT799NN2nauWMQXFOOkTwAsAywBZaS7szh8fkrljlZKSEuTm5kZ7GRGnO553dzxnoHued3c8ZyB05x3K+0qouPbaazFkyBD89Kc/lR9qP/XUU3jmmWfkh9q5ublgWTbgofaoUaPAMAwA8aH2VVddhR49eqCgoEB+qJ2XlxfwUPtnP/uZ6qH2tm3bbD/UZhg3gF+ZbHEs2EugwwCL8VAcIzSsW3cRliz5d7SXETPQ9WiDroUauh5q6Hq0MWLETsN7c9QizlrRDABXXXUV3njjjaDm2bVrF0aOHCmLZgD46U9/ih49euCdd95BdnY2Kisr8e9//xvr16+Xt2FZFrfeeqvqvUhx34h4bCzjUFnbgMy0RGyaOzKk81d7fJhfdEA1f0aq03pHgiAIoluzc+dO1f35uuuuw/Hjx1FYWKjKBktJScHo0aMN53n99dfx7bffqh5qOxwOzJo1C4899pj8UHvlypWYO3cuVqxYAQAYP348/vnPf2LNmjW2HmoTBEEQRKSIKXOwjz/+GBdddJHqvb/97W9wOp1wOp2YPHkyvvzyS9V4WVkZcnJyVO/16NEDWVlZKCsrk7cBELDdJZdcgrq6OtTW1ob6VExJd7LYnT8eFaunYnf++JCL2vlFB1BR64VfEFBR68X8ogMhnZ8gCILomhg91D5+/HhQ81g91AYgP9SeOXOmvI30UHvXrl3tPAOCIAiCCA8xI5z37NmDv/zlL3jggQfk98aPH4/169fj3XffxYYNG1BdXY2xY8eiqqpK3qa+vh5JSUkB8yUnJ6O+vl7eBkDAdsnJyarxrkJlbQP41gR8XhBfEwRBEER76C4PtQmCIAjCjKilaiupqqrCHXfcgenTp+PnP/+5/P6vf/1r+d9jx47FpEmTkJOTg6effhpPP/102Ne1YcMGbNiwAQBw9OhRlJSUhGRer9cbsrn06OsETjQAAgCm9XU4j2eHcJ9zrNIdz7s7njPQPc+7O54z0L3OW3qoLfmDAOJD7blz52Lo0KE4fPgwnnjiCYwdOxZffPGFbKIZqofaaWlpoT8pgiAIgmgHURfOdXV1mDJlCgYPHow//vGPptv269cPP/rRj/CPf/xDfi85ORlnzwa6VNfX1+OKK66QtwGAs2fPqm7Q0k1bGteycOFCLFy4EIBo4hIqE5xwG+q8dnns1TiTiVD3oTueM9A9z7s7njPQfc67MzzUvuACL1asMHM4v8hkLFRE4hj2GDiwJ9ati531RBu6Hm3QtVBD10MNXY82NN2RVURVOPt8Ptx44404f/483nrrrYAWFXpIvZwlcnJy5HQvifPnz6OyshKLFi2StwHEtLDBgwfL25WVlSElJaXLPdHOSHV2eZdugiAIInx0lofaDNOfnGAVkDOuGroebdC1UEPXQw1djzZGjDAei1qNc0tLC2699VYcOnQI77zzDtLT0y33OXnyJP7v//4PIxRnNGXKFBw4cACHDx+W3/vrX/+KH374Addffz0AIDMzExdddBG2bdsmb8PzPLZt24YpU6aE8KwIgiAIonMT7ofa0sNs5UNtJV31oTZBEATRuYlaxPmXv/wliouLsX79eng8Hng8Hnnsqquuwr/+9S8sW7YMt956KwYPHozq6mqsXr0aLMvivvvuk7e95ZZb8MQTT2DGjBkoKCjA2bNncf/99+OOO+6Q210AYsuLn/3sZ3C73fjRj36EoqIiHDp0CH/6058iedoEQRAEEbMoH2p/9NFHQT3UnjdvnvzelClT8Kc//QmHDx+WM73MHmpPnjwZAD3UJgiCIGKXqAnnv/3tbwCAe++9N2Dsu+++Q2pqKgRBwLJly+DxeNCrVy/k5ubiL3/5CzIyMuRtHQ4H3nnnHSxevBgzZ85Ez549MWvWLKxdu1Y15+233w6v14snn3wSBQUFuOyyy/DWW29h2LBh4T1RgiAIgugk0ENtgiAIgtAnasJZ2VLKiOLiYltzDRw4EH/5y18st1uwYAEWLFhga06CIAiC6G7QQ22CIAiC0CfqrtoEQRAEQcQG9FCbIAiCIPQh4UwQBEEQRCelB4ABJuPHIrUQgiAIoosTNVdtgiAIgiAIgiAIgugMUMQ5SlR7fJhfdACVtQ3ITEvEprkjkZFq3fKDIAiCIAiCIAiCiCwUcY4S84sOoKLWC78goKLWi/lFB6K9JIIgCIIgCIIgCEIHijhHicraBvCC+G9eEF/bgSLVBEEQBEEQBEEQkYUizlEiMy0RLCP+m2XE13agSDVBEARBEARBEERkoYhzlNg0d6Qogmu84FgGFbVe5BWW6kaQlVFmvyDI7wcTqSYIgiCI7oeZ47ZdrJy5rY5Bzt4EQRBdAYo4R4mMVCd2549HVroLfl4AL8AwgqyMMisJJlJNEARBEARBEARBtA+KOEcZO7XOym0kOIaRa5zbC9VLEwRBEARBEARBWEMR5yhjp9ZZu012ugsVq6did/74DgldqpcmCIIgCIIgCIKwhoRzlNk0dySy0lzgGAZZaS7dCLKdbdpDe529CYIgCIIgCIIguhOUqh1lpFrnjm7THjLTElFR6wUvUL00QRAEQRAEQRCEERRx7saEK5JNEARBEARBEATRlaCIczcmXJFsgiAIgogNItEKitpNEQRBdAco4kwQBEEQBEEQBEEQJlDEOYpQOyiCIAiCIAiCIIjYhyLOUSRU7aCqPT7kFZYia1kx8gpLUe3xhXilBEEQBEEQBEEQ3RcSzlEkVO2gqB8zQRAEQRAEQRBE+CDhHEUy0xLBMuK/O9IOivoxEwRBEARBEARBhA8SzlEkVO2gQiXACYIgCKL7McDiP4IgCIIgc7CoEqp2UJvmjgwwGSMIgiAIgiAIgiBCAwnnKBFKR+2OCHBy9iYIgiAIgiAIgjCHUrWjRLCGXuFyziZjMYIgCIIgCIIgCHNIOEeJYA29wiVwyViMIAiCIAiCIAjCHBLOUSJYQ69wCVwyFiMIgiAIgiAIgjCHhHOUsOuoLaVo+wVBfi8YgWuV4h0qZ2+CIAiCIAiCIIiuCpmDRQm7hl5SiraSYASutD8vQE7xVh43VM7eBEEQBBF5zgM4ZjIeinZSVnOYHT8U+xMEQRCxAAnnGEeZog0AHMMEJXSphpkgCIIgCIIgCKJjUKp2jDMoJcH0NWCejk01zARBEARBEARBEB2DhHMXwMxxO1Q1zOFqh0UQBEEQBEEQBBHrUKp2jFDt8WF+0QFU1jYgMy0Rm+aOREaqE0fqGlXbaV8D5unYoaphtqqVJgiCIAiCIAiC6KpQxDnCVHt8eORDX0Dk1ihqbCfV2s42HY0YU600QRAEQRAEQRDdFYo4R5j5RQdwokGAAHXktqLGC751G14AKmpEJ+1Nc0cGRKK12NmmoxHjzLREeX+qlSYIgiBig2QAN5uM23Gs/sRi3MoVm1y3CYIgugMUcY4wlbUNkEyylZFbjmNU2/EA8gpLAYjCODMtEZW1DZhfdCAgWiylY1esnord+eORkerUPW5HIsbU75kgCIIgCIIgiO4KRZwjTGZaIsprvBCgjtz6lT2nWlGmbHe0vrijEWPq90wQBEEQBEEQRHeFIs4RpmD6MLkemRcA3/kWVHt8yEpzye9LSJHhUNQXU8SYIAiCIAiCIAiifVDEOcKs2HEQfkVw+diZJkwsLMGWeaOwYsdBHGqtbQbUkeGO1hdTxJggCIIgCIIgCKJ9UMQ5wuhFi5v9AmZv3o+C6cPgVtQnZ6Q4UTB9GJr9vBxxzkhxUrSYIAiCIAiCIAgiglDEOcJkpiWqosoSkniWap1ZBnBwLFbsOIjqOp/qPT3zLzOMekQTBEEQBEEQBEEQ1pBwjjCb5o7ELb8rQY0v0AysWZHDzQsIENjSe3mFpbbErySYlfO011ysu0APGQiCIDoTDgADTcbNxiSi3e4p2sePBaglF0EQsQ+lakeYjFQnfjPOiQ8enACHogUVA8DBMQEGYXoo3bbNkHo3K5F6ROcVliJrWTHyCksD2lt1Z6Rr5hcE29eZIAiCIAiCIIiuDQnnKJGR6sSe/Fxkp4tO10PTXdgyb5TsfG2GXWdtpRu3BMuIPaNJHOoTCgdzgiAIgiAIgiC6FpSqHUX0nK6l13mFpSonbY5l4OcF+fWglATkFZaaphQrezdLZKW5VO9JvaEJkY72uyYIgiAIgiAIoutBEecYRdt3WRmNzkpzAYBl1Fg5R3a6Cx88OAG788eD0+SDa1+HmmqPD4986OsUqeHU75ogCIIgCIIgCC0UcY4wkog89W6xqfmUUTRaMq+qUohPyTQsa5l6Tu0c1R4f8gpLVSZkAOD3BxqVhZL5RQdwokGAgNg3J6N+1wRBEARBEARBaCHhHGHmbN6P4w2iUD1U48W4tXuRne7C4glDseT1L9DsF+DgGGyZNwqjs1ID9tcz/JJQRp/1xJ/eviwDOYIdLiprGyBJc6obJgiCICLHdhvbdNTR+RqL8TdtrKEjKNfvQOD5dAZH6s6wRoIgujuUqh1hqnTSlCtqvbh36+dyJFjq6ayHnuGXEjNhqrdvRooTzX4+rGnUmWmJkJLBqW6YIAiCIAiCIIjOBgnnGEBPCGvTqaU0a7/Q9j7LANnpLmSnu1RtrPyCoCuCM9MS5e2kfR0ci+o6H/yCIEfAQyWgpTVX1HjBMW3Rbau6YWm/zlATTRAEQRAEQRBE14eEc4Rx69Qz63lzKXs8A/pp1pIIlQytlOgZhm2aOxIZKeLxeQFo9vOoqPEGCPdQtaias3k/DtV4wQNoEcTo9u788bo13UqolzJBEARBEARBELEECecI8/K8UeifyIBlRHHMQhTA62+7UhbLDo7BuluuUEVdtQKXYxi5jnl+0YGA9GzJMEwZsc1IdcLBsbJQr67zgeOYAOEeqjpkbVq6Xpq6HtRLmSAIgiAIgiCIWCJqwnnbtm246aabMGDAALhcLowYMQKvvvpqwHYbN25EdnY24uPjMWLECOzZsydgm2PHjuHmm29Gr1690KdPHyxevBg+X6BIszNXpGDAwJ2aiJLWFlHTrxqAQ09MxQcPToA7NRH3bv0ch2raoq5KgausE55fdADlrdFZPbQRW60o9fNCQLTarA45EmnU2pRyqokmCIIgCIIgCCKaRE04FxYWwuVy4be//S3++te/YsKECbjjjjvwv//7v/I2r776KhYtWoQ5c+Zg165duOyyy3DjjTfi4MGD8jbNzc2YPHkyDh8+jNdeew3r16/Htm3bsHDhQtXx7MwVCeYXHcDxBkGuKZ5YWCKLz2qPDxMLS3CoRp2SLQlcqd8yxzIomD4MQKtjdRBmYVpRmpXmwu788fjgwQnITrfuXxxMGrU2LV0vTV0P6qVMEARBEARBEEQsEbV2VDt37kSfPn3k19dddx2OHz+OwsJC3H333QCAlStXYu7cuVixYgUAYPz48fjnP/+JNWvW4JVXXgEAvP766/j2229RXl6OIUOGAAAcDgdmzZqFxx57DNnZ2bbnigTatONmv4A5m/fDwbEBglmCYUSx7G8NFft5ASt2HMTu/PHITEs03E9iUEqC/O9Nc0fKqd1Sz2fAXv/iao9PdSyrNOqX542Sj9XXKb62A/VSJgiCIOzRAEC/C4WIVasoO1i1q/rEYtxqDVatmKzGletrRvDtqKzOz84cBEEQXZ+oRZyVolniqquuwvHjxwEAlZWV+Pe//42ZM2fK4yzL4tZbb8WuXbvk93bt2oWRI0fKohkAfvrTn6JHjx545513gpor3FR7fGB1rniVRpBqEQRRYCtTrA/VeLGvwoNNc0cGGImZIYnSitVTbRl1KdGLLpulUSuPtWqsM6hjEQRBEARBEARBxAoxZQ728ccf46KLLgIAlJWVAQBycnJU21xyySWoq6tDbW2tvJ12mx49eiArK0uew+5c4WZ+0QG0+E3yqoNk9ub9yEh1Yk9+rpxmrUd1XWAdcntqlfWiy5RGTRAEQRAEQRBEVydmhPOePXvwl7/8BQ888AAAoL6+HgCQlJSk2i45OVk1Xl9fH7CNtJ1yGztzhZvK2gaETja39XpWRnaz010B23E6/a7a0/JJrw80RZEJgiC6Dt3duJMgCIIgjIhajbOSqqoq3HHHHZg+fTp+/vOfR3s5Mhs2bMCGDRsAAEePHkVJSUmH5uvrBE40AAIABsCFiQxONQjwd2DOMQXFuG9EPNKd4jOQBTk8HqpRb9PiF1Rrr/HxOFTTKL/mBdF92+r8FuTweLqBwUmfgH5OBgty/LavidcbOH+Nj8fTnzXJ8ynPo6ugd95dne54zkD3PO/ueM5A1z7vwsJCDBkyBL/97W/Rp08fFBcX44477sDp06dl/xHJbHPlypX48Y9/jJdeegk33ngjDhw4gGHDRONKybizR48eeO2113DmzBnk5+fjzJkzKl8RO3MRBEEQRCwQdeFcV1eHKVOmYPDgwfjjH/8ovy9Fg8+ePauKFEvRYWk8OTkZZ8+eDZi3vr4eV1xxRVBzaVm4cKHszn311VcjNze3HWfYxmuX+8T2UTVexHGiAOU7NCNwvEHAc18zKHmwbW0by0pRUSv2fZacs3Nz28y28gpLA+bRbmPEzKntW2dJSUnA9csrLBWvgQCc9AnYWMZ1OVMwvfPu6nTHcwa653l3x3MGuvZ5d1fjToIgCIKwIqrC2efz4cYbb8T58+fx1ltvwelsS/uV6pHLysowePBg+f2ysjKkpKQgLS1N3k6qYZY4f/48KisrsWjRoqDmCjdSSvWYgmJZMFrBAmAYxrBPMyCaiykxcs6W0KtVLpg+DHmFpap9wp2Gre0pbebQTRAEQYQfI+PON954A0Cb2eb69evlcclsU/melXFndna27blMSbgAGDrFePyEjTlOW23wpcV4R1237bha253/IgD/DnJ+cswmCIKwQ9TyYltaWnDrrbfi0KFDeOedd5Cenq4az8zMxEUXXYRt27bJ7/E8j23btmHKlLab5JQpU3DgwAEcPnxYfu+vf/0rfvjhB1x//fVBzRUpzESzg2XUfZbTXaraYiOUZl/ziw5g09yRAc7Z0jZaEe7gGCzd/mXQNc8dRVszbebQLdEeUzOCIAii/XR1406CIAiCsEPUIs6//OUvUVxcjPXr18Pj8cDj8chjV111FXr27ImVK1fiZz/7GdxuN370ox+hqKgIhw4dwp/+9Cd521tuuQVPPPEEZsyYgYKCApw9exb3338/7rjjDjkVDICtuSJFPycji2eGAeJYBjwvCseC6cOwYsdBOfJbMH0Ylm7/UhbacSzQosnvdrAMbn3h7zj1/XkAYquq2zd+jL8vnajabs7m/QHRaQBo4QXV+3ajv9UeX0BkWynSlWMLcviA/SpqvOA4BuAFZKW5bDl0S6ZmUl32/KIDXS69myAIIlaQjDs3b94MwJ7ZZlpaWsiMOyOVEUYQBEEQVkRNOP/tb38DANx7770BY9999x3cbjduv/12eL1ePPnkkygoKMBll12Gt956S2UY4nA48M4772Dx4sWYOXMmevbsiVmzZmHt2rWqOe3MFSnuGxGPjWWcYVq0UgjmFZbK7aRYBhiYLG6nFLotvCCLZoljZ5oCjqsnmgGxT7QSKfprJowBtYgtr/FiYmGJ/ACg2c+jus4nC9x1XgYby8RUcJYVDcsEAIJfQBzHoLK2QY6Um6WIU3o3QRBEZOgMxp0X9DyKFYtKjDdutjFhi9UGjRbjVge5yGLcYTFunY0lMXBgT6xbpz1e6ObvbOhfj+4JXQs1dD3U0PVoQ6eRhEzUhHNVVZWt7RYsWIAFCxaYbjNw4ED85S9/Cclc4aba48PTnzXhlA+mtcSSaD1U45Xf4wXgSF0j9i7Jxbi1e+X37bS4CialOSPFiWY/rzqGXnRXKWIFtLXHksS0ct01PgGnG8X3/Qobce1+kng2EuyZaYkq4zM76d0EQRBEcHQW407GeTWWvJBrfCIRqXG2qhHW1hxrCV0N8rp1F2HJEqpxltC/Ht0TuhZq6HqooevRxogRxmNdq/dPJ2B+0QGcaBDgFwQcqvFi3Nq9cC99G9nLi7GvwqParqLWq9pXEop26o8dmqJouzXLHMPAwbFylFtCL7prVHstiWZl/bLyfSOkY5j1mN40dySy0lzgGMZ2ejdAtdEEQRB2sWvcqSQY405pDrtzEQRBEEQsQMI5wlTWNuhGiJv9AmZt3CeLOmU0V4IXAN/5FlTUeHVmaCOOBdbdeoVKKGpFuBKtQZfesfWiu0oR6+AYMIp53KlOlcBNT2g7DsOIhmR6+2mPrxXskjO51vjMCjMxThAEQYh0Z+NOgiAIgjAj6n2cuxuZaYmq9GstkqhTpiQr0atdVsIywJA+Ljy7t1xlosWxogmXXtQ3I8WJKo9Yj9zs5zEoJUGuT1Zu0+znkbWsWJU+LaVu76vwYPbm/Wj2C+BYBmtmDMforFR5/+ffeA+F/zgP3i8gjmWwZd4ojM5K1a2jVtZOhyodm2qjCYIgrOl0xp2NjcBXZqnUdtKQO9gOqo+FyD89ymKC/7UYv9liXNmOyoHA87E6Pzvn39GWWl03HZwgiO4DRZwjjFVqsSTqCqYPE8VukPCC6Kp9qMarEorNfuMWWMfONEI6kpSiLUWLs9Nd+ODBCXL6tjLFXJnyvGLHQfhbD+DnBazYcVB1jC3fnNcd14sgtzcd24z2tL4iCILobiiNO6+99lrVfydOiAXDt99+O1544QX84Q9/wPXXX48vv/zS0Lhz0KBBmDlzJhYvXoz//M//lE29JOzMRRAEQRCxAEWcI0xGqhNxDNBiIGIZBmAYMW07HEjtryRDLgCqf0sGZBWrp6r200vfVhqGWUV0lb2rrSK+ykh2qNAzHCMIgiDUdFfjToIgCIKwgoRzFPAbiGZAbA1lJKpDgdAafW7N3A7AqBWVXvq2UgBbuV0re1cHG/G1aosVzL57l+Ta3pcgCIIgCIIgCAIwSdXmOK7d/8XFxeH999+P5Hl0Gqo9vrDmx2enu3SdrrVwjHojB8uoUqO1ZlqAmL6tRCmArdKr7xsR3+70644Ye5EpGEEQXQm6NxMEQRBEdDCMOAuCgLFjxyIzMzOoCZuamvDnP/+5wwvrqswvOgC/9Wbtwt1aH6zt/6xHsybcLL2u8jTg+JnGgNRrqX/0nM37UdVa1yy5fOeu3YsjdY3ITEvEH+8chaXbv5R7QLtTnXh53iikO9l2p19bpYGbRaTJFIwgiK4E3ZsJgiAIIjqYpmrfdddduOOOO4Ka8PTp09i6dWuHFtWVMRJuDo5BCy9AaGeatoMTnawlcy2lwNVilKYNiGncszfvD0i9HpSSgImFJap6aEDt8l1R65WdtSWqWkXt8v9o33kB1mngShduZd21nX0JgiA6G3RvVpCQAAwdbjx+tcmYxJUW4wUW46etDnDUYtzKNbujjtQddcQmCIIgAJNU7cmTJ6N///5BT9izZ09MnjwZffr06dDCuip6wi073YU9+bkY2prK3B6UTtXziw7I7th6WLl1N/sFLJ4wVN6OYxm0+IUA0axFcu/WUlHjxSMf+uSe0tUGgt4IozTwao8PeYWlAQ7iFTVeuYd1s59HRoozpA7dBEEQ0YLuzQRBEAQRHQwjzrt27WrXhL169Wr3vt2BTXNH4pZn96KmUXwtpVcfP9OIKk8D/K0hZwZAMMFnZRqyngO2EisBDABLXv9C1T7q6JlGy31YRhTZ2vl5AMcbxPe0EWE7GLlsS5FmvTVIUebqOh+y0lwBLuEEQRCdEbo3EwRBEER0oD7OESYj1YnfjE9E1Zob5P7IE9aVYNbGfSrBKQByH2W3TRdovyAgc9nbYFmgfXHrNpR9n6X/WwXDs9Jc2DJvlOl6pT7TdqLPUkTZaFu9BwRZaS74efutrwiCIAiCIAiCIKywLZz9fj98PrVwOXPmDJ566iksX74cX331VcgX19WZX3QA5a2Oz3r4BQFVngbTtGstvAC08ALi7FhrG8AyYs20NAXLiJHxoWkusBDHGLRtk53uwgcPTsDu/PEYnZWKkgcnoGrNDaZp53Zcrq0csTPTElVrzE53YXf+eGSkqIX7oJSE9lwGgiCImIfuzQRBEAQRGWz3cb7rrruwb98+HDwo1tE2Nzfjxz/+Mb755hsAQGFhIT7++GNceeWVYVloV+JbTwsWLC+2lTItbcMwsG0cJghAs42NHVxgWjUgRrpTnA6c+v48AFGMH63zyf2leX9bCndWmssw7XpQSoKhQZk0b2Vtg64rNgCVM7he5FhyENfuRxAE0V2gezNBEARBRAbbEef/+7//w0033SS/fv311/HNN9/gd7/7HT766CP07dsXa9asCcsiuwpS6vGTB36wJZqVdCSCbMShJ6bigwcnIDtd3Z+5mRdk0SzRorPcjqZBSy7XepFlvUi01lhNqn2uWD1VjDS3pogfqVPXY2tfEwRBdBXo3kwQBEEQkcF2xPnEiRMYMmSI/Prtt9/GZZddhv/+7/8GACxcuBC///3vQ7/CLoSemZUdHBwDvw2h7WCZgP7MZuQVlqKytqHdqcwM1GK22uPD7Rs/VrWoMkNyuZ6wrsRWTbIyomzWu9luCyqzOQiCIDoD3f7e3NgCfFVnPH4ixXqOTy3GT5vMDwC/sDjGSwPNx/tY7H/aqh3VNYp/HwNwkWY8FO2oOtqyqqMttQiCIKKP7YizIAjw+/3y65KSEkyYMEF+feGFF6Kmpia0q+tiWLld6+HgGGyZNwocZyPi3FqLbAcWkKO8ZunUZghQi9n5RQdsiWYGinrkVGdArXJmWqJu/bJS1Crrww/VeDGxsEQ2DzNqX6XFqoaaIAgi1qF7M0EQBEFEBtsR5yFDhuDdd9/FokWL8Pe//x0nTpxQ3ZyPHz+OCy64ICyL7CpY1fxqeW3BaIzOSgUAuTWUGc1+AcfqGxHHAi28+bY8EFy/KwMkMVvt8alqks2I4xiVmDWqVTarX66sbVDVfDf7BbnNlVH7Km2EuaLGC+kyWaWdU3SaIIhYhO7NBEEQBBEZbAvnX/ziF8jPz8ewYcNw7NgxpKenY/LkyfL4/v37kZOTE5ZFdldmbdwHB8dg6fU5AZHqvr16BNQhA2J9sjvVCQfHymnYx+obg0rhNkJrJuZQRMGDidY2+wWMW7sX7lQnXp43ylDomvV6zkxLDBDqVvXWUoSZF8RoO8cxQGvrKrOUbr19g+1FTRAEEQ7o3kwQBEEQkcF2qva9996LX//61+jZsyeuuuoqvPnmm3A6xYibx+PBvn37MHXq1LAttCvQHpOqZr+Agre/DXhfTzQrjyOZZpU8OAF7HsgN+rh6rLvlCjgUJmXpvXrK6dHtMQmr8vgwsbBE1afZqnezxKa5I1XCXVtvrYcyVZ4X2lzBrVK69fal3tAEQcQCdG8mCIIgiMhgO+LMMAxWrFiBFStWBIylpqZSDZUN9KKk4cAvCMhduxeAKKIz0xLBsYDfIn3bimf3lsPdp81468TZJjnyeuEF8Th6pn0PBgCx9dS41jVL6EV2lSnTkqmZdI5W7ai0pmFGrbT00rLtGo4RBEFEEro3EwRBEERksC2ciY6zae5IzNm8v91mXGZo65qVxyiv9druAW2GFGXVi7yePGcumtMTAKfTGdS560V2lSnT1XU+ZKW5ULHaXjTFbt9n5THKW43H/H5BTu22ik4TBEEQESIzDlhl4kq9OAJrOGI+7Gowf2rtTdxlcYAp5sN9FP+OqwP6DFePn37TYn47jtfXWIxbOXd3dH8rV29y7SYIIvwEJZwbGhrwpz/9CYcOHYLH44GgUWMMw2DTpk0hXWBXIiPViZIHJ+CaX7+NmhC3Fu7XOwEnzjbBr6OQQyGaWUY0Nzt2phGSgasyPVrPjIwVdSZYRuxDvWbGcMzetF+ut+YYwKrLlrZVVjAp03qRYzt1ycpjCGiLigu8gKGtUWoppZzMwgiCiDZ0byYIgiCI8GNbOH/yySe48cYbcfr0acNt6OZsj1CLZgA4eqYR2ekuOVIaajJSnAEmYwLEFOsfrdmj20NaKXBP+gQs3f6lahuGYYJW9cGkTLfX0Et5DCWCQqh3NbMwcg0niM4J3ZsJgiAIIjLYNgfLz8/H+fPn8ec//xmnT58Gz/MB/yl7SRKRp9nP48IL4k23YWy0g5bgGAbZ6S588KDY2sTImfvYmSak9+4pm3U5OAb9evdUbdMngQlI027hBZXZmB5aQzWzHs1aYzGl+JUErl3jsaw0l+6YJNS7mlkY9bQmiM4J3ZsJgiAIIjLYjjh/9tlneOSRR3DLLbeEcz1dHiOxFgoO1/kQZyFE7QZ4pWhuZW2Drbrsk2d/wN4lubIAO3nuB1sHNmuTJaWHa1OitWZh0jjLAi1+AQJa202x6nZTHMvYihJL7bHyCktRXuOV2107FP2n9SLfelHbzkJXexBAEN0FujcTBEEQRGSwHXHu3bs3UlNTw7mWbsGczfvDNrcgQNVnOVikaLRSZPoFwZahV2Zaoip9WcvpJmBgUkLggAlS1NcsEqqMlDa3imagtd2UXzTyks6n2S8EJQ43zR2JoekuOfK+Jz9XTl/Wi3y3J2prt/1WuMlMSwSr+PmTazhBdA7o3kwQBEEQkcG2cJ4xYwbefffdcK6lWxCso7aDZRBEdnWHkILCGSlO+BUi04o4RhSSZvXV/ZwM4jh7Z8IyQHa6aMJ1pK7RVOxW1Ogfk2WArNY5stJc8Gs2UopDI/EqRZ4rVk/F7vzxqppfvbH2RG3DlSIdrCA3S4EnCCJ2oXszQRAEQUQG26naTz75JCZPnoy7774b9913HzIzM0VzJyKsmKUyh4uj9T6YNc/gGIBlRDMwB8dgy7xRyEh1gmMZ8AYR7/tGxGPZh4GuaJLzNgMgjmPA85DTnKs9PrAs2ly8dSKhHBd4TI5hVKnSSkEroRSHoTL60jcuM//5hStFOthzkh4EEATRuej29+azAMyeG+wIwTGmm7S7AoBB5sPe0X3MN5hk0W7qvS/Nx08r2k+1AND6xP3iMfP9X3rRfByAdbsnq3ZTVvvfbDHe3nZVjtaxztCuilpuEUSsY1s4JyUlgWEYfPLJJ3juued0t2EYBi0tLSFbXFfEnRpcL+NooG0t5W6NtB6pa0RmWiIaz/tx9Iwogpv9olt2yYMT4DcQzSwDpDtZDEpJUJ17HAO0tO4yONWJl1sFuEReYSlaFHOKqeg8qj0+eTu9SLK2r7NW0Ga1tpSSCJV41esTvW//PtO2VcG4hAcD1SwTRPeA7s0EQRAEERlsC+c5c+Z0r6fYYeLleaMwbu3eaC/DNhzDoOTBCSrjK22v6KrWtOCMVCeq63yq6C7LiKnfj3zow/EG9X6SaGYAODg2oP1RZW1DQLy2us6nip5mpbkCRLG8beuaZaOw1ppnbRqylXi106rJaJtZnzXhpE8wjPzqie1QEC5BThBEbEH3ZoIgCIKIDLaF8x/+8IcwLqN7oYy0RhsG5snEklv0xMISU+OxQzVeAKLztOAXEMcxaPEL4NjANlRapH7QeYWlKlGq109ZGz0tmD4MszfvB996rILpw+QxlVkZL8g1z1qsxKudtGejbSTRrLd2IHwp0uES5ARBxBZ0byYIgiCIyGBbOBOhYX7RgZgRzYCYIn20vhEtOrXUUvul+UUHbLt1t/gFDG0VqLlr9waVlq4UnNUeH5r9fEBtslTnLEV4JcEOiGnbK3YclIWo3XRlK/FqZx6jbfo5GVk8RzLySzXLBEEQBEEQBBE6ghbOe/fuxZtvvonKykoAQGZmJm6++WZMmDAh5IvrisRaramRsHUrao6DWbMA0enabG4jeEGMPLuXvm08f2ud8x0b98l11sr9lWtVRqwZBmBZIGtZsWG6tR52DMq0x1IK5PtGxGNjGUeRX4IgwgrdmwmCIAgivNgWzjzPY+7cufjTn/4EQRDAsqz8/u9+9zv813/9F4qKiqjWygStCLPLgKR4PHXrlZi9eb9l5DeODTT3ag/KmuPMtESU13gt/KHb4EzaTjk4pkO9pgEE1FFLaCO6ynRllhWj4QKCc86eX3RAZVAWxzK64tcoNTrdyVLklyCIsEH3ZoIgCIKIDLaF81NPPYU//vGPuPXWW7F8+XJccsklAIBvv/0Wq1evxh//+EdcccUVeOCBB8K22M7O/KIDuinRVhw704Sl279EitOBU9+fN902FKIZEMWlhFRHbFfwSk7XWgdxd6oTR+oCW1IFi9El5DWu2xmpTlnQKlO6pci20p1bQmnypXUBB6B7DczMw2p8vKmrdjixY2pGEETnptvfm/sAuNNk/C0bc1htY9XSys4xzPjcaoOBHZv/JYt2VpatpADrdlAdxWr+9rbDaoa9dlRWraDsrMEKajdFEJ0d1u6Gf/jDH/CTn/wEW7duxfDhw+FwOOBwODB8+HC8+uqryMvLw+bNm8O51k5PZW0DhHYGW6s8PkvRHEpYRXBixY6DAW2fzOAFsZXUmhnDkZ3uAscwSE8Qx7SO3O1dW5zBb67kui0xZ/N+lWhWMm7tXuSu3YtqhTiWTL78gmCYaq6cX7tPea0XEwtLkLWsGHmFpVj3aZM8JkW6I4VyXZE+NkEQkYHuzQRBEAQRGWwL58rKSkybNs1wfNq0aXJtFaFPZlqiSpDGMi08ZPFXUeM1jPIacajGi1kb9+FQjReDUhIAhkF1XXA1z3EGF4sXgL694+FOdYLTpB9K0eTs5cXIXPq2ZZ11lUcttJUmX0Zoa76V+4g12IIsVmssXLXDCfVyJoiuD92bCYIgCCIy2BbOiYmJOHXqlOH4yZMnkZhIvWLN2DR3JDJSOk+qrF8QcKjGCzvZ39npLsOxKo9PJSABmD5AqFpzA6rW3IAhfYx/n46daUKVx4dBKQlwpzoD5mv2C7bWDYhp6XmFpchaVgyWFQ3AjNBzxjZ6ICKdrzQW6X7KynVRL2eC6JrQvZkgCIIgIoNt4Tx27Fg8++yz+PrrrwPGvvnmG/zud7/DuHHjQrq4rkZGqhMOzviSxynElyNEoWmHjlFXXIij3v169bTlFq0UcWYPELKXF2NfhUdVZ22EFFHOSjMW7lbwAlDemtLc7BcgtDpju1OdGJAUH3AOFa09p6UU701zRyIrTUxJd3AMGMW26QmQx7LSXBF11VauK9LHJggiMtC9mSAIgiAig21zsP/3//4fRo8ejauuugrTp0/HpZdeCgD4+uuvsXPnTvTo0QO//vWvw7bQroJZuuyQVnEj1aaGAj0zq1D3kT75/Q8Yt3av5XYsw4AXxMjz0XrjFOpmv4DZm/bbTg8/UteIitVTkVdYqlvPbMfJW1t6nZXW1otaiWS+Vl4j1jLzPFTGW1pDrgU5fsycGuiqHQnjLurlTBBdH7o3EwRBEERksC2cL7/8cpSWluLee+/FG2+8gTfeeEMeGzNmDNavX4/LL788LIvsSmSmJRqaVUkGTnbqbDsjSkdxK/fv5iAugJSCvGnuSEx8qkS1r4NlsCc/V34YYXfaQ61RZaMaaQFtDyWU7a20YrWkpER3f+V6gmmPRRAEoaTb35urASwyGb/axhwvWIxPtxhfYeMYZpy2GP9Fivm4yjW7EYDGRXvScPP9jTP92/jKYg7tMQMYZeMgZmy3GDdypE4CUANytCYIIhTYFs4AcPXVV+Pvf/87amtr8d133wEAhgwZgrS0tLAsriuyae5Iw+isZGw1MCkBx882dknxHGrcrS2nADHCOiA5sIXUhHUlGJSSgIwUsR3WoBTR4tvKOKzc4AGHlvYYb5FxF0EQoYLuzQRBEAQRfmzVOHu9XnAch4KCAgBAWloarrnmGlxzzTV0Yw6SjFQn+ieaFxkfPdMY4BZN6PPyvFGqFGdtn+hmXpBbS0lmYtJ2Ri2tJPSeW8QxgX80DII33gq1cVe1xycbnCnrr0O9D0EQsQPdmwmCIAgictgSzi6XC0lJSUhPTw/3ero81R6fKmXZiGBSlbszczbvV722avklCWi/IBimi5s9smgRAI5lVNvEcUzQxltWxl3Bitr29GymPs8E0bmhezNBEARBRA7bqdoTJkxAaWkp7rrrrnCup8szv+gAahuttyPsUeXxwb30bQBi2vaaGcOxYsdBwzpyO8RxDHgeYFl9czXtQw2+VYDnFZYGmH3V+Hjd962Mu4KtgW5P6jelixNE54fuzQRBEAQRGWy3o1q7di3+7//+D4899hjOnTsXzjV1aSpqvLopwNGEZULX/iqYY7pTnbrtsoy2t6LK48OsjfsAiHO394wksTwgKcHyukhp1vOLDqC8xiv3vp5YWIJqjw9Pf9ZkGNXVRpX3VXjk14dqvKaiVrvvoJSEoFO/qc8zQXR+6N5MEARBEJHBtnCeOHEimpqa8PjjjyM5ORn9+vVDZmam6r+srKxwrrVLwNkUipEkK82F9N49A95/bcFoZKe7EI5ya14Q64z35Ofa2t6s77OWQzVeVHl8iOMYsBBFtDvVKfZZ1gjhOANhLNVFW6XMcyyDgunDUFnboHog0uwXML/oAE40CCoBfKjGK6dda1OlZ2/eL79WoidqlfuW13pxtN4nH4djmIBe03pQn2eC6PzQvZkgCIIgIoPtVO2MjAwwZFjVIao9Pst+wtFgd/54ZC0rDnh/6XaxvYS2x3EokAy1MlKdyE53WaZWHzvTCIYJbi3StV4zYzj6JyWIYrPGCwfHwM8LyEpzodnPW7prm+HnBazYcVC3zVhlbQM4JrBvtpR2rU2V5nV+N1hGFOeSEJZSvZX7CoL6GJLYlyLcUm/wytoGlTlauPpHEwQRObr9vbkPgDtNxu+1MceVFuPTbK9Gn77mw6595v2obna+aTq+5dMFbS8S6oDLNa2jBpkf3xZf7TIf7zPFfNyq5VYfi/HT11hsYHSNEiG2mrJqRxUJrFpeUcssgoh1bAtno360hH20RlaxQL/ePZG7dm9AlBOwbtfUEZSGWgXTh8kp1kZ05IGDdm7eL8DRevwJ60raPS/Qlka9d0kuJhaWyOtkWqPEei2tpLTrzLREuY5ZEsh+XpBfZ6W5AIgCmIe61tmsH7h2bcp6aeXPlPpHE0Tnh+7NBEEQBBEZbKdqf/DBB6itrTUcP336ND744IOQLKqrEk4h2l5Oe3+Iyrp4HnKkc8WOg+2uR24vzX4B49buBWv7L0CEYxg4OEaVvu4XxLTsLfNGITtdTH0e2pr6fKFO6zEp7VqbKr1l3qiA1GkjAy87adUsA/S7oKeqXlpJVzEEo7ZaRHeG7s0EQRAEERlsy4YJEyZg9+7dhuN79uzBhAkTgjp4eXk57rrrLgwfPhwcxyE3NzdgG7fbDYZhVP/169cvYLtvvvkGEydOhNPpRP/+/fHoo4/C7/erthEEAatWrcKgQYOQkJCAcePG4fPPPw9qzV0No5ZM4YZlIAudaBqm2WkNBgBxLDAwSUxzHpCUgMGamutDNV7M2rgPFTVeZKYlomD6MLnGWVlX7U51YtPckaj2+OT0aSllenRWKnbnj0fF6qnYnT8eGanOgPZafkFAXmGp4TqV9dxZaS7UnPvBcNuuYghGbbWI7kw47s0EQRAEQQRiO1VbsCgu9fv9YIMM33399dcoLi7G6NGj0dzcbLjdHXfcgbvvvlt+3aNHD9V4fX09Jk2ahEsvvRQ7duxARUUFHnjgAfA8j8cff1zebs2aNSgoKMDatWuRk5ODwsJCTJo0CQcPHtQV46HGneoMKrobxzKysHOwTMh7OzOMeIxo1F0r63A5jtGt71XiYBm0CELI660FRVp0Ra0XHKO+zgyAoemKlGkBqK7zyZFhbYo7D6C81qtKD5fmy053yTXFeYWlttpNSfXJyrRsaXvt74SDZVDyoPoLstSqS/VeqlNV49zZobZaRHcmHPdmgiAIgiACsS2cAZgakHz00Ufo08fK3UHNtGnTMH36dADALbfcgtOn9d0jLrzwQowePdpwnhdeeAGNjY3Yvn07evfujby8PJw7dw4rV67EQw89hN69e6OpqQlr1qzBsmXLsHjxYgDAtddeC7fbjWeffVYlsMPFy/NGqepgjchOF02rquvaRHaoRTMgisb0XqKb9rEzTUHv37dXD5z6/nyH1sALgGBDuIfj/JVraPbzokGX5kvo0FaxO2FdSYA7toNjoElqAGBsYFbe2qaK56ES3GZiT+r3nLWsWN5HOn6c5s9RzxndwakfjDi4QHHd2dHWineFKDpBBEOo780EQRAEQQRiKpzXr1+P9evXy6/vu+8+LF++PGC7+vp6nDt3DvPmzQvq4KF6Cr5r1y5MnjwZvXv3lt+bNWsWHn74YZSWlmLatGn46KOPcO7cOcycOVPeJjExEdOmTcOuXbsiIpwzUp3Yk5+LWc+V4HiDsRCsrG3QNetqL/169cTJ7/VTdk+cbTKMnlpR12CcJRAM4ZDEymi9HfQyATiGkaPASnEmEcz8gHieRg9NWFas1TVyuNY9vmaqk2cDf8Zb5o3C7M375eP6eTHVu2D6MKzYcVCVKm7HXVsvxTzartxK1/CuEkUnCDPCfW/uTLB9WuC809iy2bvTxkODAvPhwbVlpuOHn8kxn+A982Hv4+Zr3NJvgek4blT8+wLNawB4y3x3XG0xDgCXW7hmWziHW10DS9dtS+42eP+fACYDsDJnDYXr9iiLcas1fBKCNRAEEU5MlWtSUhIGDx6MwYMHAwBSU1Pl19J/brcbY8eORUFBAZ555pmwLHLTpk3o0aMHLrjgAtxyyy04fPiwarysrAw5OeobV0ZGBpxOJ8rKyuRtOI5Ddna2artLLrlE3iYSZKQ6sWqs07Q/cihFMyD2jnYbiBspetmeY4YzCtxRghW1WrSRy01zRwb0kg7lj6nZL2BiYYlsbKU1vCqYPkx22bazXonRWak49MRUZKe7wDKQU8OVPaODqQuOxXpiKSqvrA0niK5MrNybCYIgCKI7YRpxnjt3LubOnQsAGDJkCNasWYObbropIguTmD59OkaPHo2BAwfi22+/xa9//WuMHTsWX331FS644AIA4lP1pKSkgH2Tk5NRX18vb+NyucBxXMA2Pp8P58+fD6idDgfVHh8e+dCHkw0C4rjI1BcfO9OEDx6cgDmb98eks3csIqVvS0J2ftGBsF87STzvyc/F/KIDKK/1Qmh9sDF78375fSnyLNWo8zxMI63VHp+qRlrbM1p6eJK7di8A8x7PVE9MENEnFu7NBEEQBNHdsF3j/N1334VzHYYo09HGjh2LMWPG4Morr8RLL72E++67L6zH3rBhAzZs2AAAOHr0aEj6ZT7yoQ/HG3gA1oZYoWTWcyU4YZIe3l3gGMDuZa/y+HDdur24oCcDT5P+Tkk9gDOmZd4C0Npsi4VoHiavBYC2RLrZL2DWcyU46VMboUnts1TnAiD/P3rgktQ4AAIqv/oElToreOTDQMEf13odlGelfDBQXuPFrOdKsGqsWjj3dQInGtrOqq8zsI+s1+vtlr1lu+N5d8dzBmLrvKN1byYIgiCI7oZt4bxnzx689957WL16te74smXL8JOf/CTsbS+GDRuGiy++GP/4xz/k95KTk3H27NmAbevr65GcnCxv4/V64ff7VVHn+vp6OJ1O3WjzwoULsXDhQgDA1VdfrdsuKxiqPT4cf2cvEPGuxdCtqWYQnvriWCbYZxUtAgxFMwB4WwKvIgMosgnaftY8ROM3qRa3YPowVf2xxPHWFlZaozItPIDthx3Y/Z+BbtzKWmS9NPxX7hyNFTsOqiLRSgQAp3wI+J1/7XLrGueSkpIO/610RrrjeXfHcwZi67xj5d5MEARBEF0d28L5ySeflFOj9fjuu+/w5JNPRuTmLPVzlsjJyQmoUz5y5Ah8Pp9c+5yTkwO/34/y8nJcfPHF8nZ69dHhwk496OIJWXihtLLDNbp26G6iORzo/ZyGpruwO3+8bisobcupPfm5uk7rdurHpRRr99K34U51Ys2M4bLhF8uKa9NqZqn1ltQzOnftXsMUdD3DMqme2IwaH4+8wtKIGIjFolkZQUSSWLo3EwRBEERXxrat9RdffGHaEmrUqFH44osvQrIoMw4ePIiysjKMGDFCfm/KlCl499138f3338vvbd26FQkJCRg/XvySP2bMGPTu3Rvbtm2Tt/H5fNi5cyemTLFwiwwRFbX60T0lL5RWRGAlnQuOEXsUdxakul89Q7a8wlK5bhpoc1rvKFUen8rwq9kfKJo5hkFWmsu263SLX2iX+dfTnzVFzEAsFs3KCCKSxMq9mSAIgiC6OrYjzmfPnkVionF/1ISEBNmIyy4+nw/FxcUAgGPHjuHcuXN4/fXXAQBTp07F3r178corr+DGG29E//79UVZWhscffxwZGRn4+c9/Ls+zaNEiPPPMM5gxYwYefvhhVFZWYuXKlcjPz5dbVMXHx2Pp0qUoKChAcnIycnJyUFhYCJ7ncffdRm0MQgvHWKfftvAAxYLV+IX2O41np7sC2jiFG78gtnxaM2M47vnjftT42g5e3iruduePV0VLHRyjGyEOBsNWV61RZr1I8ZG6RsP5BLTP/OukT4iYgRiZlRHdnXDcm8vLy7F27Vp8/PHH+PrrrzF27NiAmm632x3Q4aJv3744efKk6r1vvvkGd999Nz7++GMkJSXhzjvvxGOPPaYqmRIEAatXr8bzzz+P06dPY+TIkXjmmWdw5ZVXWq6VL4uDd7RJO6cTllPgmtoPTMc/SRtnPYkZr1mMnzIfHnyPeecPj6/t/Nl9LXDdrO7t5D1g0ZLrTvNhW9s8ZjG+3mL83l3m433aGeCI44A+KcDpjraKskNHW15ZjR/r4P6xQEfPkSCii23hPGDAAHz22WeG45999hn69esX1MFrampw6623qt6TXn/33XcYNGgQampqcN999+HMmTNITU3F9ddfj1WrVql6NicnJ2PPnj1YvHgxpk2bhqSkJNx///1YuXKlau6lS5eC53msXr0aHo8HV199NXbv3o2+fa0aEIaGaLRvcqc6u7WTtlENrxYHy4T051NR68WKHQcRpwmUSy7ZQ5a+rXo84vcDjhC7rDs4c8ftao8PLCseG2irzfbzovA1anFlRT8nI4tnBmLKd9ay4rCkUiv7W7d3vQTRmQnHvfnrr79GcXExRo8ejebmZsPt7rjjDtWDZ61XSH19PSZNmoRLL70UO3bsQEVFBR544AHwPI/HH39c3m7NmjUoKCjA2rVr5YfakyZNwsGDB4NeO0EQBEGEC9vC+YYbbsALL7yA2267DZMmTVKN7dmzB0VFRbjzTjuPLdtwu90QLEJse/bssTXXpZdeivfff990G4ZhsHz5cixfvtz2GjszfXuFv71WV6ElxL2zpeinYJA9oPeu3y+E9EHHlnmjMDor1XB8ftEBVY12HMdgy7xRcp20JHSDrSO+b0Q8NpZxAbXWFYpoe6jYNHdkwNoIojsRjnvztGnTMH36dADALbfcgtOnT+tud+GFF5qmib/wwgtobGzE9u3b0bt3b+Tl5eHcuXNYuXIlHnroIfTu3RtNTU1Ys2YNli1bhsWLFwMArr32Wrjdbjz77LMqgU0QBEEQ0cS2cF6+fDneeOMNTJ48GVOmTJFTqD7//HPs2rUL/fr1w4oVK8K1zi7BgKR4HDvTFLHjnfr+PADTXklEKyHWzXL0s6GhAScajOSzGo5jUF2nL5o5VowEB8OKHQcDUsIHpSQAEFO0tenvPA/ZNExJXmGpHNW1I37Tnax8XGULrXCkUtsxKyOIrkw47s0sa9v+xJRdu3Zh8uTJqgyxWbNm4eGHH0ZpaSmmTZuGjz76COfOncPMmTPlbRITEzFt2jTs2rWLhDNBEAQRM9i+O/bt2xcfffQRJk+ejF27dmHVqlVYtWoVdu3ahSlTpuDvf/87LrzwwnCutdPj4ELzZYSIPgzE+unsdBcYHd8yXgB851vwg99+xbqUIq3FwTEQ2pFGLolUpYFWlceHKo8vQDQzTFtKtdbArL11xHpGXZRKTRChJZr35k2bNqFHjx644IILcMsttwTUPOt1rcjIyIDT6ZQ7YZSVlYHjOGRnZ6u2u+SSSwK6ZRAEQRBENLEdcQaAwYMHo7i4GPX19SgvLwcADB06VO6VTJhjZsREhJe+vXqgrqE5ZHXMAoCC6cPQPylBFqYcq65RDia7gGMZZPZJ1DUyG5AkRomr63y6wpplgIwUJ47VN6rOj2XEOmal8NU9NsOAZdrMxQ7VeDHxqRLwAjAoJQEs09b/mlHUEVd7fJizeb+cWu5OdeLleW0GLHoCm1KpCSL0ROPePH36dIwePRoDBw7Et99+i1//+tcYO3YsvvrqK7k9Vn19PZKSkgL2TU5Olg3L6uvr4XK5VGZh0jY+nw/nz58PqJ0mCIIgiGgQlHCWSE5OxsiR9AU4WJRGRkRkOfX9+ZC3tFq6/UtZKPICwHfA2MvPC9g0d6RKiEpUeXxwsAwyUvTrn1kGWDNjOJZu/1I13syL7aSsfu8y0xIDTNQkAa49XhzLyOJ3ftEB1XiVx4eJhSV44kfxAETRrRx3pzqpxzJBhJFI3pvXr2+zSR47dizGjBmDK6+8Ei+99BLuu+++sB57w4YN2LBhAwDggvijWHF3SccmfNN8eOY68/l7DDZ/SJoA8/GzriTzBRSZD6NPm5N5/5YmrNx7UD0+E+Z8bTEOgM1qMR3nr7f4OjnI4gBvJZiPny6xGNd/e2A/L9YtLQFgEbjobXF8ADD2yRNptAqOVFmMD7EY71jG1sCB8Vi37jKTLaxO0A4Oi3GrY1wUgjXYY+DAnli3LnLHi3XoerTx6qvGY0EJZ7/fjz/+8Y/429/+hlOnTuE3v/kNrrrqKtTX12Pnzp2YOHEiBgzoDHb40UEyMtJzemYZkKAOM6F2Na9qrR2205/bDhmpTsN0fmntes7bLbxYz6yX0VBZ24C9S3LlGme9tl7BrN/vF2TxqxdRbvYLeOTDRiz7sBgMQ7/QBBEJYuHePGzYMFx88cX4xz/+Ib+XnJyMs2fPBmxbX18vR8OTk5Ph9Xrh9/tVUef6+no4nU7daPPChQuxcOFCAADT+2os+XNuxxZv5Z1Waj48eLN5Svml+MZ0fNdHueYHeMN8WLn+dfUlWJKsme9pi/1t4NphoExb8U60aHll1ZLLqrmJ1TV4Sf/tdetKsGRJLoAvzfefNNziALBsG4avLI5h2WrpKovx/7UYN2fdusuwZMkZky1C0Qqq87SbWrfuIixZ8u9oLyNmoOvRxogRxmO2i259Ph/Gjx+Pn//859ixYwfef/99OdWqd+/eWLp0KZ5//vkOL7Yrk5HqxOIJQ1Xvcaz4Q8hKc0VnUUSHMIvkBhPhjmMZVHt8pu2zqjw+w3ZVkqu0lsy0RNlAa++SXDi4wDUF8zyBU+xvVK/c0tp3W+xJ3ka1x4e8wlLdOmqCINpHLN2bGYYBozB9yMnJCahTPnLkCHw+n1z7nJOTA7/fL6eYS+jVRxMEQRBENLEtnFeuXIlPP/0Ub775JiorK1VtpDiOw4wZM/Duu++GZZFdiXu3fq567eeBkgcnUO1nOwht4nX7MBOdQUW4BUHlQB0sLCvWXLsVqdDuVKfcTiqvsBTj1u7VFd4sI26bne4CxzBwpzrhTnWC03E9Uzp7B/s7y3GMbFImuXMTBNExYuXefPDgQZSVlWGE4lH9lClT8O677+L777+X39u6dSsSEhIwfrzohj9mzBj07t0b27Ztk7fx+XzYuXMnpkyZEvZ1EwRBEIRdbKdqb9u2DQsXLsT06dPh8XgCxocOHYqtW7eGdHFdDaMI23VP7cXA5Nip/dRLB45F4lrdpltif6mWdPQcWngBK3YcRMmDEwLGpHZSRmSkiKZeevXHeYWlKK/1yu26uNbIeHtqlZWu4eFoTUUQ3ZFw3Jt9Ph+Ki4sBAMeOHcO5c+fw+uuvAwCmTp2KvXv34pVXXsGNN96I/v37o6ysDI8//jgyMjLw85//XJ5n0aJFeOaZZzBjxgw8/PDDqKysxMqVK5Gfny+3qIqPj8fSpUtRUFCA5ORk5OTkoLCwEDzP4+67727nVSEIgiCI0GNbOB8/fhxXXHGF4bjT6VQ9VSYCMYqwtfCBJkzRpDOIZqDzrDMSCAohquzbnJmWiIoaL3iTfR0cayiEC6YPw6yN++TXzX5B7uNsN2Isu36faZQN1BiEpzWV9tw3zR1JhmRElyYc9+aamhrceuutqvek19999x0GDRqEmpoa3HfffThz5gxSU1Nx/fXXY9WqVaqezcnJydizZw8WL16MadOmISkpCffffz9Wrlypmnvp0qXgeR6rV6+Gx+PB1Vdfjd27d6NvX6vCV4IgCIKIHLaFc2pqKo4dMy7q//rrr9G/f/+QLKqrQhE2IlywrW2iqludraWHCuW1XsRxjKnj96Ear2EUecWOg7rbW0WxlevKSnOh2c+jRZHmHccxpqneRq2urESwZNbGC5DTwXfnj7dcJ0F0VsJxb3a73aqUbz327Nlja65LL70U77//vuk2DMNg+fLlWL58ue01EgRBEESksS2cJ06ciJdeeglLliwJGPvuu++wefNmzJ49O6SL62pQOyoiXGSkOGXXdmUkXhDUdclGKAWmMmqr58INQO5bLfCCnMYdxwIMGLm2m4Eomnfnj0fWsmIop+J5mIpgvVZXdkSwsmc1pYMT3YFuf29ugbnbsZVjNgB8YTH+K/PP0L6oMR3fNW+G+fxWa7Q4vqtfW4o+u68FrivVDtjeaRaO11dbHB+A93GLOZZZTDDS4j70uIVryU6L+Q1dsxvFsdcsXLNnWc0PwOISAANtTNIRbu7g/sdg3u7Joi+b7WMQRNfFtjnYY489hvr6eowcORLPP/88GIbBO++8g2XLluE//uM/0LNnTyxbZvXJ2b3ZNHdku9yzY8EEiwg/cR3oMy23xtJx5c5KcyE73QVper2jKAWmFLU1Es2AKEr9fgFD00RDsex0F95/YILqoZCgmDczLVE+vhQdN0NP8FbWNlg6cwd7HILo7NC9mSAIgiAig+2I89ChQ7Fnzx7MmzcPjz76KABg3bp1AMT+jVu2bMGgQVYd7rs3UlugMQXFON5gP+zc2QLUDo5RGUHFAgxi/zq2dPCC6bWycihSopW1v81+HtV1PvBCoMA0q4mWrqOUgq2NAGemJaK8xitvMyglQUzrrvGKrax4AVlpLhRMHyane0un7eAYbJk3CqOzUpGZlhhwPplpiZap2FLUXVnjTBBdGbo3EwRBEERksC2cAWDEiBH44osvcPDgQXz77bcQBAHZ2dm46iqrpu2EkpO+WJdwHaPZL8DBMuAtauQiydB0l2mP5FDAsWJ7sUhh9TAgjgW2zBslC8lBKQkYlJIg/zsjxYkjdY0YlJKAZj+PrGXFYsSWZcDriHgWQFa6SxalkvhVvm728/KaMlKcaPELqPKI1533C3C3PjzSimZA/L2ZvWk/3H1EQzMH25b2LbXWmrCuxDQVW3o4BZBRGNF9oHszQRAEQYSfoISzxLBhwzBs2LBQr6Xb0CceqGmM9iqMiWOBvr3jcexMU7vnaOYFDEiKR825H4LrZxwmwl3rGseK7uihxMEy8AvGkXurq9rCA0u3fynXCitrhqvrfMhKc6Fi9VSViDWrwc9KV0eYc9fulec8VONVuW+zjOjWLYlmCWl7ZS2ykmZe7PHMA4AgIFtzTKVPgFUqNhmFEd0NujcTBEEQRPiwXeNMhBAmtquWW3h0SDRLHDvTFBOiGRBThoOFgyhe7WBXNDs4Rq4xZhkxkqqHO9WJ5hCkuxu1OeMFUey6l76NQzVeVRTXaN3atGezFmpWxlzKWmS9fY3mkHwCOIZBVprLNBXbjlGYVc00QRAEQRAEQQAmEefMzMygJ2MYBhUVFR1aUHegtounasci7emT7Yc9R+pgUDpeS1MPSFJH992pzqj19WYZ8T/lg4A4BhiQlIAJ60rklGy9NlVKpD7NzX5edS7uVCeqPT40+3nLhwJ6EWVlKrYRUoq20tzMKDpNUWmis0H3Zg19YO5KbenGDKCDVgiffDTOfIMj5sODx5SZjh+el2M+wbPmw647T5uOe3da2kUDN1qMv2U9hSlXmg9P2bzddNzQubxPHfCL4dbO6b+wGAeATy3GTx+12MDKdXu/xfgoi3Erai3WMMBif6txAPikg3OQKzcR2xgK54yMDDAxHhntjFR7fDFvUhUKBiYl4OTZRrR0h5MFVPW4wXDY48PgVGdUxbISjmWw7pYr8Nv3/t22HkZcpwBRXM7evN/ygUIcqzYlk8zBqut8GLd2r7wdA7H+HAhME+cFiCZmBj2mjZDEsBKj6LTSCE2Kwku13lQTTcQidG8mCIIgiOhgKJxLSkoiuIzuw/yiA9FeQliR3JYBdBvRDKDdKekCxGj4wKS2VPJoCuhmv4DfvvdvODgWDCP2gVZGn3lBNPmynIcXZNFpZAYGqFtW6V3C6jof5mzeDwfHyqZmAHCkrtFQ3GrrpzmGMTQM43SM0PyCQNFnImahezNBEARBRId2mYMR7UevzjLYaCXHADa0S4dobwRVitoRwXH0TOy4xVV5fCFp35W1rFgWumYPA6QUaj1hzQvivizT9m8JI3FrZiCmTc02+hW3qtEmCIIgCIIguhdBC+eqqiq89957OHXqFP7rv/4Lbrcb58+fx8mTJ9GvXz/06NEjHOvsMuj1px2QnKArLLINWijxglrYxrEAz8Ow9257iBVTLyI8ZKe3pS4rU6clQvHT9wuCZfRcr880ywItfkG1Br1fRyNxu2nuSMzZvB9VHrFP9Xe1ogma3v4AZFGuxMqxmyBiDbo3EwRBEER4CcpV++GHH0Z2djYWLlyIRx99FJWVlQCApqYmXHrppXjuuefCssiuhF6dpZG42J0/XtfVWYAobKUhXhBbBRGxCQvx4Uas4ODE1OWMVGdQpQPZ6S5kp7vk3zubhuOmbJk3ChmpTtn0q2L1VOzJz0UcZz25kbjNSHXCwbHy+sxKBgYkxcsu3e7WWnM7jt1AoCN3jS+CTbwJQgHdmwmCIAgi/NiOOP/+97/H2rVrcc899+DGG2/ET37yE3msd+/euOmmm7Bz507cd9994VhnlyEj1Yn+iQxO+sxbDUlCS+kMrEXZaofSo2MXHmJGQKygNPaym44sRYaPn2nE7M37wfsFcCwDxi/A34G1zNq4T66Ll+qVM1Kdtq5XRorTUNwa9YnW4uDYdtcxa9O+n25gMHOq/rba2moyHiNCBd2bCYIgCCIy2BbOzz33HG6++WY8/fTT8Hg8AePDhw/Hs89a9ETo5lR7RKOj4w3W3+hfmT8agCgojGox9VJMCcIKThEq1isd0KPZL+D2jR/j1Lkm2SysRcp66ODvoF4rqMy0RJTXemHy3AgOjjUUn8o6ZzOq68xTyc0Er7ZP9EmTNnPtbXtFgpuwotvfm5sBnDQZn2ZjjqvNhwdn/st03NPPvJ2T93Pz8cMfWbSbesl82Htl2/x8vzh4X1Qfb/Y9G0333/LFAvMDALjvtjWm408/ttR0fPAq82t4uK/5Ndj1iEG7KbusrjMfvzzFeo6+FuM3DjcfN/8xAOZdwwBYrdHiHNEA85ZX11jsb9VqCrDXsqojUDsrIrrYTiD997//jby8PMPxtLQ0nD5t+VffrZlfdMCy5pNlxF63K3YcRNayYjT7eWSkBH5RjmMZ3fcJwopmvwD30rcx9JFinGs8b7hdnCYX+9iZJpXDtiCEzqROW69cMH2YqWgGILec0qZMV3t82DR3JLLSXGAB3XIHCc4i31wSvEqnbYnMtERV2no/p/FcWpFtN9JvdnyCAOjeTBAEQRCRwnbEOT4+Hg0Nxl/2Dh8+jKSkpFCsqcti9mU5rrUtTlaaC81+Xo5OVdf5kJXmCujz28ILOHamMWb6/xKdjxZewKnvjYVzSwTTGbT1yit2HLTchxeA7OXFaFaod2U0Vy+im7n0bZWJnt9C+ZsJ3k1zR6qiwQtyjJPWzZy+23t8ggDo3kwQBEEQkcJ2xPmaa67Bm2++qTvW1NSELVu24Ec/+lHIFtYVMfuyzDBA5ZobsGnuSNkNGGj7snykLrBdUbPf2rU4kmgjlIQ91t92ZbSXEHEcHAOm9f/KGmcJuwKxWSN8leJSLxKdpTE3szLV00aVlX/DSkOz3fnjke40/jiVIuB2jcfsHJ8gALo3EwRBEESksC2cH3zwQXz88ceYPXs2vvzySwDAyZMn8e677yI3NxdHjx7FkiVLwrbQrkDB9GGGY5IA0EvFHJSSIPfD1UMSIJIzcLSIZISyK/Hb9/4d7SVEnObWdlPu1ESULJkgu3xLZKYlgmnHcxiluJxfdADlNWKa86EaL8at3YvyGi84Vl+s69FewatFK7Lt1imH6vhE14XuzQRBEAQRGWynak+aNAnPP/887r33XvzpT38CAMyePRsA0KNHD2zcuBHXXntteFbZRbCTfmoUaWsxSSkVIAoRjmHg4GKo75GC1HgGniYS1nrEUtZApNEaZUlmWBW1XsSxDPx+AVkG/cz1UIrLytqGAN8yAeLf0tB0ly1zLknwRotoH5+IfejeTBAEQRCRwbZwBoCFCxfipptuwrZt21BWVgZBEJCdnY2ZM2diwIBwO+l1fqzST3PX7gXDCAEuxUfqGk3bUklIkbVQwDCwNGcKhjsv74HCf5wPSK0lujdSK7Vqj0/uKy27YfOiaN6dPx65a/eqHjDEsYCfb/tTcXAMtswbhdFZqfI2Ro7hAkTBnldYSm7VRJegW9+bHQD6mYzfa+U0DFi5FR/+hYXr9ZUW03fU1Pxy8+HB95TJ/+5R0oTBM8tU41s+MnfNrl3Vy3IJc1BkOu7aYW5AZ+Uc7ppmvr93kLkzORYZvH81gE8BV4N5j0PvdPPpAQB32tjGDCuH951TzMetPP4sncETAVxlPNzHYn9bHoNWrtYd/Tyymj+Y4zsQuB5y5SbMCUo4A0C/fv1w9913h2MtXR6rFjlGkUc7ojnUxLEM0nv1xLEzTSGZ78kDP8Cd6kSznw/ZnETkyU4XI7rj1u4N6bzziw5g09yRKqErieqsZcUYlJIAd6oTR+oaZaGrFNktvCD2l+YhlzWYtZriWCao9lDUFoqIdejeTBAEQRDhJTbzersoUr0ig9gx0opjGfTt1SPg/Wa/gKduvRIOLnTrrPL4Iiqa3anOqNZ8d0UqakSRqfc7E4p59fALogne0Xq1EFY6TguC+DsrbSsZ7On99jo4MQVcacB3qMYrG4jp0R3bQumZqxEEQRAEQXRXDIXzwoUL8ckndpqdq2loaMDChQvxr3+ZN7vvjkj1ii9dn4ghfdrccqMFywBD+iQioYd+4sGKHQct2/XEMg6OxZoZw6O9jC4FD1FkmrWx6si8ZrTwUAnXzLREXWGsRID4IZedLhpsZae7sCc/V+WuLaEniCXxeKjGq9sWSikuH/nQ125xGYsitTs+LOgM0L2ZIAiCIKKDoXB+8cUXUV5eHvSETU1N2LRpE44dozoBPao9PjzyoU/1RTxaSJE2oxTxQzVemFcFxTaVtQ22DNmIzoUkXDfNHYk4GxkR/ZMSUOVpaI1GN+D4mUY5+0NvXqBNyI5bu1dX0LOs2sjMLwg40SC0W1wGI1IjJbKph3RsQvdmgiAIgogOpjXO27dvD/oG7fNFP1ISy8wvOoATDZ03ituZyExLpC/7XRCWEeuY5xcdsGU2d+JsI6TNmv1iLfSe/Fw0+9WPhRioW1lV1BpHwFt4Qa55ltPFEby4lMS3trbbbB5lbbed+uz2ovRkoB7SsQXdmwmCIAgi8lgK5+3bt0dqLd0CvRY5cSwT0AOZARDHMbLZkV5U2J3qhINjDVNc3alOHPb4Ao4XKlhAjkg7WAZ+XgDHMTHhnB3HAL7zLVExViPCC8cyaPbzpuZfSrS/js1+QdfcLI5jsGnuSFR7fJZp40KruFWKS6XwtoueQJdEqpEhmTYSrHQl16O9xmaSAZtyPyI2oHszQRAEQUQeQ+H83XffdWjifv3M+kN0XzLTElFe4xVrLxlJBASKuzhOFNOCoO+27eAYvDxvFABgzub98jaSgM1Kd6Fg+jDM3rzfUMiyDAzTxQckxVsaeWWkOvHyvFGYWFgiH0OIAdEMiIKe3Ls7F5KRm1Vfaz8vhOVn62+NIpuJZqlNmyRuleKyrxNBi0ulCJbIShP/dpV/V+WKyLJemy2zqHN7I9TUQzo2oXuzhjMAdpptcNR6jkkWbXg+NR/esHmO6fjCR162XoMZy82HDz/S1urp/GUnVa8BYMoq84csaZXnrNdwwLwsZvZtG03HLx3zjen4m7jZdPzUmHTT8UVf/l73/QElI7D6y/ux7KPfmu6P39v47vKWRWnQSfNh17MWLbfutGi5dcR8GF9YjCdw5i2rvvrSYgIb9LFqqWV1DKtSEit/B6t2V8r5E3WOF8z+7Tm+nTmIWMZQOA8ePDiS6+g2bJo7ErOeK8EpX2sqpF79JAPwvHkf5QFJCZiwrkRuvSOJcL9fFM3SF3oj0RzHMhjSRzy+Xh1zzbkfLM+lyuMLiNzFhmw2fiBAxC52W5VJP1vpwY/ZA6Bg4AWg3CLSPDTNFRC53Z0/HtUeH2Y9V4IJ60oMo7rKyK/0d6vMiGAZUTTvzh+PvMJS1d+uFOEGoNsOzCy1m2qVuxZ0byYIgiCI6BB0H2citGSkOgMibBzLwJ2q3/NZEshSCrZyX771i/ahGq9ln12eF+RoUubStwPEczMpTyLC2I0iswyQkSKWKUgittnPW0aq7WD2W+/gGNOo7okGAQKMo7rKyK/eWrPSXHLEWk/cSmngGalOZKe7bNcf69UqU19qgiAIgiCI4KA+zhFG+oItuefq4fcLsusvxzByP2KOYZCV5oKfFzoU2WUZ4MKkeGQvL4ZbRzQTRCzDC0BL699Ixeqp2J0/Hi/PG2XYsztU/by3tJZG6KH0LjCK6uqlZSvZnT9eFq/aVluO1vprCeXng1Jw66G3LbWaIgiCIAiCCA6KOEcY7RfsI3WNAdGjrDRXQH2hMkLEsYwcXW4PvNDx+t8BSfE4cbaJUqK7MAxiJ/Vey9EzjRi3di+yW2v5l27/0jDi7OBYbJo7EhPWlbTbLG5AUjxW7DiIihovOK7VR6BVhGakOgO8C/QiwMrIrxVKfwIHx2DLvFGqiHBGqlNVXz2/6IBh1FivVpnStwmCIAiCIIKDIs4RRhlJUhoMWUWP5mzej0M1YoQo3K7VDta6N+6xM02wsRnRiRmc6kRcjP+MK2q9mK0wxzPaZn7RAWSmJbb7d/bYmSa5r3mzX5CNtuZs3o+8wlJRUDNtD770/oYLpg8DZ7AAKSIu9WietXGf/Hfu5wVVP3Jtj2ll1Nhuj2fltaBWUwRBEARBENZQxDnCaM3BlAZDZoSiftMuzbwAB8tY1jm3UI53lyaSv3PthRdgmX0hRVT3Lsm1dM0O9tgqjwFBFMB6f8vVHp+uwz0LyGZ+1R6fyklbu/5qj0/loK+3jV0HbWo1RXQZvm8B3qszHu8zvOPHsHC1XshYuGZPspjfwo0ZV1qMKysthmheA/jQN85if+snioNvKzMd3zJvgel46WbjUhcA+ABjTce/8V1qOv6C8y7d9x9AFV7AXUA/8/vENZkfmo4DwCewuI53mh/DezLVdHzKGHP38115MyyObz4MF4AXTManW/ytXGgxPwB8ZfK3CAAYaDHe0b9XK1drpSu3Q2d7K8fra4KY34iOOndHe/7uDQnnCJOR6sSqsU7k5uZGeymmNPMC1t92JZ7dW47K2gbqh0zELA6d3uEco+7f3O+CnvIDqh+t2ROSdlZ6bt5GDxuMHO6z0l2ysNU6aSuPk5mWiPlFB0wfZrAsVC75ZinY1GqKIAiCIAgiOIJO1f7ggw/wq1/9CgsWLEBZmfgE0uv14oMPPsCZM2dCvb4uR7XHh0c+9FmmUmoJhblRsNy79XMAwN4luUH9okRjrUT3RSs243R+WU8p2qu1+EOTKsEx+lEavb9tIwF7qMaLao8P1R6fYSRcSv22qkNu4QVwHEMp2N0UujcTBEEQRHixHXH2+/2444478Prrr0MQBDAMg9tvvx05OTmIi4vDT3/6UyxZsgSPPPJIONfb6ZmzeT+ON7S1jZqzeT9enjdKN21S+d6aGcN1Uz3DjZTumaUwMDNDMmv62aZ9nTaVO44BwDBoIeezTone710LLyBz2dvg2MDodHtp5gXEsYG/J35BwKEaL27f+DGcPeIs/26MHK0dHIM9+bkqp22zNHNBgGxaRinY3Qe6NxMEQRBEZLAdSHzyySfxxhtvoLCwEN9++y0ERepufHw8br75ZhQXF4dlkV0JbaplVatbtrY1jPa9FTsOYk9+bsSjubwgCvxmP4+MFKfpL4yDFVvmLN3+ZYdFM8OIwiEatAgQVQjRpeCFwOh0RzF7uCIbilkcsrK2Qbc1Xd9e8arXdkRwVpqY+i216aLezF0fujcTBEEQRGSwLZxffvllzJkzB/feey/69OkTMH7JJZegoqIipIvrLui1hjFqF+Pg9H9kdpyw3alOZKe72rXG6jofHByLLJP9eUGsnbRrKmXm2CwIAB9F8drSSXXzgKR4642ImEFKp9Zz2z56plEVjc5IdVq6glOEuftB92aCIAiCiAy2U7WrqqrwwAMPGI4nJSWhvr4+JIvqyrg1wtKd6oSDY1V9nKW6RO17UhRaDysHbECMbrtTnRiQFB+0OZIUeTaiPfWUVuI0RKWoISWOZTAwOSFmHaePnWkKMMZSwgCI0zHTIiIPxzByOnXu2r2622jrmrPSjEsmstNdARFmqf+7Xv9poK0cZFBKAgCxr7zS7Z+IfejeTBAEQRCRwbZw7tWrF+rqjG3my8vLkZaWFpJFdWVenjcqoB0VAMsa501zR2LCuhLLtE8r7Ao+B8dAEATbKdfKL+PahwOAGF32o/NnQLfwAo7VN0Z7Gab4BejW3gKiaN4ybxRmbdwXhZURSipWTwUgiluOY3TbarGsOC6JWKmNVEWtFxzT1jLOnerUjTbL7anQ1rZLKgdp9vPy36ny79WsjRURe9C92YLTu6y3+XyK+fgTFvtfbjW/xfh7FuPrzYddO07L/2b3taheA4D3xcBMBBV9LY4PwOMzn2P25o2m4+Of2W867rrztOl4oTPfdHxhZZHu++fPn8ThyotRm9nbdP8nrHqOAbj4nn9ZbtMR/oWLzTeYZj485TbzdlZ4O8V8fIf5MF60GAeAryzGJ1msYZDF/jst/lZPf2kxgRVWrZyssGpXFQmo3VQ4sS2cf/zjH+OVV17BQw89FDBWX1+PzZs34/rrrw/p4roiRu2o9L6kat/LTEu0ZdAVLBzDqCJO0r/timyOYdq+0Nd4ddNOWwQxnby5sytn2IvuRxuj2lu/X0D/pIQIr6ZzMCApHg6ORXWdL6QmYkZI0WCzTI4WXpBFrLR9ZW1DQNS4otaLiYUl8PsFuS90RqpTVfIhwQvqtlVapOwS99K34U514uV5oyj6HMPQvZkgCIIgIoPtGufly5fj0KFDuO666/DWW28BAL744gv8/ve/x3/8x3+goaEBS5cuDdtCuwrtbUcFiNGmrDT9GmMGYpSYYxhkp7vw2oLRlkZiLCOmd1asnoqSByeg5MEJqFg9FQ6ODSoV2S8IuGPjPjmyZSQsm3kBBh18iAjBAxhnkBbc3TlxtgkOjkXl6huwJz/XdFt3qmiU51C0fwqGOFb8OZiJZkDM0JBErLS9nomgZHzGoy1iDIgP27TrYxmAs2m8J5kXErEL3ZsJgiAIIjLYFs5XX3013njjDZSVleEXv/gFAGDJkiX47//+bzQ2NuLNN9/EpZdeGtTBy8vLcdddd2H48OHgOC4gCgsAgiBg1apVGDRoEBISEjBu3Dh8/vnnAdt98803mDhxIpxOJ/r3749HH30Ufr+/XXOFk/lFB3CiQVB9+bVLRqoTu/PH6/aPHZruwp78XNlNd3RWqq6RmINl4E51gmMYVdQKEEV9XmGp4Zf5fr17GjpdHz3TaBoJl/bqAgFnoosiRVpz1+61fLhQ5fHhwqR4DEhKaFcGSEdd5/VMBLVjAFAwfZgqA4RlxLIKv86ijbS01GuaiE3CcW8mCIIgCCIQ26naAHDDDTegqqoKu3fvltteZGdnY/LkyXA6g0/l+/rrr1FcXIzRo0ejublZd5s1a9agoKAAa9euRU5ODgoLCzFp0iQcPHgQ/fr1AyCmo02aNAmXXnopduzYgYqKCjzwwAPgeR6PP/54UHOFk2qPTyVKlV9wg0GZsi19EdZL9dabe88DuYZpl2bmYwBw8twPeG3BaIzOSoV76dsB4ywD1Zd4hhFrbXkeSI0XUP8D0ynSnInujd1si2AN9kIJA7H+WS+dXGnUt2LHQVkkKz8rspcXB9RUswwDv8GTLap5jm1CfW8mCIIgCCKQoIQzAPTs2RM33ngjbrzxxg4ffNq0aZg+fToA4JZbbsHp02pziKamJqxZswbLli3D4sWLAQDXXnst3G43nn32WVkUv/DCC2hsbMT27dvRu3dv5OXl4dy5c1i5ciUeeugh9O7d2/Zc4UQvumzHiVpZ25iZloiC6cOwYsfBADMxvbm1AlspmrXzmtU9SszauE+39VUcAzBsm8GRdDxpreIDg46L5jg2MFqn9x7RfejbqwdOfX8+2suIKAKAFoMabI5lUDB9GIDAVncVNV7kFZbqCm6zh1qHarzIWlZMjtsxTCjvzQRBEARBBBK0cA4lLGueKf7RRx/h3LlzmDlzpvxeYmIipk2bhl27dslid9euXZg8eTJ6925zTZw1axYefvhhlJaWYtq0abbnCid6EWA7fVeVdYwVtV6s2HFQNuOqrG3AnM2iW6W2lcymuSMxZ/N+VHl8rTWQvMqhVzsvx4khY14QI1pGX6O1X7AdHIMUp0MlXjJSxLTyvMJSlJvUcQbbGosXxLps5UMDI4MlR6uD9NLtX8Zs+yii48RxLDiTaGlXxehs/bwgf0awLCBVrDAQa5vNskrM8AsCDtV4MWfzfpQ8OEF3G+3DuHCKbDsPFEngdweaARw1GbfhMGvhVoxPg1iOHldajL9n7IoOACgwdyL2os3xmu8XZ+2ireWU9Sbez83n/GDMWNPxwfeUmY4f/ijHdHzhkZdNx2ffpu/qnVqdjNmZLyLtme9N959yj4UjNYBCmDt7XzKvyvwYm82PcTHMXbvH3POR6fjTH5l7GdyU+BauGfOB6TZmfHJknPVG/Sxcs62qE3dajK+wGD853Hx8o2I8rgToc4vFhEFix8X/cgtn8K+s7MvJNTua2BbOmZmZpuMMwyAhIQEZGRn4yU9+ggULFiAxMbi+vlrKysrAcRyys7NV719yySXYunWrarvrrrtOtU1GRgacTifKysowbdo023OFE6sIsBHaqFFlbYNK9CpF4aEaL8at3YvsdFeAKK/y+FRferXzKlM3B7e66U4sLDF1F+YYBoeemBqQui2tqbK2wfALPssAzh5xokGZ4rqYZXNzLBPwhbjCQJhLAuJIXXjbR7WnLzYROujaq5Fqteds3q+KSgsQ/yaM/r6kHt88D5XLvvaBhNlDKO3DuHCmeGuPNXvzfvn8ulNLrWjcmwmCIAiiO2LbHCwjIwNxcXGoqqpCfX09kpKSkJSUhPr6elRVVSEuLg4JCQnYt28f8vPzMWLECNTW1nZocfX19XC5XOA4TvV+cnIyfD4fzp8/L2+XlJQUsH9ycjLq6+uDmiucSK7Ykmi2E20G1M64Uv2inimQEumLo/ZLrvJ1Zlqirss1ywAOjkVGqhNb5o2yXFt7x6WHAMrrwrEMDDyKAIg1nePW7oV76dvIfqQYmcveNm2rU17jhUViQ4fpDsKN3NA7H1UeX8BDK+VnBsuI7uDZ6S5wDKMyGFS67NtF8nDQPuQLF9oHf81+IWLHjiWicW8mCIIgiO6I7Yjz008/jUmTJuG5557D/Pnz4XA4AAAtLS3YsGEDHnvsMWzbtg3Dhg3D888/j3vuuQePPvoonn/++bAtPtxs2LABGzZsAAAcPXoUJSUlHZ5z+X8AXq8Al0tA5VefYJ+Px9OfNeGkT0CfBAYQBJxuAvo5Gdw3Ih7pThYLcng83cDgpE9APyeDBTl+PN0AnGgwTteUoi56SOexIIfHI7VAi8G+0na/GZeAdQcaUaMTuF2Q4ze8LiUlJW3HEARAI4kZABAElYOx1rDIDDtGYwL0DZSM4BggtO17A8+7M9LNsqC7Bf2cDH55mYB0pwDACUD8TKrUbJfuZFDjE1Sv/1z8vvi51cCj34fFuG9EPJ7+LPABUl8nQvK5qUdfZ9tnIIO2v13ptfLYNYrPWeVna3vxer1hO69g6Y73ZoIgCIKIBraF85IlS3Dbbbdh0aJF6gni4vDLX/4SBw8exAMPPIDdu3fjf/7nf/Dxxx/j7bcDnZeDITk5GV6vF36/XxUprq+vh9PpRI8ePeTtzp49G7B/fX09kpOTg5pLycKFC7Fw4UIAYssPvXZZ7aGkpESeK6+wFCd9YqRE+eX0pE/AxjJOTjWcqQn8jB7lM6ztBcQIYVaaC81+XhVldqc6Veex7MNi6MlvjmUQP+jy1prBJmSmueB08qiu86lSzWdObU2FfCfwZy0dZ/QoH2Y9V4JTPnUKqJErcDTJTHNZ9tYNjs4vmomuySkf8NzXopuB1h8BaKshPt0owMEx8PsFZLWWgMwvOiB+boHB8QYBD32gXw7x2i+NXfw7ymuX269xVn7Oaj9b24PyMzzaROPeTBAEQRDdEdvCef/+/bj11lsNx4cPH44tW7bIr8eMGYNt27Z1aHE5OTnw+/0oLy/HxRdfLL9fVlaGnJwc1XZlZWrjiSNHjsDn88nb2Z0r0hilXJtFjAEEmH9pEQSxh2v/pIQAsx4lyrprJS28gNmtNZICxJpJB8sgI8Wp+pItfbnWouz3nJHqxKqxzoAvmlnLig3PLxywjGhadqy+UTda7eCYbpPeSXR+3KnODpne+QVBtb+2LlhZQwxeFM3SmFWpSDAeDnYwMh3Til8jMaznE9FViMa9mSAIgiC6I7Zz1Xr27IkDB4zt8D755BP07NlTfv3DDz/A5XJ1aHFjxoxB7969VTd5n8+HnTt3YsqUNle6KVOm4N1338X337e5Jm7duhUJCQkYP358UHOFm2qPD4986EPWsmLkFZZiUEoCdLo7ARCjvtI+eYWl8j7VrV925xcdQHWd8RfnFTsOyl8uK1ZPlb9UKucqmD4MWWlijaMSobVmUPnduJkX4OBY7F2SCwCYsK4EEwtLAlyzJTdro/PPba1RNnNBdnDmtc5GMFCLdiWSkZpRive6W66w1R6MIDoCA9EZvr2wDFC15ga8bOE/ECxaQWkmNpW+C3ooPRyMPr+CQRLxfkGQBX4w6PlEdBWicW8mCIIgiO6I7YjzTTfdhJdeeglDhw7FPffcA6dTjCT4fD6sX78eRUVFmDt3rrz9Rx99hIsuush0Tp/Ph+JiMep47NgxnDt3Dq+//joAYOrUqXA6nVi6dCkKCgqQnJyMnJwcFBYWgud53H333fI8ixYtwjPPPIMZM2bg4YcfRmVlJVauXIn8/Hy5RVV8fLytucLN/KIDONEgCtKKWi8yUpzISNGPHPlb05iNnGqtoj56UZX5RQdQXuOVo8izN+/HnnwxnTKvsFTlbs2xTEAqtdbRW2p1IyG5bJudv1mUzN3q5i1FqrKWFQfVZijYmmYlz+4tx+IJQ3Hv1s/btT9B2EH622svvAC4l76t20/dDmZ9z/2CgMylbyMr3YVBKQlyaQbDACwLuZezuj+7Go5hVJFf5eeF1vXfbkRaK+IP1XiRvbwYW+aNwuisVMv9le379DJvOjPhuDd3LhoAfGIybqN1y0sW7aAsMWuHBaCvRYucPhYtfE5/aT5eoJj/VwA03TWn1Jq3Qdo1fIb5/DbwXGnersq703z8mtvM2yR98ox5K6QPoN8OaySq8AGGYfU995vufwp9TccB4C+42XyDO82Hd31kfp3fGGNuxvhvXGw67rrytOl4v09O4mE8Zzj+n5XmJRylt1k/rF1z28OW25ix6xmL38V7Lf5Wf2Hxt/Ss4t89NK8B4F3z3S0/K/rYCMR9ZdWyaoDF+DUW4xafN/i1xThhhm3hvG7dOvzzn//EI488gkcffRT9+/cHABw/fhwtLS24/PLLsXbtWgBAU1MT4uPj8T//8z+mc9bU1ASkmEmvv/vuO7jdbixduhQ8z2P16tXweDy4+uqrsXv3bvTt2/Yhl5ycjD179mDx4sWYNm0akpKScP/992PlypWque3MFW6U7Zl4oa33srYNk5TqKDnVQrGPJIiVadYMozZwYiDWE+eu3SsLVXeqE9V1aqfdZr8gC3Htl8uC6cMwe/N+lRBlWeimdkv4BQHupW+rBLAUZT/1rrEIrlpzg+77mWmJIa45NuZQjZdEM9FpsDLHc3CBD74AoI+rJ06e+8FwPx5tD/Wy0sSe6SzT9kDqUI0XszftBy8AHADNszMwjIDctXvlzza9zwujdlFGKdl68zT7xXISswd1Enpp3V2FcNybCYIgCIIIxHaqdkpKCvbv349nn30WkyZNQkJCAhISEjBx4kQ8++yzOHDgAFJTxSf/8fHx2LJlC372s5+Zzul2uyEIgu5/brcbgNiDcvny5Th69CgaGxvx4Ycf4qqrrgqY69JLL8X777+PxsZGnDhxAgUFBQGtp+zOFU4y0xLlFGSz1lIcy6Bg+jDdlES/IASkWQ9Nc+G1BaMxMEk03xIgpiUro7tVHp+c/q1EEuLSl0spFfu/XtyPAUkJqsiWsuULIAp2vdToKkXtsxRlDyZyLFEwfVjQ+ygxStsmiK6OUeaFmWiWkB7qSWUeWpHezIt/z34gIPLdwot//1JaNccyAWndRnXGRinZUss6u+fYnQjHvZkgCIIgiEBsRZwbGxuxbds2XHzxxfjlL3+JX/7yl+FeV5dl09yRssO0FFFRmfC04ucF2SFWj4paL1bsOBgQRTn1vXlPYe0XTUan3k+5HilV04jBKWJkecK6kgBhLK1dGWU3QopQKV23M9MS0ew36tJsjrJXtrLdFUEQ1gRTB8wLYnq23oMxXgDQ6satzBxhIGavZC59GxzHwM8LyEpzoaLGK/dlV4pryQxR+7esfDBmFK3uytC9mSAIgiAih62Ic8+ePXHnnXfin//8Z7jX0+WRHKYlsy7pC6E2miJ9aTQy4TGK2AQbgRmqMPGR0NYTAjA0AnJwrJxKqSUzLRHVHh9YxW8ZwwRGqIC2CJUUJfcLAg7VeG25BjtYBhpvM3Asg4oaMWLljpEvz5z1JgQRE7CMmJLtXvo2ctfuxYCkeN3tGIh/52ZmYWLbOR5sa3YKCyCOY9DCC+DRlsVSUesFxzGGJl7ziw4EGAam9+qpMkvsiIGYFUqTs0c+9LXL5CzUhOveXF5ejrvuugvDhw8Hx3G6rbcEQcCqVaswaNAgJCQkYNy4cfj8888Dtvvmm28wceJEOJ1O9O/fH48++ij8GnMMu3MRBEEQRDSxJZxZlkVGRgbOnTsX7vV0SyTxrIyeSJFgSVRzDCM6Tet8qVR+oQsGycRHG5XJTEtUCVGpDZUeknjfNHekSqC6W89pftEBtCjEfBzLYMv80LoBN/OCXN/t4BgMSIpHi1/8Un6oxotj9Y2GX/wjQRwLfPDgBPSL4hoIIhiU5mFVHh8cHIvsdPFzyJ3qhDvVCY5hcGEig01zR6o+p9ypTtXDMSl1mxfENndca+21NkDNC+pSkIwUp+qhnl7myomzTbJANnIBD4WrN6AW5icahJAL8/YQrnvz119/jeLiYlx88cWGRmJr1qxBQUEBHn74YezcuRMulwuTJk3CyZMn5W3q6+sxadIkMAyDHTt24NFHH8VTTz2Fxx57LOi5CIIgCCLa2DYHmzt3LrZs2YJ7771X1dqCCA16AlPbq1QvFVHaVzYJA+Qvl47WFEi9VGuzVMxNc0diYmGJHL1u5gUcO9MYYGAGiPXWua3pk0fqGgPccrVfdv1+MQU9XPh5AcfOqNPVm3kBNed+wAcPTuhw2jbDAHEMY2nMpIQXxJ+Rdl0E0Vmo8viQne7C3iW5qgdtJSUl8mvl55TR35nU5s4KMTrNyuaC84sOGKaC65klSp9v+yo8mLVxn7x9e129AbUwFxA7vaDDcW+eNm0apk+fDgC45ZZbcPq02q23qakJa9aswbJly7B48WIAwLXXXgu3241nn30Wjz8u2jq/8MILaGxsxPbt29G7d2/k5eXh3LlzWLlyJR566CH07t3b9lztx8qBFgD2W4xbPew1c/UG8J6Fs7elE+9A8+HTCqffFr/6NYBdTK75/sssDg8AL5oPe+81d83GJPPhb6ZdamMRxhzemqP7/vkeJ3F4aw6W4bem+0+5zdx5HADexE9Nx+8bs8ZyDjNetLDltnI/H/xlmel4C+JQD+Of0+DMf5nuPwdFpuMA0Bc1puOfzDN3R5+9eaPp+L/uMXcW/2Sr+fx4QvHvRQBe0IwvN98dsHDt7me1P4B+Fn/vOy32f8/CZR/tde12tI5ZuXpbfN6FBKvPbatuCTa6KbQT28J5zJgx2L59O6688kr88pe/RHZ2ttz2Qsm4cRa/tIQuWoHJ8wj4UmfkDKv9QscxDCpWi06zyhZTDMQUSZ6HaUuWjFQn/FozoNYvu9Icyi+/ynRqKUVScuRWftmVWlxV1KpdsqVI9ZG6RjAQ0GIg9LPSXKaO3kCgsJfXzwty2rad9G8j4lixR7VUf84y1u7GUvscgujMSH/bSvf9vk6gcJBH/nvoiC+BEkkQV3t8qod4WpQPAPVaTl33lL6A17p626mPVnUxQOz0gg7HvZllzZPRPvroI5w7dw4zZ86U30tMTMS0adOwa9cuWezu2rULkydPlttCAsCsWbPw8MMPo7S0FNOmTbM9F0EQBEFEG9vCOS8vT/73vffeC0ZTVCoIAhiGCahdIuyhFy2xa3ajt6+E3pdJO1EWjmXA63xZFSCKejMzoMrahoA2VoC+8OUYBiUPTpBfK9tnSUiieXf+eOQVlrZbhFbWNmDvklxbUecBSfG6EWK/X8DS7V/Ka9T+HRBEV4UXIPsGSH/HJxogPiBrzWwJ1QMi6XNsftEB0wi1mN7No9rj032waNSvWusRoTwno1ZZ2gcGsdILOhr35rKyMnAch+zsbNX7l1xyCbZu3ara7rrrrlNtk5GRAafTibKyMkybNs32XARBEAQRbWwL55deeimc6+j26AlcO1/mjPaVaG//Ur+NCI9e9FcaN/oCnZHiVDl1S621JEF/pK4xYJ8shYFZR9IjM9MSbadm6olmBgDHMSph3xJEyjZBdHZYNjDDJRwtoaT65tx11g+5qlqj0nvyc23/fWsjxkb10ao1KT5LlSnq0SYa9+b6+nq4XK6Alo/Jycnw+Xw4f/48evTogfr6eiQlJQXsn5ycjPr6+qDmIgiCIIhoE1SNMxE+9ASunS9zRvt2lKx0l2WKtyTWtS2ktDXSEuU1XsSxTIDYLlc8FNBGz6VIs0RmWiLKa7y67a04hjEV7R3tCT04VRT9oYZjxGusl6JOELFECw/EsQIs+8t1AGV9s1Hmi5Zmv6Cbem1EHMeoHjCaZe3EOt3x3rxhwwZs2LABAHDBBQ1YsSLJZOvmEBzRyrXc7Pg21hBXYj7eYj9bYOBAH9atC9JlvZ+Nng8WZdYIfOatprf5MLuvxXSc72fxddWh//ZAxot1PUrM9wVwQYm1V+4UVJmOJ8NtOYcZl1n49U5cVGI63qPE3EeF8/ZCcsl1huMPWJyfHRww/znOHF9iOp5akmw6PgbmRogzrX7Wi9r+OTDNi3Xaa2r1jM7qq7YdVWXwuyoz02L8eqs/NqvPvCTddwcO5LBuXZKN/fUNI0NL+86hjY7dw1991XjMtnAmIo/yyxwQGJ0NJ1KNMu8XEMeJdb2js1JV2xiJ9WqPD+m9egZEbQXo1wMLrSme1R6fafQcaIuu64ljvyCg2c8bplmv2HGwQ+JZdBe290U+GPjw6hCCMCQ73WX4ICqOZXQzKozSn0OFlPKdtaxYtxzECKkm2ujzQUmzX8C4tXvhaP1sU37ecSyj+pwwMmXsziQnJ8Pr9cLv96sixfX19XA6nXKEODk5GWfPng3Yv76+HsnJyUHNpWThwoVYuHAhAIBh3Fiy5IzJaq2MbuxwlcW4lbGUxRr65JqPa8y+zFi37p9YssRqvRqWWRgeAcBbFuNfWYxbmIO5dpw2Hfe+aGE+1lf/7XU9SrDkfK75vgCm5Fqbg31jIYxvxl8s5zDjXxaCZNc9uabjVuZg60r2oT73fcPxp/CI6f52CLs5GDpoDqYwA1u3qARLXshVj1uZg5VajNsyB7MY77A5mJUxlv7PaN26pNbPUqvPzH9bjIcCK3Mw89+zjpqDjRhhPBa0cD516hQ+/fRT1NfXg+cDv0HNmTMn2CkJA/RE4qEaL+Zs3q+qCw4WO7XTK3YclA3C/LzohG03qj2/6ABOnA3eQVqKGJkdR4quV3t8mLN5f0A9dHWdD1lpLl0H7Yoar8phtz20+AXEsW3iwZ3qxOzRg1Hw9rftnpNEMxEtzARmtMsQghHNUuq1VN6ih15XgGa/gNmb98Odmmj4eadXMrP8P9p1SmElkvfmnJwc+P1+lJeX4+KL277IlpWVIScnR7VdWZn6y/yRI0fg8/nk7ezORRAEQRDRxrZw5nke//M//4MXX3xR96YsQcI5dEgi0b30bdX7Vq7QVsJY74ugXFNd45X7rEqYpYnrHc/K+doIo2MYnY/08EAZmZLWmpHqRLYi3Vxy9LaKFjs4Bi1+wVDMCq3HyE53yetdvav9opkgiI4j1lqLJmFGdyeuVTnriWe9shi96HXbZ2Fs1DcD0bk3jxkzBr1798a2bdvwq1/9CgDg8/mwc+dOORIMAFOmTMHatWvx/fffo1evXgCArVu3IiEhAePHjw9qLmMSYR6dsMoxBizbUfWxiMietorQWIxbRpSPWowrOR/k9gA22og4L7AYN4j4ypwyH7aKKLvutIhIf26wfz2AvoDrSvP9dz1j3uoJAHCj+feHNzN/ajr+KcyzVdIe+d50fPaX5tHYojrzv5et2AIPUg3HL8U3pvvv2mp9jV6+zbx05M3NN5uO97X4RXlE1U8qkA9vM484f3NbW9uzviVu3PeluoXY0/OWmu5/zeYPTMc/eca6e4Hl7/JOi+yKy4ebj39lFW01antWAuAWAFYR7Y62irIzx5s25ogO1kUdraxbtw6///3vcfvtt6OoqAiCIGDNmjX43e9+h+zsbFx99dXYvXt3ONdK2EQSxn5BkIWxEu2XRKm36aEaL3gEmv1Y1fxpj8exDFimbd/sdBf6JzIw859mGWBQSgLyCkuRtawYeYWlqG59QGB1PplpiarjKdvTZKW5wDEMstJcAS22JDiGQXa6GKVed8sVlhFg6Zr5BQFVHl/YU1cJojvg4Mw/I6w4XOcDx7V99mhp9uv3tHdwjO5nyJzN+w1LQh750Cd/PkWbcNybfT4fXn/9dbz++us4duwYamtr5dc+nw/x8fFYunQpVq1ahd/97nfYs2cPbr31VvA8j7vvvlueZ9GiRejZsydmzJiB9957Dxs2bMDKlSuRn58vt6iyOxdBEARBRBvbEeeioiJcf/31ePnll+HxeAAAI0aMwHXXXYfZs2dj+PDh+OyzzwJaTxAdR9t72G1R32xlKmZmoKWH0tXazvHgF5DRumapXczsS3tg+2GHKmp8/Eyj3LaKY8VIb3VdoIu4MoItjSmj0P0u6AmOYcAL6vpErWlaXmFpQD3nawtGq2q3JxaW6J6jQxOFJwgitHT070sQxDRrvZRsq+P6zrcgI8WpMjg0a1t3okEw7HIQacJxb66pqcGtt96qek96/d1338HtdmPp0qXgeR6rV6+Gx+ORBXrfvm2hx+TkZOzZsweLFy/GtGnTkJSUhPvvvx8rV65UzW1nLoIgCIKINrYjzpWVlbj++uvFnVhxt+Zm0fUsMTERv/jFL/Diiy+GYYnEy/NGITvdJUdGX543ynR7owishF1zGylavDt/vKkZmfZ4WekuODhWfq+6zoct35wXRfDqqfJ82jrqo2cadQU/pwkh8QLkCLlfEHDsTJNsOtbSWrOojVpL5z003QUWohBmGbGWu9ojRo/yCksNv7xLvasJgohdeKF95mXHzjThaH0jBqUkoLw1A8cMAR1rjRdKwnFvdrvdEARB9z+32w1A7GG/fPlyHD16FI2Njfjwww9x1VWBplSXXnop3n//fTQ2NuLEiRMoKCgIaD1ldy6CIAiCiCa2I84JCQlwOEQPdZfLBYZhUFPT5mrWr18/HDlyJPQrJIJuN2XlTK2t/9XiYBn4BcEy0ixFfaX0bPjb9pmwrkQlgk/6Ag8UEKlGm4GPUvC3BBGJUvaVragVjdQcHGvZH1va3ghpLcFE6oNFL6rNwNw8rF+vnjj5/Q+Bc7GMroM5QRD6tPCCpX+EklhpWUX3ZoIgCIKIDLaF8+DBg1FRUQEAcDgcGDp0KN555x3Mnj0bAPDee+9RWlUIsON4bYUdoa00A1MGaBgA7j6JtoS6UoCCF5CV3tZzWdsXtZ+TCTi3QSkJqK7zqcS7lHLNC8B3pxsCjNGCgRdEIzVJjEsi2SiV3UhnulOdcmp5R125JVhAvu4MxB7RQKDxm5X0Pfn9D2AYMU1VSUqiA6e+Px+KpYYUqwcBRNdG6Ujf2VD+7sYx9jN3wg3dmwmCIAgiMtgWztdddx3efPNNrFu3DgAwe/ZsPProozh+/DgEQcCHH36IJUuWhG2h3QVtNFQvYhqKHs5Kca10pQ4mBdGsllob9V6Q4w84t4wUJ7LSXKoorjJK2tF2OJKg1K5RK+qlyJHyvaw0V8DDg/lFB3RFajB88OAE+To4WAZ+v/jAodnPo7qufWZDeuuJRdEMAHFUK96t6ayiGVA/8OGBkHwOhwK6NzcA+MRk3GzMJqejXYZmdQ5Kt+NaBDqJW7mCW7noAtho4eR7ocX+N1qMW1xib4GF07ARvwLwOODdb+wmDQDX3GPulgwAp5BuOn54q3n7tLQvzF2zcaf5vTEVHtPx0SnmTYaX4d+4CP8yHq8sNN1/8G3mfaIBYGyd+e/quM/Nxxm3+U3iokzj9QNAKswdq5XO4fHoF+Akvnrz/ab7L9v6W9Px++5ZYzoOAE9/ZO7cbdnT/HGrnuZTzMff22Uw0AxgFyy7APzCYv6XbPSdt+xUYPWZZ+QMLhG+z2zbwnnJkiX4yU9+gh9++AE9e/bEsmXLUFNTg1deeQUcx2HhwoX49a9/HbaFdhe0YlQvYhpqQxojIdmR/bRR75KSkoBzO1LXiIrVU1XCPRisDLviWAYDktqi2tIajVLZzdLbAfFn0xHR3K93T0x8qkR+OMD7Bbhbr1PWsuJ2tfDqbJBoJjo7DMQMmliB7s0EQRAEERlsC+cLL7wQF17Y9kiR4zg888wzeOaZZ8KysO6KVozyOhHTUGNVE213v4Lpw5BXWKorSCtqG8Q+yrwYIVUK7fb2fuZ581penheN1fRS3/UePhg9kJBSzJXinmWAjBSnbk2kkavvae8PARE3af+O9L8mCCJ0uFOd8ueGnqeBANFVO6+wNGQZQB2B7s0EQRAEERlsC2ciPGjrfgumD8OKHQfl11IKb7DR4GAI1nxMb79qjw8TC0vkiGK5xnSLFwDBLyCOE8WzUlgrBfiglAR5Ps5EFDMQ5/Cdb8GxM00B49K1au+5KZFSq5VIJmjK9HNJTDs4VlcEm6Wpaq/BsfpGMvfqBrAMkN6rJ06eCzR4I6JDlccnf24YZcMIAMprwpMBRBAEQRBEbBK0cD506BAOHToEj8cDQecLxZw5c0KysO6Ctu53xY6Dqi9iemZhscj8ogOqNFxBx3RLcrzWtnUyE7d5haW6UZ84TuzX/F8v7tfdj2MZVNR6kbt2L1r8YqsroC2alJHqDHAFl+qNtVEkZYq5hLTNprkjMWfzfrlndZXHBwfL2HbAimPFGnNt/XrWsmJ7E9g6BqNbL+5ObRX5GoM4InLwAkg0xyjVHh8YRjD8W46lllQA3ZsJgiAIItzYFs6nTp3C3LlzsXv3bgDQvTEzDEM35yAxM9gC2h8NNiIUrt166H2B1JpuSfgFwXa9ttEXUz8vYMWOg8hMSwwQ1g6OgZ8XZCGrpKr1/Hfnj1c9tOAVLay069I7xsTCEvj9AjidOmuzSLEytdzBMmhp7Y16qLV3bHarcA9l6raRydphjw9D08X2NW6KchOEzL4KD1bsOGhpZhYLLano3kwQBEEQkcG2cF68eDF2796N//7v/8Z1112H1FRzh0LCHu015movej2MOyLM9ep/AVG8qmuc1SLQbr12Zloiymu8AUEfXhB7KrNQi1F3qjOgxZUW6bh6kWRpXmX94qa5IzFu7V7VdpJY5oM0u/ILArJb23ZlLSsOMBuTfibKSDZgHDXuCALaHmpU1/nkNHPpoYredSeI7oCdtnMOlomJDCC6NxMEQRBEZLAtnHfv3o1Fixbh2WefDed6uh3tNeYKBmWUWSlwQ2E2plf/m61Jd96dPx4lJSV44h8Mymu9slj0CwIyl70t1wvrRb6V14dlxeipUmzyAKAQo4CY3m0WrbVjSlZe48XEwhK5Htud6sRhjy8oIckA4BigxeCBgd7xeQGoqPGqRDPQ/tZcHAv4TaJmymyHao8PlWtukMeylxd3yAVb6k9NkWyiKzIgOSHqxmAA3ZuB8wCOmYxfY2MOq9YnFu1ZOjz+psW4nXMww6rdlI2WXVbtYcw76MCyfYxVq/GvLM5hkkG7LCeAKwG8Ze6E/8nn4ywWAKBfx8ZdvzK/SDc7zX8P3sRPTceXY5Xp+BnchPdxs+H46sx80/2XPWPeigkAet9Zazr+3XVDTMenWP4tmOOBeaumJ/CI/O8HUIWnFK8B4Gb8xfwAIzv+XWb2mI2m49oWWVqWwfznYNnO6nODdlL1JcDfc4Ejprtb85JFqynAun3d6RkWG1i1vLL6zNS27NPyguEIa7GnDM/zuOKKK+xuTsQQkrjVRoVDEeHWRm05hsHu/PGGIjiOVd+8lJFvPaRU9YrVU7EnPxdD01wBNdJ6PaQzUtqOrzymuzWCLG2XleYCy4gRciVSPba/NY26KkjRDIh12KvGJsCtuRb9Lugpi3tOcz1YBuA4Rtetuz2YiWYtnOYa+DsodgWIqfHNvIA4VhTSkSbO9iccQQTHkbrGaC8BAN2bCYIgCCJS2I44jx07Fl988UU419It0aZOz9m8X5UuG4oaZL2UZI5hQhLhDibVPCPVCV5HyNmNfCvrvfMKS1WpxCwrRkwzUp3IaDW9amvnpY5I680nzRlsXbFZL2meB9KdLLTuQjXnfoBfaFLVVkvp5sr3QrGGYPDzgio7gWMZCJoIf3uxqhUNF9E6LtG1kVz9YwG6NxMEQRBEZLAdjyksLMSbb76JN954I5zr6XZozcGqPD45OmwWiQ2GzLRESIFNlhFTqStWTzWMDBtR7fEhr7AUWcuKkVdYimqPT47acgwjp1zbXYtEeyLfm+aORJwiQtrCC6prZWW6ZjSndC4OjgFjEiKVruOhJ6YiO90VsC2jOCdtZEoSyNr3zHCwDNypTt0/2GBEs0N78RVkpDhV2QktfgFxLCPXkRMEIXJhYmzUNwN0byYIgiCISGEYcb7uuusC3nO5XJg5cyb69++PzMxMcBynGmcYBnv27An9Krsw2oitGCEVx0JRgwyEro7ayFgsGHMxufdxjRdcq/u1HcGtRRu9FlrXlFdYKtdD87z4vl1hru1Lra0zVsILEHtstz48ULa1avELiGMYHKrx4ufvqPdjGbFVll9HPJvRwgtwcCxKHpyg6pcdDHE2umQpW1NJ6eoDkxLkdl6A+FAgFFFoguiMcAyDVWOdUatvpnszQRAEQUQHQ+FcWVkJRifklpGRAQCorq4O36q6EVpR2+znZVfo9kRijdpNdbSlVbXHp2rJ1F5RH8r2WtqHDiwDeY1+v1jfKqB9KelSujcDY7FZ5fFhYmEJ9uTnBqR86/WeBoCsNBcKpg/Dih0HDbcB1C21gDYH7PlFB+C3EM0DkuJx7EyTOE+rG7eAVpMyE8Vb5fEhrvWBgxKlaIb5FBFFioKT8RgRScTP5Oj9ztG9mSAIgiCig6FwrqqqiuAyui9aIaknfIMh1O2mlPNqiXaNn/ahg1aItvBA1Zqp7Z6/srbB8utxs18IuMZGDxQk4zRAdBqXftZ6Alovoiw9rMhKd5m2ijpxVhTNLBO8qOxMNcEkmIlo0OznUeOL3u8e3ZujgZlrt53xjrpiW82/X/HvZs1rwNLVu4+F47UdTu8yH//qRYtxqwNYrNHoq5KzdexeKxdeG07A5obNlng/N5/gg81jTccPP5NjOr6w78um4+vOlWDLE7cYb2BxiVffc7/5BgAuwr9Mxz+A+TkWl/2n6fjGnNmm43fWbTEdX1DTNl7StA5VZWqH6VE5pab7WzqPb7V2Ht9w2xzTcatzuGiV+TXuA4/p+A1Xvq37PruvBa4rT6NwjPk5LnzG/PdsirDddBwAdlUau7sDAE6a/z26rrRwDl9s4LIvsdN82Azb5mBEZOhoRLY9tb1259US7Ro/7bVyLw38MDCKwOuh3XZQSoJlT2gg8NroiXjpfb31567dq0oJV/alViJlIGyaO9I0XVv585f2I41JEKGhus6Hpz9jMLP9z+QIgiAIguiEmJqD+f1+LF26FC+8YNzPCgCef/55PPLIIxBiJYezG6M1AgtVVFjPYCwWepgq0bZ9cqeqza6szNa02wKQzcLcqU7RnEtrAobAa7xp7kjdteg9aNhX4cGx+rZUaM4gSsxArI2uqGlN17aphB0sI59D3149bO1DEIQxvAAcb4juvY7uzQRBEAQReUyF8yuvvIK1a9di5EjzyOI111yDJ598Eq+++mpIF0cET7Au19Get6Monb4BUaByDIPsdBdenjcqqAi8dtsjdY1yD+mSByeg5MEJyEpzqfoRS7XHkss4IEaSSx6cgKo1N+AP1yeias0NeHneKMwvOqByJAeA2Zv3q4SyUflyHCfWKvOtx+NYJkDE69HMi32oB6UkIKFHnKlTeDjITndF9oAE0Q2gezNBEARBRB5T4fznP/8ZkyZNwogRI0wnGTFiBCZPnkw35xhASv9tT7upaMzbUZRR4uo6Hxwcq1qjXgRer60WYC9ar1f3rKwnt7NO5bZ23bGb/W39lHkB8PtFN3K7VHl8qPL4bBl7WbWecrAMBiTFw44G350/Hlyk1bpN4mJzWUQnYV+FeR1ZOKF7M0EQBEFEHlPh/Nlnn2HSpEm2JpowYQI+/fTTkCyK6BooBeojH/pkgdreOZQiV8IqoqwXKTcSsXai6np9qKVjH6rxqtZZ7fHhkQ99yFpWjEM1Xt11Orjg1RvDAFnpLuzOH48PHpwQsqjugKR4uFOd8Fuoa78gwNkjDt+tucFUFEvnlpmWqBLZDk5MfY+2bn1q5pUUESfazexNWgOmyEH3ZoIgCIKIPKbmYHV1dUhPT7c1UVpaGurqrFwLie6E0uH7RAPa5fBt5RKubUllZMClRCu2JcFrZR4GAAXTh2H25v3gWyPF2nZVWjF+okEIiFAr17ll3igxXdsvwMEySO/dEyfONoFjGcNodBzLyKJeOj+rvtOAGGFtMdDEDABnjzjVtZFwcOq1KIV/Zloiymu9upFsPy8ge3mx2NdaYXjW7BdM12lkjhZqlrz+Bfbk5wKAobs5QRjRzAuo9viikn1D92aCIAiCiDymwrlXr144fdrc8lvC4/HA5aLoDdGGUoQJaJ/Dt52IcrDtu5RiW0IpeM3E/YodB2VjLgZi7THPQxWllcS4Hhyj7is9OisVh57Qt+fVum3L8/OiYNa6gAPGDtpWYlT6+WgfRGSliZHtvMJS3QcU0vXXO19egPyAwa4QZgEcWjVV1yE91DT7BUwsLAHPR7+1GtE5CVW7v2Che7OSHjBvt/RJBNZg1W6qo2sIpp3VMQReD4vj2/tVssCi5VWH97d4+POWQfuagQDeAgJbdGkZZTEO4LRFy6pfWOxv0QLnMGPxMMwqyeSUxfjDMG7bBQDvmu/+xLTlFgcAvC9a9Oy62nx4yhjrVkZm5McXmo4X5bS1gmJPXoDtOep2VEUwbxX1DS41HZ9920aLFQJj8YHp+Icp5n/vH2Kc5THMOODU/yFUsQ/ggPNOy3ZWL95jvv5x+NByDRdn/tv8GP3Me6NZ/p5dabEAq3GTjlumqdqXXXYZ/va3v1nMLrJ7925cdtlltrYlugfKtGY99+lg5zCLKAdTe61MyVZiZh4mpYwrU64FiCK2YvVUZKe7TM26JCdyvXUapaMfqWvUnUu6BtqU8ypPYOssyShtzwO5xouDutWVXrq60fvS9bc6f7tw7UhdN2JAUrzlNs1+QeWiThDBEKp2f8FC92aCIAiCiDymwnnGjBl47733sGPHDtNJ/vrXv2L37t34z/80b1xOdC+UYuvCRKZdTtzhcPNWim2l4DNr3yWJVCXayKueGJcwWnu1x4eJhSU4VCMK4HJFmrfRWhZPGAogMBovrUn6v1aoa1tkKeFYBgXThxk+iLB6QKE8/46YbknRfO1aByTFB12PfOxMk+1tqc810R4GpSRE5bh0byYIgiCIyGMqnO+66y4MHToUM2fOxPLly1FVVaUar6qqwq9+9SvMnDkTF110Ee66665wrpXoZCjF1qqxznbVAobbzduuMNer/dWLvGrFOANRwBqtfX7RAVX9sKCIeuv1gwaAJdu+QF5hqSo9nGVEsdn/AvGLPC8A3532qpx/X543ytCMrNkvYPbm/e0ycAPE8980dyQy0xJ1W2pJTtxWSE7hL88bJV5HiDXWJ86KIvi1BaPbtT4rWEasHSeIzgDdmwmCIAgi8pgK54SEBLz99tsYMmQIVq9ejaysLCQnJyMjIwPJycnIysrCqlWrMGTIELz11luIj7f+Ykx0T2p8vKk7drSwK8y1KeNmYjiYSLteqqcUaZb6QWtp5gNTi7PSxL7Vp75vi7K28GKfaOW58rzhUtDsFwJaalm5miuRovICROdvB8eoUsX/vnQistNdpm7a2gcRWekuNPsFuW581sZ9tgR4sGSlufDKfBs1bgShwKicItzQvZkgCIIgIo+pcAaAoUOH4vPPP8f69evx4x//GBzH4eTJk+A4DmPHjsX69evxj3/8A1lZWZFYL9FJefqzJt0WUJ2FYFLGg4m067Vq0s6tFyVWRr85hpFFvNaJu9kvqNpjsRZ/8Vohb9S6S09Qq8zghLb6b8k8Ka+wFOU13gCXcaDtYYT2Wuk9WDh17oeA9xws0+72Vtnp4s9zxY6D7ZyB6K70u6Bn1I5N92aCIAiCiCymrtoS8fHxuPvuu3H33XeHez1EF+WkTzB1x4519NpahQI9V3CteFS1rOIYpPcSW1bpteDSto4CoBK8LQYtrgAxSqytq9bWUZfXeJG9vFh1DGl+pSM3wwAsC2QtK8aglAQcrfehxSTazQti7bbWKXxQSkKAs3iLTkFyR9pXHarxYtzave3en+i+6D3EiSR0byYIgiCIyGFLOBPhRSsWrHoJd0b6ORlZPJuZcNklFNcsFq67HUGubVmlt24JpciWUD6o0MpLZUstvXZe2j7NAhAgzKX59y7JlSPUHMugxS/2sDbr2azk3q2fq16X13oRQpNtggg5eg9xiFjDTpukYx2cI9ztpt4MYq6LEPx67Mx/s8W41TGtrrHV/EfNh78yGG9sBL76EtY/Q4tWUwAsW2LttJjDqu3XJIv9O+qN6gRwhfHw7FXmrZS2VJq3CAIAFJgPT6ntWLupQuSbjv/Faf57NNfX1mfo//Gf41Gfuu/Q284bTPf/Ny62WKE1Vu2kPEg1Hf/t4GWm47uqzY+f86r++yd7nkfOa4fR66Za0/2/vzXN/ABPmQ/boTDd/Bzz71ltOv4vXGQ6/qHPoqVXe9tREZHBKB22K3HfiPiQumPrXbNg6nGN5ugMaOuyAcjnvWLHQezJzw1oD+UXBLAsAtKZlS21jNyyrUyzpAch0ro2T04EzweK9GARBJhGqQmCIAiCIAgiUlDEOQbQpsN2tjRmO6Q72ZCmOutdM0kI80Jb+rDZMTvrdddGnJv9PKrrfKrzLpg+DLM37weviA638ALiNKncRtF/5TGU7t16ZKQ40eznkbWsGJlpiZgxuAUsC/j9oTtngohFwmFURxAEQRBEbEIR5xhA69jc0TTm7oDeNQtWCGt7sEarJ2uwaCPlVR5fwHmv2HFQ7oksIRl2ffDgBGSnm0f/5xcdQHlrb2kjHByD1xaMhoNjUV3nk9fz1Kc/qGqpHSwDd6pTdtj+4MEJqFpzQ+u+xtHsuHZ+OjGMeEzVWjWvpfZdZr2tCcKM7HQXXl1wbbSXQRAEQRBEhKCIcwygZxBlRCzU5cYCetdMGXHu7A8gzH7O2gcEgHi+yvPW6zutTak2o7K2QTfV2p3qRItfwNEzjWj2C1i6/Us52i2tR5tdzQtAyYMT5HOasK5EPiepdjt37V5VLbQkaJXvxTFAi43876GtDwO0fxdG11R7bCscHIMBSYGmZaptWAZ+XkyPp3TzrsniCUO75WcvQRAEQXRXSDjHAME4NgebjtxV0btmwTyAAAJ7sEarJ6uEUtixLGRzLeXPWWopJaVBMwwwOMUJB8eiokY05ZLMuXi/us6YYxlU1HiRV1hq+MBFWoNepJljGDg4FlWeth7SVR6fGDXm24zfWIjiWfsAw+x3187PQgCDqjVTVe/9aM0eHDvT1rt6QFK8PKeeUNb7W7ESzXEMwLCM7Gq+Zd4o9E9KMHXibuYFOFgGW+aPwn+9uN8y3Z1jmFaRLcBiUyJGuHfr55h+lR3jKYIgCIIgugIknDsZnbUuNxIE2zJK2T4pFiLUSmGprA9W/pznFx1QpUHHsQxenjcKGalO5BWWyvsLrfXMklu2XAcN8wcu0hq0MIpItha/X0BWuksWqDMGN2P7YUfAAwyz311t26lBKQniwwCLn8+rC67VfVhS7fFhYmGJXM9drjlnpai2ggfAQXwg4E5NRP+kBGSkOpGd7pLXp0czL2D25v0BzuR6ZKYlomD6MKzYcRCHagKvv12y012qmneC6Pqch7Vjc0cJ9/wddeVWPsBxINBBuqOu4UD0ncOtXLetsFr/8A7OD+D0l+bjfSyO8Z6Fa/d7Fs7iGGg+/DSAx42HtyxeYL7/lRaHBwCLKXblzTDf4HOL/Z8133/wbWWm46nONmvzOLZF9RoAxr1v/nvy5nXmv4dv+qx/T3/qNP9dXzByi/kEPzMfnnK5+fjUWW/ovj+jhMVvct/A9+9buGanmw8LFuMAkJ9i7oqdxJi7avcVTpmO/7bMfH+r37OrMcJwjGqcOxndrR46WKfsYNg0d2RInb47il56NaD+OWtTqHkeuincUj2z5JZ9pK7R1gMXvTVwDCOnP+v9vmWlu7A7fzz2LskFAKz9VOxtu3dJrsqpO9jfXTs/H63DuHSs+UUHVCZoguaclXXiWtypTlStuUF2JucFsQWX8qFDtceHc43nLcVps1/AprkjMbT1PLLTXVhxwyUB21XUerFix0Hszh9vWvdtRZWnAYc9PnAWTugEQRAEQRBEcMS8cP7DH/4AhmEC/nvhhRfkbQRBwKpVqzBo0CAkJCRg3Lhx+PzzzwPm+uabbzBx4kQ4nU70798fjz76KPydzPo31sReuAlnyygj0RVujB4GaM3J4lgE/JzNxGd7x5Rot8tOd6muz6a5I1WGWu7W9wD9VGzl+ZbXtEVnOZZBwfRh8jx6qdpGPx/l9ctduxe5a/cic9nbyF5ejMylb4uRd52orfL6GtWAZ6e78PK8UYbbKB3cT31/XvcaKtGK4GY/jzW7Ap+I8wJwqDWNft0tVwSYmdmluTW9388Lsf/h3snp26tHtJdAEARBEEQE6TSp2u+//z4SEtq++GZmZsr/XrNmDQoKCrB27Vrk5OSgsLAQkyZNwsGDB9GvXz8AQH19PSZNmoRLL70UO3bsQEVFBR544AHwPI/HHzfJXYkxgk1H7ux0xdR0u3XqA5OdKHlwguo9szru9o7ZnR8Qf/+0a5Iw+llJ56vUoH5ekCOsgH6qthHK66fcR2q9VVHrBccxqlZcWjLTEgNSorPSXKqfg9420vt2fg8drFgPbbRePSpqvXh2bzn2PJCLOZv3B2VapoTStMPPtkU/ivYSCIIgCIKIIJ1GOI8cORIulyvg/aamJqxZswbLli3D4sWLAQDXXnst3G43nn32WVkUv/DCC2hsbMT27dvRu3dv5OXl4dy5c1i5ciUeeugh9O7dO6LnQ9gj1uqQQ4GRwLRjkGX24KS9Y+3ZTg+jn5VZ5NaIKo8PuWv3yvXbSoxS2pVz620gXc9qjw/N/kCra+V6jLYB2h4uWNUiu/uI9dBW69Wu/VCNFxOfKkFzjKhfKV2dIAiCIAiiO9Pps/k++ugjnDt3DjNnzpTfS0xMxLRp07Br1y75vV27dmHy5MkqgTxr1iw0NjaitLQ0omsm7NMVU9ON0qY7e/269LNiGRiml0toz0/vIUGVx4eJT5XAvfRtuJe+jdy1e1Ht8enOpyUjxSnXKGuPN7/oAKrr1JFc7Xr0tgHE1GspZX1AUrzpGqRsgvb8HLWiWXQ0Nz/pcJU1k2jWJ5RlIwRBEARBxD6dRjhnZWUhLi4OF198MX7/+9/L75eVlYHjOGRnZ6u2v+SSS1BWVqbaLicnR7VNRkYGnE6najsitohWHXI4MXoYEIqHBOE0U7OaX/pZbZ6cqPpZyYIaovDUCmvA+CGBUkBWtTphK6+T2+T3weh66kWAM1LaarWrPT4cqgl0y5ZaUUnn+velE1G15gbZSEyrW6Woeige9mSmJcJvknru4BhUrr6hQ8ZiRHB0hbIRgiAIgiDsE/Op2hdeeCEKCgpwzTXXwO/347XXXsOiRYvg8/lw//33o76+Hi6XCxzHqfZLTk6Gz+fD+fPn0aNHD9TX1yMpKSlg/uTkZNTX10fobAjCOB06FPXr4e7z3Z757ZzXprkjVe2jjKisbQiYL3ft3oBaYKW5GBDYI1vrCejgWJUjt5bsdJfpOWyaOxKznivB8Ya29UtRbKl1VUfaTEk9unmD8K8kqrfMG4VZG/dZzudOdba7frqz42CZkKTB93E5QrAagogFwt1uKxTHsGonZTT/RTb2BYBd1pvYattlglW7Kks62BKs5TRw+kXj8cvvNN//PRvr/9yi5ZZFuypYLAEmyweAw+/mmG8wue2f53ucxOGt6u2n3qbfqkli10cW7bDGWAfi8lFoOv6f64tNx68Z84Hp+Fo8aDpefMN/6r5fcvM6FK9dAjxguju+/IP5ePlLU8w3sMFj31psUPa0+fhs8+Fdn1rMb9yNKvaF8+TJkzF5cttv+pQpU9DU1ITHH38c9957b1iPvWHDBmzYsAEAcPToUZSUlIRkXq/XG7K5Ogvd8ZyByJ93haZ+uqLW3vFrfDye/qwJJ30C+jkZ3DciHunOwIQUO/O355xrfDySewioCczYVtHXiYC5fY2BOzEQ8Ofi9+VzeORDH040iI7TvI6RvvI8KnQiiYdqvHAvfRvpTga/uKwHtnxzXnWtAIDneUARd2YBzBjcjJKSEizI4bG0RuwJbQXHAKnxwOkmcQ6/IO5nJJoZAH0SgDEFxTjpExDHAC0mujDdyWDlSAZAIh750KcS+12dXg5gxbXxeOgDi180SwSc+v78/2/v3sOjqO4+gH9nN4FkE0OWJFzkkkCAhIj0FRAR0QQJYkCqokWoIl4jFFAJIAii0XDRhxAo9aUYCxWolQi18FK5lKCJIBVEa4tQFIjRWEuFsEBww2133j/CLHuZndnL7C37/TwPD2TOzOw5Mzs5nDnn/E5U/k4jIiKKVmHfcJZz//33491330VtbS2MRiPOnTsHi8Xi0OtsMplgMBjQokXTkiFGoxFnzpxxOZfJZILRaJT9nMLCQhQWFgIA+vXrh7y8PE3yX1VVpdm5IkW0lNm+Z7NrWgKezDbgriCWO/PzaocAXZlpicjLU+9xHlpWjeNmEVYROG4Wsfxg05xa++janVMMDucX0DT39pFtTQ3NjBQD1jx2E2oO7PP6Xg8tq8bJ88r7SOe3H67/Xb0ZP2770GVfC4A3D+ttvcT/3b7FFtVb+lsKeuV8nezL6OxHs4iyzy/CYm26Vj/8JOK5jxoRqxdw2eI4TNoK4L1vY7HjvqbzLj/o2jMuT8C+l4Y35eX5LRCh3LDt1iYRlyxWfHfKDKsIiELT0G2rFbLrVG+YlAegqWddrdEcowMue9LajxANl4CW7bMAfOHnmZrudTT8TiMiIqImETPH2Z4gCLa/s7OzYbFYcPToUYd9nOc0Z2dnu8xlrqurg9lsdpn7TNEhEPOBndedXvqZSmtQY77Ok3aO9F1bb5ZdP9v+/DF6QXYOsi/cRZ6W1laufXUEqmYMdpnj7u7zRKeo3c6B1zJSDG6vU8ndvaBXiLR1ySK65FVaP9mec+RwuQBozpTW33YWqxfw0YzB2FGUi7pTjbY8iWLT0O2uaQkO865j9QLWPTkAADCkrEpx6LhOanwHoDPa1zWqtfJMxRch/XwiIiKKTBHZcN6wYQNSU1ORnp6OgQMHIikpCevXr7elm81mbN68GQUFV8fZFxQUYPv27WhoaLBtq6ioQHx8PHJzo2ddZLrKuZGrRZRc5wbocXNwh8H6GkzNuWEJwKEcUgPQ/vxWmZ5IXwMm2X++cKXR5knj393nOTdAnV8orHnsJrfXae6mL2FRaDFKAc7UyDWC5QhwLG/J3b1sL3QuWazo3Fr+Hu4syrPl27mRbAVw9MemtbOllw9H5g/HgMwUPL76U9m55BkpBmSkGGz5sMi8IHD21PUt0L2NcqC27m0SkZFisF0ziygyiBkRERFFnLAfqn3fffehf//+6N27NywWCyoqKlBRUYFly5ZBp9MhLi4Os2bNQklJCYxGI7Kzs1FWVgar1YopU6bYzjNhwgQsW7YMo0aNwsyZM1FTU4Pi4mIUFRVxDeco5W49ZX84r2XczhAZDQRpbWJpaLb90F93S2N1TUtw6bVs2s/7lwXOny8NDVdjf70FAYjRNQ1Rls4h8SbwmtK6yzFCUwCuuZu+dCh707D1pgarXifAYhFdGv0rx9+Ih1fttQ3XjtEBViuQ2SbRobxDy64OFf/ulBmZaYno3ibRZQh+5xSDbWrAsSuNZHvSz1axKbiYffnk1J1qRKfW8ejUOt4WRE3u5YhEJwA3d4jF8w9eva5Dy6px9MQ52I8Qdx72bhXRNHGbiIiIKIKEfcM5KysLq1atQl1dHURRRE5ODtasWYNx466GTJs1axasVisWLlyI+vp69OvXDzt27EDbtm1t+xiNRuzcuROTJ0/GyJEjkZycjKlTp6K4uDgEpaJw4NzI1WLdZOcG4JPZMpGowpBzw9J5rrZ9A9C+sWYfoTjjyvrGNQe8j/zpLgK2u0a0fR70+qbJylJDVdpXGorvT2Pc2WURGJCZgh1FuTLz2S0YPfx2xTJWzRjsNl06n32DXHqh8+H0PNn7YYtyrlImvV0Pr9wLD6CpJ9hhDrZK29YqNgVdK+tUj7mbvkTNiZ/QqXU8YgQBl+xaznLXsTlMm547omeos0AAgBZQjnbsSTRntWjJwYg67Q/7/CUgMPntr5Ku9nvf3+MDfQ88Ob/aPn5G3VY9v9o17OjB+Xu4Tz6gFlncg2jJI1XSF6pF5lb7HqiE3U5VOdxeLoBqx01bf6ccNRuVKuf04J3wt3tUpoeqRHx+YqByaPER5veVT7BefvMrn3yBketP4H3DCMXDZ4iLFNOfUAt9DuBe/Fl5B5Wo2B99qvwstPn0v4rpBYe/VUyf+5D7tLBvOC9YsAALFixQ3EcQBMyZMwdz5sxR3C8nJwcffPCBltmjCCbXy+kv5wZopEbdVeqhdWisiaLLUk01fn62J0teOeThSqPZ7T5eLs1l/72QC64l0fpeS/m1pxOATq3j3b5IUOodt2c/9NzTpb888cNPIsat2msLliaNUvCWNFpAizwFy9pPvsXjt3YNdTaIiIgoSMK+4UwUKFqsmxyNAjHE3dvza7WPHPvvhfMa0e7m8WpBrhEsBWqTHP3R8QWAw1B1yL/s1glA59YGh953abi5NCT7slWEwjsCRfaNXSn/UsRyT+gFwaUX3b5H3JtzBVO0roNNREQUrSIyOBhRuAlEhO5w5RxITIsh7s7nt58ZrtPB5Xp6kgdf82l/LwHYAmZ1b9MUVCxQlCJoS0Q4vgCwD3rWrU0i1j05AN3bJNqiYuvQNB8agEMgvLmbvrQFR9tZlIduaVcDfMW4qRXcvTSI1QsQ7PIdqxPQubXBbeUi7SoFLZML0CaXfyIiIqJQYsOZSAOBiNDtr0A15n1d8sqb88fYzcm9bBVdrqf9klF6nYCSu3tplk/7e/ntKTP+fVp9GSktSPlVY/8CwDmKujT/umbhCByZPxw1r45wWa7Kuffd/hxVMwbjg2mu87Bj9YLsclpSsDT7INnSnPeaV0fINrZjrkQQ79zagEsWq8P30354vcUqehwVPhQCOfqAiIiIwg8bzkQaCPTwZV9o0ZiXa3z7uuSVpzqnGByiOTuvyQw4LhllsYqYu+lL2fO4y6fSSwX7eymKTUORg/FCRMqv1GPsjtxLAiXf1Zuhs/tNL0C+9126JoNLq1zSbOtC2/cs6wUsuDUeAzJTcNkp2pc0jFmuh95qBY4tHI5YvQ7fnTI7XFt364k7C4flrC5ZrM16ZAkRERE5YsOZSAOBHr7sCy0a88HuSZcab/ZBueSup79le3z1pzj6Y1O5jvx4DkPKqmyNIHdDpoP1QkTqedahadizPQGQfUmg5PHVn+Ky3SThGL0g2/tuf6/t6YSrS2ZJQ7q7t0nEzqI8tDEoVyGdUwwOLwLs76V95HIpgJtz41xKc3bZzTrUai8dtPTv0+fDYmQJERERBQeDgxFpwNcI3Z4sveQrLZbbCnZPulxkaWmYtf21ktYYFn0sW82JnxwCaV2yiLagW/b3UqdraqSJCN4LEeegdZnPb7E1Zp3nOHui5sRPDoG/rFbIfsfcReiWhsLLBdOTIqhnpBjcBlErubsXxq3aC6tFtJ3ru3rX6Nt6QcAli9WjIGXOu8TqBax57CYMLq3SNJCYXgfACrhbVC4cRpbQRfi/VFG4LzcVaJ4so+T9MoPaHu8vtTJ6cg3UvidqZfR3uSqVJXxUz5+MgN+H32uwpJUilaWOTqosV2W/1FM/uC79dMCHLNn5drbKUlMAsPCUcvqvWysmF6atUT5+rsrn3yVfSVovx+Dc8RTM6Kq83NS+itsU07Me+EolA8CfcY9i+m2v3aeYvgcDFdM/wq2K6VtUzq+EPc5EGvB1+HIge3S1mIsc7J5058abXhBs1/PhVXtx5Eov8SWLCL0An8smVw6pEWR/L3cW5aFbm8DN5/aEv/fA/nhBaAq2Jg1R/+RYvW3Iuk4HyHXWyg2Fl0YGPLb9Jwwtq8aro3qje5tE2SBqcsPqH1611+VzLllFfHdKfuizXhBcgpDZk14GeBJgzRsWhUYz0LRUWLR66623IAiCy58VK1bY9hFFEQsWLECnTp0QHx+P2267DV988YXLuQ4dOoQhQ4bAYDDg2muvxYsvvgiLRenKExERBR97nIlCKJA9ulost+WuJz1QPeVKveTOy/9ctgK1rw736XOc1zIW3DRIw2HJMn/XG3fXg37sxDmHNZjdtVPkvpfOa2RLUbrlyH3H3a2PLddbHKsXcGT+cJcRB3IjAVaOvxEPr9pr+67E6ASHYeqkvQ8++ADx8VdfIHTtenVt61dffRUlJSVYtGgRsrOzUVZWhvz8fHz55Zdo164dAMBkMiE/Px85OTnYtGkTjh07hmnTpsFqtWLevHlBLw8REZE7bDgThZAWw6kDyV3D0bnhZL+2sD/8bSR6qnOKATuL8oLyWf7yt/Fuf3zm81tsw5ytImCVmSvszJM55kd+PIfM57fIvkRxWGv6So+3XCM9I8WA7065DuG2XMmjfTnkXtxI+8Tqdba1n62iiIwr2+zXhtaKXKTxaHPjjTciMdE1Gvz58+fx6quv4vnnn8fkyZMBADfffDMyMjLw+uuv2xrFK1asQGNjI9577z0kJSVh6NChOHv2LIqLi/Hcc88hKSkpqOUhIiJyh0O1iUIo0Es7BUqgesqVhrw7L//jyXJAStGzAx0dXGvOZbEfZu3pcmPOw75j9YLi0GZ330u5IdHuphvYf8djdILbwF5rHrvJZTkuKTCZ8zWQIn9/OD3P9rJFug7OQcfqTjViR1GuR98X52BsMToBHZLj3O4fbi+6wsmePXtw9uxZjB492rYtISEBI0eOxNatV+dBbt26FcOGDXNoII8ZMwaNjY2orq4Oap6JiIiUsOFMFEKR1niThCKK+JrHbnI7j9adcFxf21fOZRm3aq/XZXN+UbNWprEqidULbr+XtsjfMhGwnV+i2H/HrVbXwF7SvZT2W/fkANtyU85rdNtfg6MnmqKh37boQ9vc92MnzkGvE2S/m570Dl+y6+6O1Qv4w+M34eNZQ9C9jfw1ipQXXYGUmZmJmJgYZGVl4Y033rBtP3z4MPR6Pbp37+6wf8+ePXH48GGH/bKzHQPqdO7cGQaDwWE/IiKiUONQbSLyWrCGVNvzZchyOK6v7SvnstgPs/a0bJ1TDLZ5wEd+PIcxb36CjBQDMlIM+Lbe7NCoXavwYkK6F1VVVZj/ueDxdAPnqQmZaYkuw6/th1RLwcSkfeTW2LYnXZeMFAPqTjU6fDftP1sSqxMcGsv27D975fgbcduiDx3SY/VCxLzoCoT27dujpKQE/fv3h8Viwbp16zBhwgSYzWZMnToVJpMJiYmJ0Ov1DscZjUaYzWZcvHgRLVq0gMlkQnJyssv5jUYjTCZTkEoT7YIRVVwt4rO/eXB3/tgraWrn1+Ia+FtGteP7e5EXOadV8qD2+WoRs6FyfgD4p5/Hq+VRJWL1ge+v/ruxETjgnJ+OKuf/Xjl5odrxHpzjGZXDU5WjbuMZlWvQ1s3xLQB8KmDfU8pRs9FJOXnt9ieVdwCAdsrJHy1Q/q4/P3uJYnriCycV08XFyp+PO9wnseFMzUIgl3UiV+EQNMsT4T6H3BvOZdHrBFtgL2/K9vjqTx0CrdXWm5GRYkC3Nok+PT/2L1E6tY7HJYvV7XxnpRcuckuRSS8EpOfbXVAxOdL1GlJWBYtFROcUAzq3dlw2y12j2f6zgabv+7onB2Dcqr24ZBERIyi/WIgGw4YNw7Bhw2w/FxQU4Pz585g3bx6eeUbtf37+KS8vR3l5OQCgVauLmDu3R0A/L5J07NgSpaXheD1iVdL9/d0sf/6OHfUoLU3W4Py+5+EqtTyoHX/Ji7y4Uv9uaPH5ySrpag1j/8oI/F0l/aLtXx07XkJpqXN+Tnh8vDy14zU4R4xeOf2yyooELeSP7yicQ2mLKmC0bLLd8SrpnlBpfZ6telQxvfS6KsV03SeXFdOrxVLlDOAdtylsOFOzEKhgVRTZQtEzHijOZSm5uxfmbvrS67LJ9UzXnWrEsYW+RSi3f4liP8dY7jlUeuEit4609EJArlEdqxdskbWd1dabrwYIu9Ir/d0ps22YulIDXABk1+0ekJmCI/ObrlFVVRUGZKa4PUe0uv/++/Huu++itrYWRqMR586dg8Viceh1NplMMBgMaNGi6X9fRqMRZ86ccTmXyWSC0WiU/ZzCwkIUFhYCAAThWkyf/nUAShOZSkt7hOn1CE2Pc2lpMqZPP63B+X3Pw1X+9qb6tw50aelPKt8NLT7/R5V0tZc6/t6nG1TSr/b2lpb+G9OnO5fJzx5n1eM1OIdaj/NJlR7ndfLHl7aowvSLecC7yoer9Th7RKXHufrBmYrp02e7LmlpL/Fe5R7ns+eHKmcAfd2msOFMzUJzGpJL2omUnnFPyJXFl7J1TUtwiTCt1FvtzWgOf55DuaHUUmCywaVVstG2Y/RNve56neCwPFVTRG3H/aX8yH2ORIrA3RxetISCcGWhbUEQkJ2dDYvFgqNHjyIrK8u2j/Oc5uzsbJe5zHV1dTCbzS5zn4mIiEKJwcGoWQhFsCqiSLRy/I0OEaYzrsx7dsebAGv+PIf2gcu6t0nERzMG2wKTyUXxtqJpHnJmWiJ2FuWhW5urQc8yUgwu+0v5sQ9sZh9FW4rsHYnB+sLFhg0bkJqaivT0dAwcOBBJSUlYv369Ld1sNmPz5s0oKCiwbSsoKMD27dvR0NBg21ZRUYH4+Hjk5jaPl15ERNQ8sMeZmoXmNCSXKJA6pxhQNWOwx/t704vsz3OoNDrA/rz2w6yl/DgfK/WSS1G2LRbR1nvdnEYhhNJ9992H/v37o3fv3rBYLKioqEBFRQWWLVsGnU6HuLg4zJo1CyUlJTAajcjOzkZZWRmsViumTJliO8+ECROwbNkyjBo1CjNnzkRNTQ2Ki4tRVFTENZyJiCissOFMzQL/M0wUGN4EWAvUc+huHrUgADodXIKR8fdB4GVlZWHVqlWoq6uDKIrIycnBmjVrMG7cONs+s2bNgtVqxcKFC1FfX49+/fphx44daNu2rW0fo9GInTt3YvLkyRg5ciSSk5MxdepUFBcXh6BURERE7rHhTEREbvnai6xVpHvn89gHRdPpYJvbHMiggM55eDLbqvlnRJoFCxZgwYIFivsIgoA5c+Zgzpw5ivvl5OTggw8+0DJ7FHaCEZwr1PwN/uXvkllq51ebOuPv+T3ZZ1+A86AcNMrx83t4kB9vP9+T4GB+Pgsn31PZ4Qnl5DFulgQrbQSm/xNI7a18fKXKx3uybNmjBYrJuUOV72P/HR8ppu+ruVUxXQflOrwv3P8/hw1nIqIIFuil2HztvdUq0r3zeezXdc58fostqnYggwI652HpTwJG+xaEnIiIiCIUg4MREUUwb4J3BZNWke6VzhOsoIDOeThu9nw9aSIiImoe2HAmIopg4boUm1aNWqXz2EfiloJ/BYJzHtoZBOUDiIiIqNlhw5mIKIKF61JsWjVqlc4jDSMP9PJRznl4tm9cQD6HiIiIwhfnOBMRRbBwXYpNbW60p3OzwyFCtnMeqqqqQpcZIiIiCgk2nImIIlg4NCx9oVXwsEAJdNA1ItKSu0jFCQpp9jyJGO1vZHB/j/ckj4GkxXVUO0d/lXR/o3L7S+38ahGvPTmH2jVUu0anVNLdXcPkprSTatd4lEq6B9/T33sQeVvBvqHKUbnxX5UTtFVJV8Ch2kREFHThOjdbEq5B14iIiCg02HAmIqKgC9e52ZJwb9gTERFRcLHhTEREQResiNi+CveGPREREQUX5zgThQDnT1K0C4e52UrPYbgGXSMiIqLQYMOZKATCPTASUTRQeg7DoWFPRERE4YNDtYlCgPMniUKPzyERERF5ij3ORCHQNS3B1tPF+ZNEocHnkMhT/i4zFO4iIf/+5rFHED7f36WW1JZCag78fZbU0n1dsktauk0tf2pLbmmxbJrKOSr/qXJ8R+XkAypl6Os+iT3ORCEQ7oGRiKIBn0MiIiLyFHuciUKA8ycpkklBtY6d+AmZn1dHbHA7PodERETkKfY4ExGRV+SCahERERE1Z2w4ExGRVxhUi4iIiKING85EROSVrmkJ0AlN/2ZQLSIiIooGnONMREReWTn+RttwbQbVIooGkRB1msJfc/8eeVI+f6NOhzryuL9RvwGgv0q6r5HBPeX7PWDDmYiIvCIF1aqqqkJeHoNrERERUfPHodpERERERERECthwJiIiIiIiIlLAhjMRERERERGRAjaciYiIiIiIiBSw4UxERERERESkgFG1iYiIiIiIAi7cl+RSy5/aUk6elC/US2r5jj3ORERERERERArYcCYiIiIiIiJSwIYzERERERERkQI2nImIiIiIiIgUsOFMREREREREpIBRtYmIiIioGdMiEjBRc+DuWYi9kqb2LETCsxK45z3qepwPHTqEIUOGwGAw4Nprr8WLL74Ii8US6mwRERERERFRmIqqHmeTyYT8/Hzk5ORg06ZNOHbsGKZNmwar1Yp58+aFOntEREREREQUhqKq4bxixQo0NjbivffeQ1JSEoYOHYqzZ8+iuLgYzz33HJKSkkKdRSIiIiIiIgozUTVUe+vWrRg2bJhDA3nMmDFobGxEdXV1CHNGRERERERE4SqqGs6HDx9Gdna2w7bOnTvDYDDg8OHDIcoVERERERERhbOoajibTCYkJye7bDcajTCZTMHPEBEREREREYW9qJrj7K3y8nKUl5cDaOqt7tevnybnPXHiBNLS0jQ5V6SIxjID0VnuaCwzEJ3ljsYyA9qVu7a21v/MRLmUlIvIyNgc6myEjWXLTqBv3+h7Jt3h9biK18IRr4cjXo+rlOrmqGo4G41GnDlzxmW7yWSC0Wh02V5YWIjCwkLN89GvXz/s379f8/OGs2gsMxCd5Y7GMgPRWe5oLDMQveUORydPngx1FsIKv5uOeD2u4rVwxOvhiNfDM1E1VDs7O9tlLnNdXR3MZrPL3GciIiIiIiIiIMoazgUFBdi+fTsaGhps2yoqKhAfH4/c3NwQ5oyIiIiIiIjCVVQ1nCdMmICWLVti1KhRqKysRHl5OYqLi1FUVBTUNZwDMfw73EVjmYHoLHc0lhmIznJHY5mB6C03hT9+Nx3xelzFa+GI18MRr4dnBFEUxVBnIpgOHTqEyZMn429/+xuSk5PxxBNPoLi4GHq9PtRZIyIiIiIiojAUdQ1nIiIiIiIiIm9E1VDtQDt06BCGDBkCg8GAa6+9Fi+++CIsFovqcWfOnMGjjz4Ko9GIVq1a4cEHH0R9fX0Qcuw/X8pcW1sLQRBc/owZMyZIufbf0aNH8dRTT6F3797Q6/XIy8vz6LhIvte+lDnS7/X69evx85//HB06dEBiYiL69u2Ld955R/W4CxcuYNq0aWjTpg0SEhIwYsSIiFl6yNcyy93nAQMGBCHH2tiwYQMGDhyIlJQUxMXFISsrC/PmzcPFixcVj4vkZ5oiR7TWtXKisf5VEo11szvRWGcridb6PJCiajmqQDKZTMjPz0dOTg42bdqEY8eOYdq0abBarZg3b57isaNHj8bXX3+N3/3ud9DpdJg5cybuuece7Nq1K0i5940/ZQaA0tJS3HLLLbafU1NTA5ldTR08eBBbtmzBgAEDcOnSJY+Pi9R7DfheZiBy73VZWRm6dOmCJUuWIDU1FVu2bMEvf/lLnDx5ElOmTHF73NNPP40NGzZgyZIlSEtLQ3FxMYYOHYoDBw4gLi4uiCXwnq9lBoBp06bh/vvvt/18zTXXBDq7mqmvr8ftt9+OGTNmIDk5Gfv27UNxcTGOHz+O119/3e1xkfxMU2SI5rpWTjTWv0qisW52JxrrbCXRWp8HlEiaWLBggZicnCyeOXPGtu21114T4+PjHbY527NnjwhArK6utm3bu3evCEDcsWNHQPPsL1/L/M0334gAxM2bNwcjmwFhsVhs/77vvvvE3Nxc1WMi+V6Lom9ljvR7feLECZdtY8eOFTMyMtweU1dXJ+r1enH16tW2bd9//70YGxsrvvnmmwHJp5Z8KbMoiiIA8Te/+U2gshUSs2fPFlu1aiVarVbZ9Eh/pikyRHNdKyca618l0Vg3uxONdbYS1ufa41BtjWzduhXDhg1ziM49ZswYNDY2orq6WvG4tm3b4rbbbrNt69+/P7p06YKtW7cGNM/+8rXMzYFO5/2jE8n3GvCtzJFO7u37DTfcgB9++MHtMX/9618BAKNGjbJt69ChAwYNGhQR99mXMjdXKSkpikO1I/2ZpsgQzXWtnGisf5VEY93sTjTW2UpYn2uPT5tGDh8+jOzsbIdtnTt3hsFgwOHDh706DgB69uypeFw48LXMkkcffRR6vR7t27dHUVERGhsbA5XVsBDJ99pfzele/+1vf0OPHj3cph8+fBgdO3ZEYmKiw/ZIvs9qZZYUFxcjJiYGqampeOyxx3Dq1Kkg5E5bFosFZrMZu3fvxrJlyzBx4kQIgiC7bzQ/0xQ8rGv9x2dVXjR8N6KxzlYSTfV5IHCOs0ZMJhOSk5NdthuNRphMJp+Oq6mp0TCH2vO1zC1btsSkSZNwxx13ICkpCVVVVXjttddw7NgxbNq0KYA5Dq1Ivte+am73eufOndi4cSNWrVrldh9fn4tw5UmZAWD8+PEYOXIk0tLSsH//fpSUlOAf//gH9u3bF1HL/SUkJODChQsAgIcffhiLFi1yu280PtMUfKxr/cdn1VG0fDeisc5WEm31eSCw4UxB1759e4dgO3l5eWjbti1+9atf4R//+Ad+9rOfhTB3pKXmdK9ra2vxy1/+EnfffTceeeSRUGcnKLwp81tvvWX792233YaePXti+PDh2Lx5M+65556A5lNLe/bsgdlsxr59+/DKK69g8uTJWL58eaizReS15vT7l7QVDd+NaKyzlURjfR4IHKqtEaPRiDNnzrhsN5lMMBqNmh8XDrTMuxS577PPPtMkb+Eoku+1liLxXp86dQoFBQVIT0/H22+/rbhvc7nP3pRZzp133onExER8/vnnAchd4PTp0weDBg1CUVERli1bht/+9rc4duyY7L7N5V5TeGNd6z8+q+qa03cjGutsJdFanwcCG84ayc7OdpkLUVdXB7PZLDuvRuk4wP18nHDia5nlSHMI3c0lbA4i+V5rKdLutdlsxl133YWLFy/iL3/5CwwGg+L+2dnZqKurw08//eSwPZLus7dllhNp91lOnz59AADffPONbDqfaQoG1rX+47Oqrrl8N6KxzlbC+lxbbDhrpKCgANu3b0dDQ4NtW0VFBeLj45Gbm6t43PHjx7F7927btv3796OmpgYFBQUBzbO/fC2znA0bNgAA+vbtq2kew0kk32stRdK9vnz5Mn7xi1/gyJEj2LZtG9q0aaN6zB133AEA+POf/2zb9sMPP2DXrl0RcZ99KbOcbdu24dy5cxFxn935+OOPAQBdunSRTeczTcHAutZ/fFbVNYfvRjTW2UpYn2tPEEVRDHUmmgOTyYScnBz06tULM2fORE1NDYqKivDss89i3rx5tv26deuG3NxcrFy50rZt2LBhOHLkCEpLS6HT6TBz5ky0adMGu3btCkVRPOZrmYuLi9HQ0IBbbrkFSUlJ+Oijj7Bo0SIMHz4cf/rTn0JVHK+YzWZs2bIFALB48WKcPXsWL7/8MgBg+PDhMBgMzepeA76VOdLvdWFhId588038+te/Rv/+/R3SbrjhBrRs2RJDhgwB0BR0Q/LUU0/hT3/6E5YsWYK0tDQUFxejvr4eBw4cQFxcXFDL4C1fylxeXo79+/cjPz8fqamp+PzzzzFv3jxkZWVhz549ERFM5M4770R+fj6uu+466PV6fPzxx1i8eDHuuusurFu3DkDz+v1NkSOa61o50Vj/KonGutmdaKyzlURrfR5QoV5Iujk5ePCgOHjwYDEuLk5s166d+MILL4iXL1922Cc9PV0cP368wzaTySQ+8sgjYqtWrcRrrrlGHDt2rOyi5eHIlzK/8847Yt++fcWkpCQxNjZWzMzMFOfOnSueP38+yLn33TfffCMCkP3zzTffiKLY/O61L2WO9Hudnp6uWubc3FwxNzfX4bjz58+LU6dOFVNTU0WDwSAWFBSINTU1wS+AD3wpc2VlpThw4ECxdevWYkxMjNixY0dxypQp4unTp0NTCB+88MIL4nXXXScmJCSIrVq1Em+44QZx2bJl4sWLF237NLdnmiJHtNa1cqKx/lUSjXWzO9FYZyuJ1vo8kNjjTERERERERKSAc5yJiIiIiIiIFLDhTERERERERKSADWciIiIiIiIiBWw4ExERERERESlgw5mIiIiIiIhIARvORERERERERArYcCYKsYyMDOTl5blsX758ObKzs9GyZUsIgoDa2tqA5qO4uDgon+OLqqoqCIJg+zNv3jyPjxUEAY888ojXn1lbWwtBEFBcXOz1sXI++eQThzJodV4iItIe62Z1rJsp2rDhTOQh5wpCr9fDaDSiV69eGD9+PLZt2watlkX/8MMPMWnSJGRnZ2PFihVYu3Yt0tLSUFxcjI0bN3p0joyMDIf8Kv2pqqrSJN+BVlhYiLVr1+Kee+6xbTt9+jSKi4vDvgzdunXD2rVrsWTJklBnhYio2WDdHHqsmylaxIQ6A0SRZuzYsRg+fDhEUURDQwO++uorbNy4EWvWrEF+fj7Wr1+P5ORkj8/31VdfQRAEh207duwAAKxatQqtW7e2bX/55Zcxfvx4h8rJnaVLl+LcuXO2n//1r39hwYIFuPfeezFq1CiHfXv27IlBgwZh1qxZaNmypcd5D7abb74ZDz30kMO206dP4+WXXwYA2d6BxsZG6PX6YGRPUWpqKh566CHU1tZi6tSpoc4OEVGzwro5dFg3U7Rgw5nIS3369HGpIMrKyvDcc8+hrKwMY8eOxdatWxXPcenSJVgsFsTFxclWhsePHwcAh4rZW84VeFVVFRYsWIDevXu75F8SE9P8fiXExcWFOgtERBRgrJsjC+tmikQcqk2kAb1ej8WLF2PQoEHYtm0bdu/ebUuT5icdPHgQRUVF6NixI+Li4vDJJ58AcJxHJc3d+f3vfw8AtuFa0tAuAFi9erXDUC6tyM2jkrYdOnQIzz77LNq3bw+DwYAhQ4bgq6++AgC899576NOnD+Lj45GRkYHy8nLZ81dWVuKOO+5AcnIy4uLi0Lt3b6xYscKvPFdVVaFLly4Amt74218vibt5VB9++CFGjBiBlJQUxMXFoWvXrnj88cdx8uRJxc/cvn07rrnmGtx6660wmUwAgIMHD+IXv/gFOnTogJYtW6Jdu3YYPHgw3n//fb/KR0REvmPdzLqZdTNpqfm9wiIKoccffxy7d+/G+++/j0GDBjmkPfjgg4iPj8e0adMgCALat2/vcnxaWhrWrl2L8vJy7Nq1C2vXrgUAXHPNNWhoaMC4ceNw6623orCwMCjlkYwfPx6JiYmYPXs2Tpw4gcWLF2PYsGEoKSnBc889h4kTJ+Kxxx7DypUr8dRTTyEnJ8eh/OXl5ZgwYQIGDBiAOXPmICEhATt27MDEiRNx7NgxLFq0yKd89ezZE0uWLMHUqVMdhrklJiYqHvfGG29g4sSJ6NChAyZOnIj09HR899132Lx5M77//nukpqbKHrd69Wo88cQTGDlyJP74xz8iLi4O9fX1uP322wEAEyZMQHp6Ok6ePIn9+/dj7969GDFihE9lIyIibbBuZt3Mupm0wIYzkYZ69+4NAPj6669d0pKTk1FZWak45CohIQEPPfQQKisrsWvXLpdhW+PGjUPXrl3dDucKlHbt2uH//u//bG/RU1NT8cwzz2DSpEk4ePAgOnXqBAB44IEH0KlTJ/zv//6vrXL+z3/+g6effhpjxozBH//4R9s5f/WrX+GZZ55BWVkZJk6ciK5du3qdr7Zt2+Kee+7B1KlTFYe52fv+++/x9NNPIzs7G3v27HGY81ZSUgKr1Sp73MKFCzF79mxMnDgRr7/+OnS6pgE7H3/8MX788UdUVFRg9OjRXpeBiIgCi3Uz62YiLXCoNpGGkpKSAABnz551SXv22Wcjdp7S008/7TD07NZbbwUA/PznP7dVzEDTW/msrCwcOXLEtm3Dhg24cOGCbaiV/Z+RI0fCarWisrIyaGVZv349Ll68iJdeekk2UIxU6UqsVismT56M2bNno6SkBMuXL3fYp1WrVgCArVu3yt53IiIKLdbNrJuJtBCZvymIwpT0y1mqpO316NEj2NnRjPMbZ6PRCAC2OUzOad9++63t53/9618AgPz8fLfn/+9//6tFNj0i/cfhhhtu8Gj/pUuXoqGhAfPnz8fs2bNd0nNzc/Hwww/jrbfewttvv40bb7wR+fn5eOCBB5CTk6Np3omIyHusm1k3s24mLbDhTKShf/7znwCArKwslzSDwRDs7GjG3ZIR7rbbr5kp/XvNmjWyc8cA18o/nAwdOhQfffQRysvLMWbMGNm8rl69GjNmzMDWrVuxa9cuLF68GPPnz8fSpUsxefLkEOSaiIgkrJubsG5m3Uz+YcOZSEMrV64EAAadsNO9e3cATXOvlN5s+8rb6KVS78IXX3zhUU/D9ddfj1deeQW33347cnNz8cEHH9jKZK9Xr17o1asXZsyYgdOnT+Omm27CrFmzMGnSJE0jrBIRkXdYN7ti3cy6mbzHOc5EGrBYLJg+fTp2796N4cOH45ZbbgnI5yQmJuLUqVMBOXegjB49Gi1btsRLL72ExsZGl/QzZ87gwoULPp9fitLp6XW5//770aJFC7z88suy857s38hLrrvuOlRXV8NisSA3NxeHDx+2pZ06dcolaElycjK6dOkCs9mM8+fPe1McIiLSCOtm91g3s24m77HHmchLn3/+Of7whz8AABoaGvDVV19h48aN+Pbbb3HHHXc4RKfU2oABA1BZWYnXXnsNnTt3hiAIGDNmTMA+TwsdO3bEb3/7WzzxxBPo2bMnxo0bh/T0dJw4cQIHDhzAxo0bcejQIYf1Hb2RkpKCbt26Yd26dcjMzETbtm2RkJCAkSNHus3P0qVLMWnSJFx//fV4+OGHkZ6ejn//+9/YtGkTVq1ahf/5n/9xOS47OxvV1dW4/fbbkZeXh507d+K6667DmjVrsGTJEtx7773o1q0bYmNjUV1dje3bt2P06NGIj4/3qVxEROQ51s3eYd3Mupm8x4YzkZfeeecdvPPOO9DpdEhMTETHjh2Rm5uLsWPH4s477wzoZy9fvhyTJk3C/Pnz0dDQAABhXzkDwKOPPooePXqgtLQUb7zxBk6fPo3U1FRkZWWhpKQE7dq18+v8b7/9NqZOnYrZs2fDbDYjPT3dbeUMABMnTkRmZiYWLVqEZcuW4cKFC7j22msxZMgQh0ikzrp3726roAcPHozKykrk5eXh73//O/7yl7/gP//5D/R6Pbp06YLS0lLOoSIiChLWzd5j3UzkHUGUG/tARBRGqqqqMHjwYPzmN7/BmDFjkJCQEHFviy9fvozTp0+jrq4Offr0wUsvvYTi4uJQZ4uIiMgnrJsp2nCOMxFFjClTpiAtLQ2LFy8OdVa8tn//fqSlpaFPnz6hzgoREZFmWDdTtGCPMxGFPZPJhM8++8z2c7du3XyedxUqZ8+exb59+2w/d+3aNayX+iAiIlLCupmiDRvORERERERERAo4VJuIiIiIiIhIARvORERERERERArYcCYiIiIiIiJSwIYzERERERERkQI2nImIiIiIiIgUsOFMREREREREpIANZyIiIiIiIiIF/w8Ro2gJQEzcLQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "filenames": { "image/png": "/sdf/home/l/ldomine/lartpc_mlreco3d_tutorials/book/_build/jupyter_execute/Prerequisites/Python-04-ScientificPython_19_0.png" } }, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "# scatter plots\n", "fig,axes=plt.subplots(1,2,figsize=(16,6),facecolor='w')\n", "axes[0].plot(drift_time, charge, marker='o', markersize=4, linestyle='')\n", "axes[0].set_ylim(0,charge.max())\n", "axes[0].grid(True)\n", "\n", "# 2D histogram\n", "#fig,ax=plt.subplots(figsize=(12,8),facecolor='w')\n", "axes[1].hist2d(drift_time, charge, bins=(50,50), cmap='jet')\n", "axes[1].grid(True)\n", "\n", "for ax in axes:\n", " ax.set_xlabel('Drift Time [ticks]',fontsize=18)\n", " ax.set_ylabel('Charge [electrons]',fontsize=18)\n", " ax.tick_params(labelsize=15)\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "006ce8d6", "metadata": {}, "source": [ "Let's sub-divide the data into 10 equal size bins across 0-3.0ms, then compute the median per section." ] }, { "cell_type": "code", "execution_count": 11, "id": "036b1b97", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAn8AAAGUCAYAAABEJUQnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABGTElEQVR4nO3de5yc4/3/8dc7K5INOUmIZvkJQpRqpVJUi7TCVlVF6vClrVNR1X5VaUpavlUtoimqVFF1bFVVI2iRCJY6tUVUVBKHJOiGOGXFJitifX5/3PfG7GT2MLszO7s77+fjMY/Zue7rvuYz106ST677uq5bEYGZmZmZlYc+pQ7AzMzMzLqOkz8zMzOzMuLkz8zMzKyMOPkzMzMzKyNO/szMzMzKiJM/MzMzszLi5M/MzIpG0mJJNY6jdZJGSQpJZ7aj7pFp3fEZZePTsiOz6g6XdJ2kJenxmgLHXSNpcSHbtOJz8mdmZnmRtIWkKyTNl7RS0jJJ8yRdK+lzpY6vGNKE66RSx9EB5wOHAJcBXwfOzrcBSSdlJ5XlStK+km5L/zPR9N1/Iu2j/qWOr73WKXUAZmbWc0gaB9wPrAauA/4DVAJbAXsD7wD3ZZwyBugNdxM4EhgF/LKkUbTsAZLfw+qs8r2AmRFxVifaPglYDFyT49jegDrRdk+zPdAI/A54haTPdwMuBPaVtHf0gLtnOPkzM7N8/BgYAOwQEf/OPihp48zXEbGqqwIrZxHxAfBujkMbA28V8X3fK1bb3VFETM1RfLGkXwMnAJ8C/tm1UeXPl33NzCwfWwFv5kr8ACLi1czXuebaNZVJ+oSk2ZLqJb0m6XxJ60jqL+kXkmolvSvpAUkfzWrjzHQO26jsGNo7v0/S3pL+JGmhpAZJdZJmSdojuz1gD2Cz9D2bHuMz6mwl6XpJr0h6L41hmqT1crzvZyU9lL7nUkmXAOu3FW8bn6XZnL+m/iEZlTsiI+YjM86ZkH7eurSfn5J0fFa7AWwG7JH12Uelx9ea89dUls5jvCVtf5mkayStL6mPpB9KWpS+7xOSPpPjM0nStyQ9nl5irZd0XzedWvBi+jy0rYoZczb3lPR/kl5Mvwv/kLRLWmcPSQ9KWpF+p87I0c6uku6U9Graj7WS7mhqozUe+TMzs3y8AIyRNCkipneinU2Au4E/ATeTXD48GXgf2I7kctpUYDjwfWCGpI+mI1yFciSwAcnl6/8CVcAxwD2SPhcRf0/rnQScm8byvYzz5wFI2hG4F6gDLgdqgU8AJwKfkbRHRKxO6+4MzCa5PH5ees7/pDEU0nTgeeB64O/AFWn5w2kcx5HMA3yUZB7gCpJLxL+RtGVETE7rf53kkuYbNJ8v+Hob778eSZ/cD5xGMiJ2NNAfeBPYGbgY6Evy+71d0mYR8U5GG9cDh5J8P64G+gFfBe5Ov3+3tRaApD4kv9/2equ93y9JA9N4BgGfAU5NP9c/8ni/qUAFcBGwLnAKMEvS4SSXla8A/gAcDJwlaVFE/D59/zEkf35eTc9fCowAPkvy3Xu01XeOCD/88MMPP/xo1wP4NPAeyTy+Z4GrgG8BH22h/mKgJkdZAAdllT8OfADcCiij/MS0fnVG2Zlp2ag83jO7bL0c544gSXTuyCqvARa38Bn/DcwHBmaVH5DGeGRG2cNp/22dUbYuyaXCAM5sx+/gyLTu+Iyy8dnvlZYHcE1W2UdILhHfkKPti0jmtG3RWt+11i9pWQCTs8qnp7/fx4C+GeVfTut/M0ffHZfVxjrp+YsyvyMtxDYqbaO9j7W+S620fXPWuY8CO7bz3Kbf3xPAujn6YTUwLuv78QrwSI4/Ezvl+2c4InzZ18zM2i8iHgF2BK4FBgNHAZcCz6SXZ7doZ1O1EfHnrLIHSS5TXhzpv3CpphG4rToe+doiYkXTz+nlyGEkic8/SEam2iRpe+DjwA1APyVbqwyXNJzk86wgGdVE0kYkyfOtEfFsRhzvkYyudZUDSUatfpcZbxrz7SRTwiZ08j0aSUb2Mv2d5Pd7WaQjoRnl0Pz3+zWS0dEZWfENSWMcRdvfh1dJRjPb+3g1dzM5/SQ95zDgt2nZsDzOB/hNNJ8z2dQP/4iIx5oK0zr/pPnnfTt93l8dWGXsy75mZpaXiJhLMnqBpM1I5sMdQ7Lq8VZJO0bbCwEW5Shb1sKxpvJ8/3FtlaQtSS5lVpMkFZnau2KzaS7iT9JHLiPS56bEeH6OOs+08/0KoSnm2a3UGdHKsfZ4JSKyF6Dk/P1GxDJJ0Pz3+1FgIMnlzNZifLalg+n7t/YZOyz9MzA3fflHSd8E7pS0e0Q81M5mFma12dQPLf3ZyOyfG0kS5B8C35P0KDATuDEiXsxxfjNO/szMrMPSf2iuk9Q0t+wzwE4ko16taezAscwtRVpLztr8t03S+iTbo6xHsn3LXJKRpg+AKcDn22ojK6bzgbtaqLOshfJSaYr5cJLLibksbKG8vTr7+xXJvMLDWmnn6dYCkFQBbNhanSyvR0Rrcbfm9yQj4McD7U3+WnqvNmOIZBX9XpJ2IvnPy+7AWcCZkg6LiFtaO9/Jn5mZdVpEhKR/kCR/VV3wlk3bl2xAMicNgPQS2EdIFju0Zk9gJHB0RFydeUDSz3LUbynZfC59boyItkaZmkZ0tslxbNs2zi2kppjfaEfMUJp9Gp8DtgYejYj6DraxKblH0VqyORnfpTytS3K5PJ8FJp0WEf8k3VpG0qbAHOBnQKvJn+f8mZlZu0naS9JaAweSKknnttE1lzCbLvdlz037Hu37t61pdKXZBsWS9ib3fL96YKjS63IZ5pCMQB2fa76jkq1rNgCIiKUkCwP2l7R1Rp11ab6KuNhuAlYBP0l/b81IGiypX0ZRPV2c1JCsfu5Dssp6LZLac1m64HP+lLWPZYYT0+fWV9kWSDr/Mdt/SUZL2/xdeeTPzMzycSEwTNJtJJdKV5KMsBxGMlJzXTofqthmAwtItsAYRjLC81lgF5LVum15kOQf+/PTPev+C+xAsrXJXJI7OWR6FPgScImkh0mSx3sj4jVJXyfZ1uQpSVeR3PVkADAamERyGfmatJ2TSVbDPqRkY+A6kq1euuzf44j4r6RvAVcC89JL9i+SXCLdHphIMhK5OD3lUeAbkn5Ksr3NB8DtmQtmihDjzZKuBr4j6ZPAX0l+r5uQLJoZzYdzKFtqoxhz/p6W9CDJSt1aku1/9iIZSZ5L190B5vT0Pyp/JV35DOxHMqr887ZOdvJnZmb5OBnYnyTR+grJQom3gadI9q27piuCiIhGSV8GfgX8L8n2KbNIFp+0OecqIuokVZP8Q/m/JP8ePg58EfgGayd/F5IkGweSzOvqA3wOeC0inpQ0liTJ+3J6/B0+vCXaPRnv+4ikvUj2eDuNpO9uBn7DhwsIii4irpb0LMkee98k+T2+QZJQn0HzUbAfkYwmfTutJ5JLpEVL/tIYj5Z0H3AcSd+um8b1RPq6FC4iGeH+NkmfNJD02Q+BXxUzIc4yg2R6w8EkC18aSC6VH0uyR2Cr1Hw1vZmZmZn1Zp7zZ2ZmZlZGnPyZmZmZlREnf2ZmZmZlxMmfmZmZWRlx8mdmZmZWRrzVSzsNHz48Ro0aVeowysKKFStYb731Sh1G2XG/l4b7vTTc76Xhfu86jz/++BsRkfP2dk7+2mnUqFE89thjpQ6jLNTU1DB+/PhSh1F23O+l4X4vDfd7abjfu46kF1s65su+ZmZmZmXEyZ+ZmZlZGXHyZ2ZmZlZGnPyZmZmZlREnf2ZmZmZlxMmfmZmZWRlx8mdmZmZWRrzPn5mZdUvLly/ntddeY/Xq1QVve/DgwcybN6/g7Vrr3O+d07dvXzbaaCMGDRrUqXac/JmZWbezfPlyli5dSlVVFZWVlUgqaPvvvPMOAwcOLGib1jb3e8dFBA0NDdTW1gJ0KgF08tdNzJhTy7SZC1hS18DIIZVMrh7DxLFVpQ7LzKwkXnvtNaqqqhgwYECpQzHrFiQxYMAAqqqqWLJkiZO/nm7GnFqmTJ9Lw+pGAGrrGpgyfS6AE0AzK0urV6+msrKy1GGYdTuVlZWdngrhBR/dwLSZC9Ykfk0aVjcybeaCEkVkZlZ6hb7Ua9YbFOLPhZO/bmBJXUNe5WZmZmYd5eSvGxg5JPeljZbKzczMzDrKyV83MLl6DJV9K5qVVfatYHL1mBJFZGZm3dWoUaMYP358qcMoC7n6ujf0v5O/bmDi2CrOnbQ9VUMqEVA1pJJzJ23vxR5mZmVi5cqV/PKXv2S33XZjgw02oG/fvowYMYIvfvGLXHPNNbz//vulDrHLjRo1CkkMGzaMVatW5ayz//77IwlJLF68uGsD7MG82rebmDi2ysmemVkZev7559l333159tlnmTBhAlOmTGH48OG89tprzJ49m6OOOopnnnmGn//856UOtcv179+ft956i9tuu42DDjqo2bGlS5dyxx130L9/f959990ui2nBggU9fjGSkz8zM7MSaWho4Etf+hILFy7kL3/5C5MmTWp2/NRTT+Vf//oX//rXv0oSX2NjI6tWrSrZfotbbrklffr04eqrr14r+bvuuusA2G+//fjzn//cZTH169evy96rWHzZ18zMrESuvPJKFixYwCmnnLJW4tfkU5/6FCeccMJa5fPnz2ffffdl4MCBDB48mAMPPJBXX321WZ0lS5ZwyimnsMMOOzB06FD69+/Ptttuy3nnnUdjY/Mtxq655hokMXv2bH7605+y5ZZb0r9/f2666SYA3nzzTY4++miGDRvG+uuvz+c//3nmzJnD+PHjGTVq1FrxPfbYYxxwwAEMHz6cfv36MWbMGKZNm5b3JeyjjjqKWbNmsWTJkmblV199Nfvuuy8bbbRRzvPefvttTj31VEaPHk2/fv3YcMMNOfTQQ1m4cOFadV9++WUOPvhgBg8ezKBBg9hvv/144YUXcraba87frFmzOOSQQ9hiiy2orKxkyJAh7L333tx///1rnd/UX0uWLOHQQw9l6NChDBgwgOrqap599tl29krneOTPzMzKyow5tZx35zxeXb6q5HdUuvnmmwE47rjj8jqvtraW8ePHc8ABBzBt2jT+/e9/c/nll7N8+XJmzZq1pt5TTz3F9OnTOeCAA9hyyy1ZvXo1d911F6eddhoLFy7k8ssvX6vt73//+6xevZpjjz2WQYMGMWbMGFatWsWECRN48sknOfLII9lpp5146qmnmDBhAhtssMFabfztb39j0qRJjB49mlNOOYUNNtiARx55hLPPPpt58+blNVL3ta99jVNPPZVrr72WKVOmAPDoo48yb948pk6d2uzzNnn77bfZddddeemllzj66KPZbrvteOWVV7j00kvZeeedeeyxx9hss80AqKurY/fdd+fll1/m+OOPZ9ttt+X+++/nc5/7HA0N7dty7ZprruGtt97i8MMPZ5NNNqG2tpYrr7ySPffck/vuu4/ddtutWf0VK1aw++67s8suu3DOOeewaNEiLrroIvbff3+efvppKioqWninAokIP9rx2HHHHcO6xn333VfqEMqS+7003O+5PfPMM0Vp95Yn/hvbnH5nbHbqX9c8tjn9zrjlif8W5f3assEGG8SgQYPyOmezzTYLIP70pz81Kz/hhBMCiPnz568pW7lyZXzwwQdrtfG1r30t+vTpE0uWLFlTdvXVVwcQW2+9daxYsaJZ/V//+tcBxM9+9rOc5ZttttmasoaGhhgxYkTstttusXr16mb1zznnnADa9b3fbLPNYrvttouIiEmTJsXWW2+95tixxx4bG2+8caxevTq+/e1vBxCLFi1ac/zEE0+M/v37x5NPPtmszcWLF8fAgQPjiCOOWFM2ZcqUAOKqq65qVve73/1uALHHHnusFVd2WX19/Vrxv/rqqzFs2LDYZ599mpXvscceAcR5553XrPznP/95AHHXXXfl7I9M7fnzATwWLeQ0vuxrZmZlo7vdUWn58uUMHDgw7/NGjhzJwQcf3Kzs85//PADPPffcmrLKyso1ixPee+893nrrLd544w2qq6v54IMPeOyxx9Zq+1vf+tZac/xuv/12Kioq+O53v9us/JhjjmHw4MHNyu6++26WLl3KUUcdRV1dHW+88caaR3V1NUDO0brWHH300Tz77LM89NBDNDQ08Kc//Ymvf/3rrLPO2hcwI4I//OEP7L777lRVVTV7//XWW49ddtml2fvPmDGDESNGcPjhhzdr59RTT213fOutt96an+vr63nzzTepqKhg55135h//+Mda9fv06cOJJ57YrCzX769YfNnXzMzKRne7o9KgQYN455138j5viy22WKts2LBhQDI3r8n777/P1KlTue6663j++edJBoQ+tGzZsrXa2XrrrdcqW7RoESNHjmT99ddvVr7uuuuy+eabN2tn3rx5QJKwtWTp0qUtHsvlC1/4Ah/5yEe4+uqrWbhwIcuXL+eoo47KWff111/nzTffZNasWWy44YY56/Tp8+HY18KFC/nUpz611qXWj3zkIwwZMqRd8b3wwgv86Ec/YubMmdTV1TU7lmtl8MiRI+nfv3+zsly/v2Jx8mdmZmVj5JBKanMkeqW6o9LHPvYxHnjgARYuXJgzoWtJa3PCMhO8k08+mYsvvphDDjmEH/3oR2y00Ub07duXJ554glNPPZUPPvhgrfM7u7K36f2nTZvGDjvs0OzYypUrGTBgACNHjsyrzYqKCg4//HAuvfRS/vOf/7DLLrvw0Y9+tNX3nzBhQl6jdx1VX1/P7rvvzooVKzjppJPYfvvtGThwIH369OHcc8/l3nvvXeuc9v7+isXJn5mZlY3J1WOYMn1us0u/pbyj0le+8hUeeOABrrzySs4555yCt3/99dez++67c+ONNzYrf/755/NqZ9SoUcyePZv6+vpmo3+rV69m0aJFzUbIttpqKyC5FDphwoRm7bzzzjsduswNyUjieeedx6OPPsoVV1zRYr0NN9yQIUOGsHz58rXeP5ctttiC5557jsbGxmZJ2SuvvLLWKF4u99xzD0uWLOGqq65aazTy9NNPb/P8UvCcPzMzKxtNd1T6yKB+3eKOSscccwxjxozhF7/4BbfeemvOOo8//jiXXnpph9qvqKhYayRpxYoVXHjhhXm1s99++9HY2MhFF13UrPy3v/0tb7/9drOy6upqNtpoI6ZOncpbb721VlsNDQ0dutS99dZbc9FFF/HjH/+YQw45pMV6ffr04atf/Sr//Oc/16ymzvbaa6+t+Xn//fdn6dKla/YNbHLeeee1K66mhDG7n2fNmpVzvl934JE/MzMrKxPHVrHn6EEdHoEqpAEDBvDXv/6Vfffdl4kTJ7L33nuz1157MWzYMF5//XXuu+8+Zs6cyQ9+8IMOtX/ggQdy+eWXc8ghhzBhwgSWLl3KVVddtWZ+WXsdc8wxXH755Zx++uk8//zza7Z6uemmmxg9enSzvfvWW289rrvuOiZOnMiYMWM4+uijGT16NHV1dcydO5fbb7+dW265pUP3x81eJNGSs88+m4ceeoiDDz6Ygw8+mF122YV1112XF198kTvuuIMdd9yRa665BoAf/OAH3HDDDRx77LE8/vjjbLfddtTU1PDII48wfPjwNt/rs5/9LBtvvDGnnHIKixcvZpNNNuHJJ5/k+uuvZ/vtt2fu3Ll5f85ic/JnZmZWQqNHj2bOnDlcfvnl/OUvf+Hss8+mvr6eDTbYgHHjxnHttddy2GGHdajtCy64gIEDB3LTTTdx6623summm3LcccfxqU99ql2XRJv069ePe+65h8mTJ3Prrbdy0003sfPOO3PPPfdwzDHHsHLlymb1q6ur+de//sXUqVP5/e9/z+uvv87QoUMZNWoUJ598Mh//+Mc79Hnaa/DgwTz00EOcf/75az77OuuswyabbMJnP/tZjjnmmDV1hw4dyt///ndOPvnkNaN/e+yxB/fddx977rlnm+81ZMiQNQn6xRdfzPvvv8+OO+7IHXfcwe9+97tumfypKyYW9gbjxo2LXEvirfBqamo69D9C6xz3e2m433ObN29eixP6C6Ezc8/sQ42NjQwfPpydd96Zu+66q8367vfCaM+fD0mPR8S4XMc858/MzMzalOtuF5dddhl1dXXstddeJYjIOsqXfc3MzKxNxx57LO+++y677ror/fr145FHHuGGG25g9OjRed+ezkrLI39mZmbWpr333puXX36Zn/70p5x00knU1NRwzDHH8OCDD/pSbg/jkT8zMzNr0+GHH77WLdCsZ/LIn5mZmVkZcfJnZmZmVkac/JmZWbfkrcjM1laIPxdO/szMrNtZZ511mt01wswS77//Puus07klG07+zMys2+nfvz/19fWlDsOs23nnnXfo379/p9pw8mdmZt3OhhtuyOuvv87KlSt9+deM5HLvypUreeONN9hwww071Za3ejEzs26nf//+jBgxgldffZVVq1YVvP13332306Mnlj/3e+f069ePESNGdLoPnfyZmVm3NHjwYAYPHlyUtmtqahg7dmxR2raWud+7B1/2NTMzMysjTv7MzMzMyoiTPzMzM7MyUtLkT9JoSZdLekpSo6SaNupfKCkk/SLHsW0l3SNppaQlks6SVJFVR5J+KOllSQ2SHpC0Q2E/lZmZmVn3VeqRv+2ALwILgGdbqyhpW+AbwPIcx4YCs4EA9gfOAk4BfpJV9TTgDOA8YD+gHpgtaeNOfQozMzOzHqLUyd/tEbFpRBwE/KeNuhcDFwHLchw7HqgEJkXE3RFxGUnid7KkQQCS+pMkf+dGxCURMRs4iCRh/E5hPo6ZmZlZ91bS5C8iPmhPPUkHAtsAU1uosg8wMyIyRwVvJEkI90hf7woMAm7KeP8VwO3p+WZmZma9XqlH/tokqRI4HzgtTdZy2QaYn1kQES8BK9NjTXUageeyzp2XUcfMzMysV+v2yR8wBXgF+H0rdYYCdTnKl6XHmurUR0RjjjoDJK3byTjNzMzMur1ufYcPSZsD3wc+FyW4uaOk44DjAEaMGEFNTU1Xh1CW6uvr3dcl4H4vDfd7abjfS8P93j106+SPZI7fncACSUPSsj5Av/T122lSuAzIdQ+goXy4QGQZsL6kiqzRv6HAyoh4L/vkiLgCuAJg3LhxMX78+E5/IGtbTU0N7uuu534vDfd7abjfS8P93j1098u+Y4BJJIlb02NTktW5y4CqtN58subtSdoUGMCHcwHnAxXA6Kz3WGu+oJmZmVlv1d1H/o4B1s8quxG4H/gN8HpadicwWdLAiHgnLTsEaEjrAjxMskfgQcDPACQNINnv74pifQBLzJhTy7SZC1hS18DIIZVMrh7DxLFVbZ9oZmZmBVXS5C9Nvr6YvqwCBqXbugDcERGP5TjnXeDliKjJKL4MOBGYLuk8YAvgTOCCpu1fIuJdSVOBMyQtIxntO5lk9PPiQn82+9CMObVMmT6XhtXJ1fbaugamTJ8L4ATQzMysi5V65G8j4M9ZZU2vNwcWt6eRiFgmaU/gEpJ9++qAC0kSwExTSZK9KcAw4DFgr4hYmn/o1l7TZi5Yk/g1aVjdyLSZC5z8mZmZdbGSJn8RsRhQnueMaqH8GeDzbZwbwNnpw7rIkrqGvMrNzMyseLr7gg/rBUYOqcyr3MzMzIrHyZ8V3eTqMVT2rWhWVtm3gsnVY0oUkZmZWfkq9Zw/KwNN8/q82tfMzKz0nPxZl5g4tsrJnpmZWTfgy75mZmZmZcTJn5mZmVkZcfJnZmZmVkac/JmZmZmVESd/ZmZmZmXEyZ+ZmZlZGXHyZ2ZmZlZGnPyZmZmZlREnf2ZmZmZlxMmfmZmZWRlx8mdmZmZWRpz8mZmZmZURJ39mZmZmZcTJn5mZmVkZcfJnZmZmVkac/JmZmZmVESd/ZmZmZmXEyZ+ZmZlZGXHyZ2ZmZlZG1mnpgKTGTrQbwN4RcW8n2jAzMzOzAmsx+QME/B1YmGeb/YGDOxyRmZmZmRVNa8kfwOURcUM+DUoaDhzS8ZDMzMzMrFham/M3E1jSgTZXpee+0aGIzMzMzKxoWhz5i4h9OtJgRLwDdOhcMzMzMysur/Y1MzMzKyNtzflbQ1IF0C8iVmaUDQG+AWwA3BgRcwseoZmZmZkVTLuTP+ByYBfgYwCS+gIPAtumx0+W9OmIeLKgEZqZmZlZweRz2fezwG0Zrw8kSfy+DewKLAVOK1xoZmZmZlZo+Yz8fQRYlPF6X+A/EfEbAElXAN8sYGxmZmZmVmD5jPwJqMh4PR64L+P1K8BGBYjJzMzMzIokn+RvEVANIOkzJCOBmcnfSODtwoVmZmZmZoWWz2Xfq4ELJD0NVAGvkWzm3GRnYH4BYzMzMzOzAstn5O8i4Mckd/CYAxzQtO2LpGEkK4HvKHiEZmZmZlYw7R75i4gAfpo+so+9ief7mZmZmXV7vsOHmZmZWRnJZ84fktYDDgO2AoaRrADOFBHxjQLFZmZmZmYFls/t3XYC/goMb6VakNzuzczMzMy6oXxG/i4A1gUOBu6NiLeKE5JZzzNjTi3TZi5gSV0DI4dUMrl6DBPHVpU6LDMzs7Xkk/ztCJwTETcXKxiznmjGnFqmTJ9Lw+pGAGrrGpgyfS6AE0AzM+t28lnwsRx4s1iBmPVU02YuWJP4NWlY3ci0mQtKFJGZmVnL8kn+ppPe4cPMPrSkriGvcjMzs1LKJ/k7FdhI0sWStpSUvdLXrCyNHFKZV7mZmVkp5ZP81QE7AScAzwLvS2rMerxfjCDNurPJ1WOo7FvRrKyybwWTq8eUKCIzM7OW5bPg4zqSrVzMLEPTog6v9jUzs54gn9u7HVnEOMx6tIljq5zsmZlZj+Dbu5mZmZmVkbxu7wYg6XPAAcAWadFC4JaIuK+QgZmZmZlZ4eVze7c+wLUk9/YV8EF6qA/wbUl/AI6ICM8LNDMzM+um8rnsewrwVeBmYAegMn3sANyUHju5sOGZmZmZWSHlk/wdCcyKiEMi4qmIWJ0+noqIQ4G7gaPzeXNJoyVdLumpdKuYmqzjH5E0TdK/JdVLelnStZJG5mirStItkt6R9IakSyQNyFHvWEnPSXpX0uOS9swnZjMzM7OeLJ/kbwvg9laO386H8wDbazvgi8ACkr0Ds+1IMr/wj8B+wGRgZ+BhSes3VZLUF5gJbAb8D/Bd4CDgiszGJB0KXEaybc0+wH+Av0r6WJ5xm5mZmfVI+Sz4WAGMaOX4xmmdfNweEbcCSLoZGJ51/EFgm4hYs3m0pCdIksWvkMxBBDgQ+CgwOiIWpfVWAzdK+klEPJfWOxO4NiJ+mta5HxgLnAZ8Lc/YzczMzHqcfEb+/g58R9J22QckbQt8G3ggnzePiA/aOF6XmfilZc8CK4HMS7/7AP9qSvxSM4D3gC+kMW4BbE0yPzHz/f+cnm9mZmbW6+Uz8vd/wKPAHEm3As+k5duRXJJ9D/hxYcNbm6SPAwNofpl4m4x4AIiI9yS9kB4j43l+VpPzgA0kbRgRrxchZDMzM7NuI587fMyVtAdwEckl169kHH4Y+G5EzC1wfM2k281cBDwH3JZxaCjJvYezLUuPkfGcXW9ZxnEnf2ZmZtar5bXJc0Q8BnxG0obA5mnxoi4cMTsX+DSwR0SsLvabSToOOA5gxIgR1NTUFPstDaivr3dfl4D7vTTc76Xhfi8N93v30K7kL11Z+zZwZkT8NE32unSUTNIJJKt9D42If2QdXgYMznHaUODfGXVI69Vl1ck8vkZEXEG6YnjcuHExfvz4joRueaqpqcF93fXc76Xhfi8N93tpuN+7h3Yt+IiIepKE6bWiRtMCSV8BLgZ+EBF/ylFlPh/O6Ws6Z12SrWfmZ9Qhu176+i3P9zMzM7NykM9q3/uAPYoVSEskjQf+AFwcEb9oodqdwKckbZZR9mWgH3AXQEQsJFkkclBG233S13cWPHAzMzOzbiifOX+Tgfsl/QQ4PyKWd/bN0ztwfDF9WQUMknRg+voOkk2bZ5CM2v1J0i4Zp78eES+kP98M/AiYLukMkku7FwI3ZOzxB8k+f7+XtBh4CDgC2IrkfsVmZmZmvV4+yd89QH/gdOB0Sa+T7LeXKSJiyzza3Ihkn71MTa83J7mbx2DgEyQrijNdS3LLOSJitaQvAJeQ7OO3CriRJGHNDO6P6fzFU4EzSO7w8aWIeDqPmM3MzMx6rHySv5eAKOSbR8RiQK1UuSZ9tKet/wIT21Hvt8Bv29OmmZmZWW+Tzz5/44sYh5mZmZl1gXYv+JC0e7q/X0vHh0vavTBhmZmZmVkx5Lvad69Wju+Z1jEzMzOzbiqf5K+1uXkAFcAHnYjFzMzMzIosn+QPWl/wsSvwRidiMTMzM7Mia3XBh6TvAt/NKPqlpLNzVB0KDAKuKmBsZmZmZlZgba32rQNeTH8eBbwJLM2qE8DTwKMkGyubmZmZWTfVavIXEdeSbKaMpEXAaRFxW1cEZmZmZmaFl88+f5sXMxAzMzMzK7589vnbU9K5rRw/V9LnChOWmZmZmRVDPqt9TwVGt3J887SOmZmZmXVT+SR/nyBZ1NGSf6R1zMzMzKybyif5GwysaOV4A8mWL2ZmZmbWTeWT/NUCO7ZyfEfg1c6FY2ZmZmbFlE/y9zfgCEkTsg9I2hM4ArijUIGZmZmZWeG1e6sX4GzgK8BMSXcCT6blOwD7kIz6/bSQwZmZmZlZYeWzz99SSbsCvyFJ9r7YdAi4E/hORLxS+BDNzMzMrFDyGfkjIl4EvihpKB9u+/J8RCwreGRm1q3MmFPLtJkLWFLXwMghlUyuHsPEsVWlDsvMzPKUV/LXJE32/lXgWMysm5oxp5Yp0+fSsLoRgNq6BqZMnwvgBNDMrIfJZ8EHkiokHS7p95LuljQ2LR+alvtfAbNeaNrMBWsSvyYNqxuZNnNBiSIyM7OOavfIn6QBwCxgV5L9/gbw4b5+y4GpwFXA6QWO0cxKbEldQ17lZmbWfeUz8ncmMA44ANgCUNOBiGgEpgPVhQzOzLqHkUMq8yo3M7PuK5/k7yDgioi4Ffggx/HngVGFCMrMupfJ1WOo7FvRrKyybwWTq8eUKCIzM+uofBZ8jAT+3crxlcDAzoVjZt1R06IOr/Y1M+v58kn+3gRa+5t+O2BJ58Ixs+5q4tgqJ3tmZr1APpd97wGOShd+NCNpc+Bo4K5CBWZmZmZmhZdP8vcTktW9/wK+RXJnjy9IOhd4AlgFnFvwCM3MzMysYNqd/EXE88CewPvAWSSrfb8PnAq8DOwZES8XI0gzMzMzK4x8b+/2OPAJSR8DPkqSAD4XEXOKEZyZmZmZFVZHb+/2NPB0gWMxMzMzsyLL6/ZuZmZmZtaztTjyJ2lhB9qLiNiyE/GYmZmZWRG1dtn3JZIVvWZmZmbWS7SY/EXE+C6Mw8zMzMy6gOf8mZmZmZWRvFf7ShoFTABGAH+IiMWS1gU2Bl6NiPcKG6KZmZmZFUpeI3+SzgOeA64g2eh5i/RQf+AZ4ISCRmdmZmZmBdXu5E/SN4HJwK+BvUk2eAYgIpYDtwH7FTpAMzMzMyucfEb+TgBuiYiTgFx39HgKGFOIoMzMzMysOPJJ/rYG7m7l+OvA8M6FY2ZmZmbFlE/y9y6wXivHNwPqOhWNmZmZmRVVPsnfP4EDch2Q1B/4OvBQIYIyMzMzs+LIJ/mbBnxa0vXAx9OyjSVVAzXAJsAvChuemZmZmRVSu/f5i4jZkr4FXAQclhZfnz6/BxwbEY8UOD4zMzMzK6C8NnmOiCsk3QYcBGxDst3Lc8BNEVFbhPjMzMzMrIDyvsNHRLwKXFyEWMzMzMysyHxvXzMzM7My0mLyJ+kKSTvl26Ck9dJzveGzmZmZWTfT2sjfMcDoDrTZH/gGUNWhiMzMzMysaNqa8zdJUr4J4ICOBmNmVioz5tQybeYCltQ1MHJIJZOrxzBxrP8Pa2a9T5vJX/owM+u1ZsypZcr0uTSsbgSgtq6BKdPnAjgBNLNep7Xkb/NOtv1qJ883M+sS02YuWJP4NWlY3ci0mQuc/JlZr9Ni8hcRL3ZlIGZmpbKkriGvcjOznsxbvZhZ2Rs5pDKvcjOznqykyZ+k0ZIul/SUpEZJNTnqSNIPJb0sqUHSA5J2yFFvW0n3SFopaYmksyRVdKQtMysvk6vHUNm32V8XVPatYHK1d6wys96n1CN/2wFfBBYAz7ZQ5zTgDOA8YD+gHpgtaeOmCpKGArOBAPYHzgJOAX6Sb1tmVn4mjq3i3EnbUzWkEgFVQyo5d9L2nu9nZr1S3rd3K7DbI+JWAEk3A8MzD0rqT5KwnRsRl6RljwCLge8Ap6dVjwcqgUkRsRy4W9Ig4ExJP4+I5Xm0ZWZlaOLYKid7ZlYWSjryFxEftFFlV2AQcFPGOSuA24F9MurtA8xME78mN5IkhHvk2ZaZmZlZr1Xqy75t2QZoBJ7LKp+XHsusNz+zQkS8BKzMqNfetszMzMx6rbwv+0raHdgbGAGcHxHzJa0PfBJ4KiLqChjfUKA+IhqzypcBAyStGxHvpfVyve+y9Fg+ba0h6TjgOIARI0ZQU1PTmc9i7VRfX+++LgH3e2m430vD/V4a7vfuod3JX7py9gbgQEAkiyv+SDLi9j4wA/gFcE7BoyyRiLgCuAJg3LhxMX78+NIGVCZqampwX3c993tpuN9Lw/1eGu737iGfy76nAl8BTgY+SpIAAhAR7wK3kKzcLaRlwPrZW7aQjOKtzBipWwYMznH+0PRYPm2ZmZmZ9Vr5JH+HA9dFxEXAGzmOzwO2LEhUH5oPVACjs8qz5/jNJ2venqRNgQEZ9drblpmZmVmvlU/yNwp4pJXjdXw4v65QHgaWAwc1FUgaQLJH350Z9e4EqiUNzCg7BGgA7s+zLTMzM7NeK58FH+8AG7RyfDTwej5vniZfTZeKq4BBkg5MX98RESslTQXOkLSMZITuZJKk9eKMpi4DTgSmSzoP2AI4E7igafuXiHi3nW2ZmZmZ9Vr5JH8PAl+T9PPsA+kdNo4G7srz/TcC/pxV1vR6c5INmKeSJGhTgGHAY8BeEbG06YSIWCZpT+ASkn376oALSRLATG22ZWZmZtab5ZP8nU2SAN4LXJOWfULSViR3zliPJLlqt4hYTMbCkRbqRPreZ7dR7xng84Voy8zMzKy3anfyFxGPSfoKcCVwdVr8C5Lk7TXggDQBMzMzM7NuKq9NniPib5JGAXvx4XYvz5HcWm1l4cMzMzMzs0LK+w4fEbEK+Gv6MDMzM7MepLvf29fMzMzMCiif27stbKNKkOyr9xIwC/htRKzoRGxmZmZmVmD5jPy9RHIP31EkmznX8eHGzqPSYw3ALsAFwOOSNixYpGZmZmbWafkkfyeRbPJ8ArBRRHwyIj4JbAh8Jz32DWA48L/AVsBZBY3WzMzMzDolnwUfvwD+FBGXZRZGxPvApZI+BpwfEXsBv5b0aWDfwoVqZmZmZp2Vz8jfzsBTrRx/iuSSb5OHgREdCcrMzMzMiiOf5G8V8KlWju+U1mnSD6jvSFBmZmZmVhz5JH+3AUdJOk3SgKZCSQMkTQGOSOs02RV4tjBhmpmZmVkh5DPn7/vAWOAc4CxJS9LykWk7c4HJAJL6A+8Cvy5cqGZmZmbWWfnc2/ctSTsDxwBfAjZPD90D3A5cGRHvpXXfBb5e4FjNzMzMrJPalfxJqgQOAhZExKXApUWNyszMzMyKor1z/lYBV5Jc9jUzMzOzHqpdyV9EfEByh49BxQ3HzMzMzIopnwUf1wJfl3RRRKxqs7aZmXUrM+bUMm3mApbUNTBySCWTq8cwcWxVqcMysy6WT/L3MDAJeFLSpcBzwMrsShHxQIFiMzOzApkxp5Yp0+fSsLoRgNq6BqZMnwvgBNCszOST/N2d8fNFQGQdV1pW0dmgzMyssKbNXLAm8WvSsLqRaTMXOPkzKzP5JH9HFS0KMzMrqiV1DXmVm1nvlc8+f9cWMxAzMyuekUMqqc2R6I0cUlmCaMyslPK5vZuZmfVQk6vHUNm3+aycyr4VTK4eU6KIzKxU8rnsC4CkEcA4YCg5kseIuK4AcZmZWQE1zevzal8za3fyJ6kPyb16j6H1EUMnf2Zm3dDEsVVO9swsr8u+3we+CfwROIJkde9pwLdJtn15DNir0AGamZmZWeHkk/wdAdwVEYcDd6Zlj0fEZcCOwPD02czMzMy6qXySvy2Au9KfP0if+wJExArgapJLwmZmZmbWTeWT/DUAq9Of60k2dN4o4/irwKYFisvMzMzMiiCf5O9FYEuAiFgNPA98IeP4BGBp4UIzMzMzs0LLJ/m7Fzgg4/X1wKGS7pNUAxwE3FTA2MzMzMyswPLZ5+8XwCxJ/SJiFXAuyWXfrwGNwBXAjwsfopmZmZkVSj63d3sFeCXjdSNwYvowMzMzsx7At3czMzMzKyMdub3bVsBWwDCSjZ6b8e3dzMzMzLqvfG7vNgK4lg/v4rFW4key/YuTPzMzM7NuKp+Rv0tIEr/fkKz8fbMoEZmZmZlZ0eST/O0FXBYR3ylWMGZmZmZWXPks+OgD/LtYgZiZmZlZ8eWT/P0d+ESxAjEzMzOz4ssn+TsZOEDSV4oVjJmZmZkVV4tz/iTdm6O4HrhJ0hJgIcmdPTJFROxZwPjMzMzMrIBaW/CxBcnWLdleSp//X+HDMTMzM7NiajH5i4hRXRiHmZmZmXUB397NzMzMrIy0mvxJqpA0VdLxbdT7lqRzJOW664eZmZmZdRNtbfL8NWAysFMb9f5JcgeQp4EbChCXmZlZXmbMqWXazAUsqWtg5JBKJlePYeLYqlKHZdbttHXZ92BgdkQ83lql9PhM4NBCBWZmZtZeM+bUMmX6XGrrGgigtq6BKdPnMmNObalDM+t22kr+dgRmt7Ot+4BxnQvHzMwsf9NmLqBhdfPdxxpWNzJt5oISRWTWfbWV/G0AvNbOtl5P65uZmXWpJXUNeZWblbO2kr93gOHtbGsYySbQZmZmXWrkkMq8ys3KWVvJ33+AvdvZ1l5pfTMzsy41uXoMlX0rmpVV9q1gcvWYEkVk1n21lfxNByZI2r+1SpK+TJL8/aVQgZmZmbXXxLFVnDtpe6qGVCKgakgl507a3qt9zXJoa6uXy4FvkdzP9xfAbyNicdNBSaOAY4DvA8+m9c3MzLrcxLFVTvbM2qHVkb+IaAD2BRYBU4AXJC2T9JKkZcALwA/T41+KiHeLEaSk/5H0hKR6SbWSrpM0MquOJP1Q0suSGiQ9IGmHHG1tK+keSSslLZF0lqSK7HpmZmZmvVGbt3eLiOeBHYDvAg8CjcDG6fPf0/JPRsQLxQgwvaT8R+BhYH/gVGB34G+SMuM/DTgDOA/Yj2TxyWxJG2e0NZRk65pI2zoLOAX4STFiNzMzM+tu2rrsC0A6ondx+uhqhwFPRMR3mgokLQduBcYA8yT1J0n+zo2IS9I6jwCLge8Ap6enHg9UApMiYjlwt6RBwJmSfp6WmZmZmfVabY78dQN9gbezyurS56Z7Ce8KDAJuaqoQESuA24F9Ms7bB5iZleTdSJIQ7lG4kM3MzMy6p56Q/F0F7CbpcEmDJG0N/Ay4NyKeSetsQ3IZ+rmsc+elx8ioNz+zQkS8BKzMqmdmZmbWK7Xrsm8pRcTfJB0J/A64Ni1+GPhyRrWhQH1ENGadvgwYIGndiHgvrVeX422WpceakXQccBzAiBEjqKmp6fgHsXarr693X5eA+7003O+l4X4vDfd799Dtkz9JnwMuAy4C7gRGAGcCt0iakCPhK5iIuAK4AmDcuHExfvz4Yr2VZaipqcF93fXc76Xhfi8N93tpuN+7h26f/AHnA7dFxKlNBZKeJLl8uz/JRtTLgPUlVWQlg0OBlemoH2m9wTneY2h6zMzMzKxX6wlz/rYBnswsiIgFQAOwZVo0H6gARuc4N3OO33yy5vZJ2hQYkFXPzMzMrFfqCcnfi8AnMwskfZRkhe7itOhhYDlwUEadAST7/d2ZceqdQLWkgRllh5AkkvcXOnAzMzOz7qYnXPa9DLhQ0hI+nPP3fySJ3x2Q7EMoaSpwRnrnkfnAySTJ7cVZbZ0ITJd0HrAFyfzBC7zHn5mZmZWDnpD8/Qp4j+Qew8eTrNZ9EJiS7uXXZCpJsjcFGAY8BuwVEUubKkTEMkl7ApeQ7AFYB1xIkgCamZmZ9XrdPvmLiAB+kz7aqnd2+mit3jPA5wsWoJmZmVkP0hPm/JmZmZlZgTj5MzMzMysjTv7MzMzMyoiTPzMzM7My4uTPzMzMrIw4+TMzMzMrI91+qxczMzODGXNqmTZzAUvqGhg5pJLJ1WOYOLaq1GFZD+Tkz8zMrJubMaeWKdPn0rC6EYDaugamTJ8L4ATQ8ubLvmZmZt3ctJkL1iR+TRpWNzJt5oISRWQ9mZM/MzOzbm5JXUNe5WatcfJnZmbWzY0cUplXuVlrnPyZmZl1c5Orx1DZt6JZWWXfCiZXjylRRNaTecGHmZlZN9e0qMOrfa0QnPyZmZn1ABPHVjnZs4LwZV8zMzOzMuLkz8zMzKyMOPkzMzMzKyNO/szMzMzKiJM/MzMzszLi5M/MzMysjDj5MzMzMysjTv7MzMzMyoiTPzMzM7My4uTPzMzMrIw4+TMzMzMrI07+zMzMzMqIkz8zMzOzMuLkz8zMzKyMrFPqAMzMzMwAZsypZdrMBSypa2DkkEomV49h4tiqUofV6zj5MzMzs5KbMaeWKdPn0rC6EYDaugamTJ8L4ASwwHzZ18zMzEpu2swFaxK/Jg2rG5k2c0GJIuq9nPyZmZlZyS2pa8ir3DrOyZ+ZmZmV3MghlXmVW8c5+TMzM7OSm1w9hsq+Fc3KKvtWMLl6TIki6r284MPMzMxKrmlRh1f7Fp+TPzMzM+sWJo6tcrLXBXzZ18zMzKyMOPkzMzMzKyNO/szMzMzKiJM/MzMzszLi5M/MzMysjDj5MzMzMysjTv7MzMzMyoiTPzMzM7My4uTPzMzMrIw4+TMzMzMrI07+zMzMzMqIkz8zMzOzMuLkz8zMzKyMOPkzMzMzKyPrlDoAMzMzs3IwY04t02YuYEldAyOHVDK5egwTx1Z1eRxO/szMzMyKbMacWqZMn0vD6kYAausamDJ9LkCXJ4C+7GtmZmZWZNNmLliT+DVpWN3ItJkLujyWHpH8SVpH0mmSnpO0StJ/JV2YVUeSfijpZUkNkh6QtEOOtraVdI+klZKWSDpLUkWXfRgzMzMrO0vqGvIqL6aectn3GuDzwE+A+cCmwLZZdU4DzgAmp3VOBmZL+lhEvAogaSgwG3gG2B/YEjifJAk+veifwszMzMrSyCGV1OZI9EYOqezyWLp98ifpC8AhwCci4pkW6vQnSf7OjYhL0rJHgMXAd/gwsTseqAQmRcRy4G5Jg4AzJf08LTMzMzMrqMnVY5rN+QOo7FvB5OoxXR5LT7jsezRwb0uJX2pXYBBwU1NBRKwAbgf2yai3DzAzK8m7kSQh3KNgEZuZmZllmDi2inMnbU/VkEoEVA2p5NxJ23u1bwt2Bm6TdAlwOEnMdwHfiYglaZ1tgEbguaxz55GMGpJR797MChHxkqSV6bHbCx++mZmZWZIAliLZy9YTRv42Bo4EdgD+BzgK2BG4RZLSOkOB+ohozDp3GTBA0roZ9epyvMey9JiZmZlZr9YTRv6UPvaPiDcBJL0C3E+yCOSeor2xdBxwHMCIESOoqakp1ltZhvr6evd1CbjfS8P9Xhru99Jwv3cPPSH5WwYsbEr8Ug8C75Gs+L0nrbO+pIqs0b+hwMqIeC+jrcE53mNoeqyZiLgCuAJg3LhxMX78+E5+FGuPmpoa3Nddz/1eGu730nC/l4b7vXvoCZd955GM/GUT8EH683ygAhidVWeb9BgZ9bZp1oi0KTAgq56ZmZlZr9QTkr+/AttLGp5RtjvQF/h3+vphYDlwUFMFSQOA/YA7M867E6iWNDCj7BCggeQyspmZmVmv1hOSvyuAN4HbJe0n6TDgemB2RDwIEBHvAlOBH0r6tqQ9gT+TfL6LM9q6DFgFTJc0IZ3TdyZwgff4MzMzs3LQ7ef8RcRySZ8HfkWyJ997wK3A97KqTiVJ9qYAw4DHgL0iYmlGW8vSxPASkm1d6oALSRJAMzMzs16v2yd/ABHxPPDFNuoEcHb6aK3eMySrhM3MzMzKTk+47GtmZmZmBeLkz8zMzKyMKLlaam2R9DrwYqnjKBPDgTdKHUQZcr+Xhvu9NNzvpeF+7zqbRcSGuQ44+bNuR9JjETGu1HGUG/d7abjfS8P9Xhru9+7Bl33NzMzMyoiTPzMzM7My4uTPuqMrSh1AmXK/l4b7vTTc76Xhfu8GPOfPzMzMrIx45M/MzMysjDj5sy4laVtJ90haKWmJpLMkVbRxzihJkeNxY1fF3ZNJGi3pcklPSWqUVNPO8wZLulrSMklvS/qDpGFFDrfX6Ei/+7veOZIOknSbpFpJ9ZIel3RoO87rJ+l8Sa9JWiHpb5JGdUHIvUIn+j3Xd/3Rroi53PWI27tZ7yBpKDAbeAbYH9gSOJ/kPyGnt6OJ7wMPZbz2XlHtsx3J7REfBfrmcd5NwNbAMcAHwHnADGC3AsfXW3W038Hf9Y46GVhEcu/3N0j6/wZJwyPi4lbO+xVwYHre6yT3e79b0vYR8W5xQ+4VOtrvkPwbcHPG63eKE6Jl8pw/6zKSpgA/INl4cnla9gOSv2g3birLcd4okr9Y9ouIv3ZNtL2HpD4R8UH6883A8IgY38Y5nwYeBvaIiAfSsp2AfwB7RcTs4kbd83Ww30fh73qHpcnGG1llNwCfjojNWzhnE2AxcHREXJeWVZH8Hk6IiCuLG3XP15F+T+sE8L8RcUmxY7TmfNnXutI+wMysJO9GoBLYozQh9X5NCUie9gGWNiV+aTv/JPkHcZ9CxdabdbDfrROyE5DUHGBkK6ftnT5Pz2inFngQf9fbpYP9biXk5M+60jbA/MyCiHgJWJkea8vV6dypVyRdIKmyGEEakON3lZpH+35X1jn+rhfOp4FnWzm+DfDfiKjPKvd3vXPa6vcmZ0p6X9Ibkq6StEGxAzPP+bOuNRSoy1G+LD3WklXAr4FZwHJgPHAqyZzB/QsaoTVp7Xe1RdeGUlb8XS8gSXsCE4GjW6nW0b+XrAXt7HeAa4HbSeZZjgPOAD4haaeIaCxqkGXOyZ91exHxCvCdjKIaSUuBSyV9IiL+XaLQzArK3/XCSedP3gDcGhHXlDaa8pFPv0fEkRkvH5A0D7gD2I9kcZkViS/7WldaBgzOUT40PZaPptVhO3YqImtJIX9X1jn+rucpvXR4J/Ai8NU2qvu7XiB59nsudwH1wCcLGZetzcmfdaX5ZM2hkbQpMIDc88taE1nPVlhr/a5SLc0FtOLxdz0PkgYAfwXWBb4UESvbOGU+sKmk9bLK/V3PQwf6fS3x4fYj/q4XmZM/60p3AtWSBmaUHQI0APfn2daB6fPjhQjM1nInsLGkzzYVSBpHMt/vzpJFVZ78XW8nSesAfwa2Ar4QEa+147RZ6fMBGe2MJNnP0t/1duhgv+dq5wvA+vi7XnSe82dd6TLgRGC6pPNIEokzgQsyt3+R9Dxwf0R8I319JjCQZNPb5cDuwGRgekQ81ZUfoCdK/0f+xfRlFTBIUlNCcUdErMzu84h4RNIs4DpJ3+fDTZ4f9B5/7dORfvd3vdMuJenz7wLDsu5IMyciVkm6ByAi9kyf/yvpd8AvJYkPN3l+Efh9Vwbfg+Xd75KOI1nkMZtkY+hPkmz2/0/gb10Ye1ly8mddJiKWpavALiFZ4VUHXEjyF22mdYDMW77NJ7njwTEkewK+BEwDzi5uxL3GRiT/K8/U9Hpzkg1us/scklHZC4GrSK4S/JUkebf26Ui/+7veOU179l2U41hTn+e6neSJwArgApJpKPcDh/ruHu3WkX5/ATgC+AowCHgVuA44wyt9i893+DAzMzMrI57zZ2ZmZlZGnPyZmZmZlREnf2ZmZmZlxMmfmZmZWRlx8mdmZmZWRpz8mZmZmZURJ39mZmZmZcTJn5n1KJIWS6rJUX6CpPmSVkkKSaOKHMeZXfE+HSFpfBpb0+P0PM4NSdd04D1Hpeeeme+5LbS3S9ZnKEi7Zubkz8yKJEcC0ihpmaSnJV0r6Qvp7bQK8V6fA35NcoeM44GvA6+nCdrEdraxOCve1h7jCxF3F7iCpC9mNBVIGpL2y/gSxdRez5PE/r1SB2LW2/j2bmZWbH8E7gBEct/aMcBE4HBgtqSDIqIuj/bGANm3JtorfT46It5qKpT0Y+BaMpKfVpxEclP5Jh8FfgjcAkzPqjsPeBCYCqxqZ9yl8EhEZN+fdgjw4/TnmhznVAIlv71WRLwB/D4dWb2wxOGY9SpO/sys2J7ITkAknQz8HDiZJDncp7UGJPUFKiLi3YjIlWxtDJCZ+OUrImZkved4kuTvqRwJVJP3O/p+3ZXvZ2vW+/myr5l1uYhojIhTSEbPviDps03HMubSbSfpAkn/Bd4FdkmPr5nz1zTPDDgqfd10WXZxWg5wROYl20J9hlxz/jLKtpX0S0mvSFop6R5JY9I6kyQ9IakhjfO4FtqfIGmWpDpJ70p6StLxnYx5PLAoffnjzP7KqJNzzp+kz0n6m6Q303gWSvqdpOFtvGe1pHck/V3S0LRsO0l/llSbztF8VdJ9kvbtzOczs/bxyJ+ZldLvgM8C+5Ikgpn+ADQA55Nc5n0lx/mvk8wLOw7YLf0Z4B2SS8zXA38nmfvWla4F6oFzgA2BU4CZks4gGfH8DXAV8A3gcknPRMSaz58mhJcBjwJnAytILm3/RtKWETG5g3HNI5lDdyHNL2fXt3aSpG+mMdemzy8C/w/YD9gEeKOF844ArgRuBw6LiHclDQPuTatclrY1HBgH7Az8rYOfzczaycmfmZXSU+nz1jmO1QETIqLFS6sRsYJkXtgEYLccl5evBxa2ctm2WF4FvhwRkcbxBnARyaKU7SLi5bT8T8DLwLdJk19JHwF+BdwYEYdltHmppIuAkyX9JiIW5htURCyVNIMk+WvtcvYakjZJ45kP7Jo1P/MMSTmvIEmaQpL8/gb4TkR8kB76DLARcEhE3JTvZzCzzvNlXzMrpeXp86Acx37ZWuLXzf2qKfFL/T19vq0p8QOIiNeBBcBWGXUPBPoBv5M0PPNBMoLWB5hQ3PCbOQhYF/hJroU5GUldkz6SLiFJ/M6IiBOy6rydPu8jKdfv3cyKzCN/ZlZKTf/4L89x7NmuDKTAskfllqXPi7Irpsc2y3j90fR5divtj+hgXB3RlJjOaWf9k0guuf8oIs7JPhgR90u6DjgS+Kqkf5F81j9FxDOdD9fM2uLkz8xK6ePp84Icx1Z2ZSAF1tJWKS2VK8fPh5N7niOsnVx2J3cDuwPHSbox1+XpiDhC0jSSVd67kcyJ/JGkkyLikq4N16z8OPkzs1L6RvrsSf4fei59fiMiWhv966h8Vzw3jcDuQPtGY+cC/0eyqON+SZ+PiOeyK0XE08DTwDRJQ4B/AFMl/TrrkrmZFZjn/JlZl5NUIekXJCt974iIh4r0VvXABkVqu1huItk4+ieSKrMPShosqV8n2m9a2dvefrkZeI9ka5i15uhJa9+lJSL+A+wBVJAkgNtk1N8ge5FIOpdwETAA6N/OuMysgzzyZ2bF9klJX0t/zrzDx2bALOCwFs4rhEeBCZJOBV4CIiJuLOL7dVpE/FfSt0i2SJmXrlh+kWTLmO1J+m5bYHEH239T0vPA/0h6AVgKrIiI21uJ5ySSlcpz0/l6LwJVwP7A0cCTOc6bL2kPkhHAGkl7pknh4cD3JN1Ccgu31SSJYjVwU0Q0dORzmVn7Ofkzs2I7NH18QDLq9F/gfuCPEXFXkd/7BJKk5UckiSdAt07+ACLiaknPAt8HvklyS7Y3SOZGnkGylUxnfJVku5dzSEbbXiRZSdxSPL9JE8XJwIkkq5GXAPeQbFXT0nnPZSSA96Vb8tQAY4EvAR8hmQe5iOSzer6fWReQp1aYmfUu6Z087gP+lyTZXdHTRtQkrUOS9G4KPEGy1cyZpYzJrLfwnD8zs97rYpK7oJxS6kA6YBxJ7E+UOhCz3sYjf2ZmvUx6D90dM4qej4jFJQqnQ9LFJTtlFC3syF1NzGxtTv7MzMzMyogv+5qZmZmVESd/ZmZmZmXEyZ+ZmZlZGXHyZ2ZmZlZGnPyZmZmZlREnf2ZmZmZl5P8DQS5HXNtUINkAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "filenames": { "image/png": "/sdf/home/l/ldomine/lartpc_mlreco3d_tutorials/book/_build/jupyter_execute/Prerequisites/Python-04-ScientificPython_21_0.png" }, "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "num_bins = 10\n", "bin_center=np.zeros(shape=(10),dtype=np.float32)\n", "charge_median=np.zeros(shape=(10),dtype=np.float32)\n", "for idx in range(num_bins):\n", " time_min = drift_time.min() + (drift_time.max() - drift_time.min()) / num_bins * idx\n", " time_max = drift_time.min() + (drift_time.max() - drift_time.min()) / num_bins * (idx+1)\n", " mask = (time_min <= drift_time) & (drift_time < time_max)\n", " bin_center[idx]=time_min + (time_max - time_min)/2.\n", " charge_median[idx]=np.median(charge[mask])\n", "\n", "# EXERCISE: in above, we did grouping of data points by hand.\n", "# You can do a similar thing with np.histogram and/or \n", "# plt.hist functions that visualize *and* return binnin + population\n", "# Try yourself!\n", "\n", "\n", "# Visualize\n", "fig, ax = plt.subplots(ncols=1, nrows=1, figsize=(10, 6))\n", "\n", "ax.errorbar(x=bin_center, y=charge_median, marker='o', linestyle='', label='Charge Median')\n", "\n", "ax.legend(fontsize=18, loc='best')\n", "ax.set_xlabel('Drift Time [ticks]',fontsize=18)\n", "ax.set_ylabel('Charge [electrons]',fontsize=18)\n", "ax.set_title('Simulated lifetime = 3 ms', loc='right', fontsize=18)\n", "ax.tick_params(labelsize=15)\n", "ax.grid(True)\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "9f564a3c", "metadata": {}, "source": [ "Next, we try to fit a function to these median points using `scipy.optimize.curve_fit` function." ] }, { "cell_type": "code", "execution_count": 12, "id": "c243beb8", "metadata": {}, "outputs": [], "source": [ "from scipy.optimize import curve_fit\n", "\n", "def exp(x, a0, tau):\n", " '''\n", " This defines the exponential function \n", " that depends on a0 and tau\n", " '''\n", " return a0 * np.exp(-x/tau) \n", "\n", "def fit(func, x, y, seed=(), fit_range=None, **kwargs):\n", " '''\n", " Call this to fit a function func on data x,y\n", " You can pass the initial seeds, and the range \n", " to use for the fit.\n", " '''\n", " if fit_range is not None:\n", " sel = (fit_range[0] <= x) & (x < fit_range[1])\n", " x, y = x[sel], y[sel]\n", " \n", " vals, cov = curve_fit(func, x, y, seed, **kwargs)\n", " \n", " fitf = lambda x: func(x, *vals)\n", " \n", " errors = np.sqrt(np.diag(cov))\n", " \n", " return fitf, vals, errors" ] }, { "cell_type": "markdown", "id": "f8a89ea9", "metadata": {}, "source": [ "Let's fit now! `seed` are the parameters of the fit target, which are `a0` and `tau` of `exp` function above (i.e. all arguments after the first is considered a list of parameters)." ] }, { "cell_type": "code", "execution_count": 13, "id": "e89c12ac", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Fit results: [1596.36610746 2.99496915]\n" ] } ], "source": [ "seed = 1000., 1.\n", "fitf, vals, errs = fit(func=exp, \n", " x=bin_center, \n", " y=charge_median, \n", " seed=seed, \n", " fit_range=(0.0, 3.0))\n", "print('Fit results:', vals)" ] }, { "cell_type": "markdown", "id": "0ed70bb6", "metadata": {}, "source": [ "Visualize the fit results with data points!" ] }, { "cell_type": "code", "execution_count": 14, "id": "c201493f", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAu8AAAIBCAYAAAD5zVGjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACL5ElEQVR4nOzdeZyN5f/H8ddnxjAje/ZdEUKIUCpLpLShn5RIq/ZFRSihEkKWtGkTrSq0Z4v2bFHK0manUGQb27h+f9xn5jvLmZkz631m5v18PM5Dc93Xfd2fc66hz1zzua/bnHOIiIiIiEj4i/A7ABERERERCY2SdxERERGRPELJu4iIiIhIHqHkXUREREQkj1DyLiIiIiKSRyh5FxERERHJI5S8i4iISFBmtsHMFimOtJlZTTNzZjYshL7XBvq2TdTWNtB2bbK+Zc1smpltCxxflM1xLzKzDdk5puQ8Je8iIiIFiJmdZGZTzGytmR00s91mtsbMXjWzdn7HlxMCCfM9fseRCeOAHsBzQG9gREYHMLN7kv9QUFCZ2UVm9kHgh8H47/0fAp9RtN/xhaqQ3wGIiIhI7jCz5sAXwFFgGvALEAPUAc4H9gELE51SF8gPT3O8FqgJTPA1itR9iTcPR5O1dwTmOOceycLY9wAbgKlBjp0PWBbGzmsaAXHAS8B2vM/8HGA8cJGZne/ywNNLlbyLiIgUHEOBokAT59yPyQ+aWcXEXzvnDudWYAWZc+44cCjIoYrAvzl43SM5NXY4cs6NCtL8lJk9DdwGnAEsyd2oMk5lMyIiIgVHHeCfYIk7gHPur8RfB6s1j28zs8ZmNt/M9pvZDjMbZ2aFzCzazMaa2VYzO2RmX5pZ/WRjDAvUcNdMHkOo9e1mdr6ZvW1mf5pZrJntMbO5ZtYm+XhAG6BG4Jrxr7aJ+tQxs+lmtt3MjgRiGGNmJwS57tlm9k3gmn+b2WSgWHrxpvNektS8x38+eKvifRLFfG2iczoE3u+ewOf8k5ndkmxcB9QA2iR77zUDx1PUvMe3Ber4ZwXG321mU82smJlFmNlgM1sfuO4PZtY6yHsyM7vVzJYHSlT2m9nCMC3N2hj4s3R6HRPds3CemT1sZhsD3wuLzaxVoE8bM/vazA4EvqeGBBnnLDP71Mz+CnyOW83sk/gx0qKVdxERkYLjD6CumXVzzs3MwjhVgXnA28C7eOUX9wLHgAZ45QijgLLA/cBsM6sfWGHOLtcCZfDKf7YAVYAbgQVm1s4591Wg3z3AyEAs/RKdvwbAzJoBnwN7gOeBrUBj4C6gtZm1cc4dDfRtCczHKy8aHTjnykAM2Wkm8DswHfgKmBJo/zYQR1+8Ovjv8ergD+CV2DxrZic75/oH+vfGKwnZRdJ6+Z3pXP8EvM/kC2Ag3or09UA08A/QEngKiMKb3w/NrIZzbl+iMaYDV+F9f7wCFAGuBuYFvv8+SCsAM4vAm99Q/Rvq95eZFQ/EUwJoDTwQeF+LM3C9UUAkMBEoDNwHzDWza/DKcqYArwNXAI+Y2Xrn3GuB69fF+/vzV+D8v4EKwNl433vfp3ll55xeeumll1566VUAXsCZwBG8OvZfgZeBW4H6qfTfACwK0uaA7snalwPHgfcBS9R+V6B/p0RtwwJtNTNwzeRtJwQ5twJeovpJsvZFwIZU3uOPwFqgeLL2roEYr03U9m3g8zslUVthvFILBwwLYQ6uDfRtm6itbfJrBdodMDVZWyW8Eps3gow9Ea+m+6S0Pru0PpdAmwP6J2ufGZjfZUBUovZLA/1vDvLZ9U02RqHA+esTf4+kElvNwBihvlJ8L6Ux9rvJzv0eaBbiufHz9wNQOMjncBRonuz7YzvwXZC/Ey0y+nfYOaeyGRERkYLCOfcd0Ax4FSgJXAc8A6wOlLecFOJQW51z7yRr+xqvzOMpF8hQAuJXwOtkPvKUnHMH4v87UM5xIl7iuhhvZThdZtYIOA14Ayhi3taMZc2sLN77OYD3WwXMrDzeDz/vO+d+TRTHEbzV7dzyf3irxi8ljjcQ84d4JdEdsniNOLyV9cS+wpvf51zgNxGJ2iHp/PbC++3E7GTxlQrEWJP0vx/+wvttQqivv4IPE9TwwDk9gRcCbSdm4HyAZ13SewbiP4fFzrll8Y2BPktI+n7/C/x5mWVilxuVzYiIiBQgzrlVeKuHmFkNvHrwG/F23XjfzJq59G9kXB+kbXcqx+LbM5ocpcnMTsYrBemElxQmFuqOIfG1+MMDr2AqBP6M/8FmbZA+q0O8XnaIj3l+Gn0qpHEsFNudc8lvoA06v8653WYGSee3PlAcrxwkrRh/Te1g4PppvcdMC/wdWBX48k0zuxn41MzOdc59E+IwfyYbM/5zSO3vRuLP5y28H3AGA/3M7HtgDvCWc25jkPOTUPIuIiJSQAUShWlmFl9b3RpogbfqnJa4TBxLvCVhWsl1urmJmRXD217xBLztH1fhrfQeBwYB7dMbI1lM44DPUumzO5V2v8THfA1eOUYwf6bSHqqszq/h1dX3TGOcn9MKwMwigXJp9Ulmp3MurbjT8hreb6BuAUJN3lO7VroxOG8Xp45m1gLvh89zgUeAYWbW0zk3K63zlbyLiIgUcM45Z2aL8ZL3KrlwyfjtD8vg1WQDECghqIR3s2ZazgMqA9c7515JfMDMHgvSP7UfFn4L/BnnnEtvlTd+RbVekGOnpnNudoqPeVcIMYM/+/T/BpwCfO+c25/JMaoRfBU7NbVI9L2UQYXxyo0ycoNsljnnlhDYmtLMqgErgMeANJN31byLiIgUEGbW0cxSLNyZWQyB2m5ypwQkvlwieW12P0LLTeJXN5M8YMjMzid4vft+oLQF6hoSWYG3AnxLsHp/87a+LAPgnPsb78bGy8zslER9CpN0F5ucNgM4DAwPzFsSZlbSzIokatpPLieleLvvRODt8pOCmYVS1pPtNe+W7DkGidwV+DPtXV6ySaD+P7kteL+tSHeutPIuIiJScIwHTjSzD/BKTQ7irXD2xFspnRaoB85p84F1eFvonYi3wno20Apvt5j0fI2XrI0L7Fm+BWiCtzXiKrwnaSb2PXAxMNnMvsVL/j93zu0ws9542yL+ZGYv4z11tihQG+iGV4YzNTDOvXi7sXxj3oN99uBtFZlr+ZRzbouZ3Qq8CKwJlDxtxCsxaQR0wftNwIbAKd8DN5jZo3jbYx4HPkx8w28OxPiumb0C3GFmpwMf4c1rVbybfmvzv3sIUhsjJ2refzazr/F2itmKt31oR7zf5Kwi957A+1DgB82PCOy8A1yC91udJ9I7Wcm7iIhIwXEvcBleonw53o2e/wE/4e1bPjU3gnDOxZnZpcAk4E687Rfn4t08m27NsXNuj5l1wkt07sTLZ5YDnYEbSJm8j8dLFv8Pr645AmgH7HDOrTSzpnhJ+qWB4/vwkt+pwIJE1/3OzDri7fE9EO+zexd4lv/dAJnjnHOvmNmveHus34w3j7vwfiAaQtJV6AfxVnNvD/QzvBKTHEveAzFeb2YLgb54n23hQFw/BL72w0S83zDdjveZxOJ9ZoOBSTn5A00ys/HKw67Au3E3Fq/U6Ca8PeLTZEl3cxIRERERkXClmncRERERkTxCybuIiIiISB6h5F1EREREJI9Q8i4iIiIikkcoeRcRERERySO0VWSIypYt62rWrOnLtQ8cOMAJJ5zgy7UldZqX8KM5CU+al/CkeQlPmpfwlNvzsnz58l3OuXLBjil5D1HNmjVZtmyZL9detGgRbdu29eXakjrNS/jRnIQnzUt40ryEJ81LeMrteTGzjakdU9mMiIiIiEgeoeRdRERERCSPUPIuIiIiIpJHKHkXEREREckjlLyLiIiIiOQRSt5FRERERPIIJe8iIiIiInmE9nkXERHJAf/99x+7du3iyJEjfocSVMmSJVmzZo3fYUgympfwlNV5iYyMpHjx4pQpU4YiRYpkKRYl7yIiItns0KFD/P3331StWpWYmBjMzO+QUti3bx/Fixf3OwxJRvMSnrIyL845jh49yt69e9m0aRPVq1fPUgKvshkREZFstnPnTsqVK0fRokXDMnEXkdxjZhQuXJiyZctSunRp/v333yyNp+RdREQkmx06dIhixYr5HYaIhJkSJUqwb9++LI3ha/JuZrXN7Hkz+8nM4sxsUSr9GpnZR2b2n5ntM7MlZtYsWZ9TzWyBmR00s21m9oiZRSbrY2Y22Mw2m1msmX1pZk1y7h2KiEhBdOzYMQoVUmWqiCQVFRVFXFxclsbwe+W9AdAZWAf8GqxDILn+FtgD9AC6Ax8CMYn6lAbmAw64DHgEuA8Ynmy4gcAQYDRwCbAfmG9mFbPp/YiIiACoXEZEUsiOfxf8Xhb40Dn3PoCZvQuUDdLnuUC/XonaPkvW5xa8ZL6bc24vMM/MSgDDzOwJ59xeM4vGS95HOucmB675HbABuAN4KBvfl4iIiIhItvN15d05dzyt42Z2KtASeCqdoS4E5gQS93hv4SX0bQJfnwWUAGYkuv4BvFX8CzMWuYiIiIhI7vO7bCY9LQN/ljazH83smJn9YWY3JOtXD1ibuME5twk4GDgW3ycO+C3ZuWsS9RERERERCVt+l82kJ74WfRrwBLAU+D/gRTPb7pz7JHC8NF5NfHK7A8fi++x3ziW/S2A3UNTMCjvnkjxJw8z6An0BKlSowKJFi7L2bjIhets29p9wgi/XlrTt379f8xJmNCfhqSDOS8mSJbO8o0ROi4uLy9UYv/rqKy666CKeffZZrr766hy91hdffMHIkSNZvXo1e/bsYcCAAXTr1o3WrVvz3nvv0b59+wyP+fHHH3PNNdewePFiateunQNRe3J7XsLF6tWrszQ/OS35vGTl++HQoUNZ+zfRORcWL+BdYFGytsF4N6GOStb+OfBVoq+PAvcEGXML8Hjgvx8E9gTpc2PgGoXTiq9Zs2Yu123f7lzp0m57p07OxcXl/vUlTQsXLvQ7BElGcxKeCuK8rF692u8Q0rV3795sGWfhwoUu8P/RoK/vvvsuSb9XXnkl4dwVK1a4oUOHuvXr12dLLM45t3btWhcVFeVatGjhnn/+eTd9+nT3xx9/uI4dO7pzzz03S2OffvrprmvXrtkUaXDZNS95TXbMTzAvv/yymzBhQqrHb7/9dle5cmV3/PjxNMcJNi+Z/X4I5d8HYJlLJScN95X33YE/FyZr/xzol6xfySDnl040xm6gmJlFuqSr76WBgy7ZqntYqFgR7r6bisOGQd++MGUKRIR7pZOIiBREV111FZ07d07RHr8qee655xIbG0tUVFTCsZUrVzJ8+HDatm1LzZo1syWOl156iaNHj/LOO+9QvXp1AL777jvmzZvH7NmzszT23XffTZ8+ffjll19o0KBBNkQrkH3zE8yAAQNo2bIld999d4pjzjlmz57NZZddlqldYPz6fgj3THBN4M/kn6gBiW92XUuyunUzqwYU5X+18GuBSCD57zZS1MuHlaFD2dC7N7z0Etx6KxxP8x5fERERX5x++un06tUrxatsWW8juYiICKKjo4mMjExnpKz5+uuvqVOnTkLiDvDMM89QtmzZoD9cZES3bt0oWrQozz33XFbDlESya36S+/3339m1axetWrUKenzp0qVs3bqVLl26ZGp8v74fwj15/xZvxTx58dN5wI+Jvv4U6GRmxRO19QBigS8SjbUXb594AMysKN5+759mb9jZa8N118GgQd7K+x13gFfuIyIikmcsWrQIM2Pq1KkADBs2jOuuuw6Adu3aYWaYGddee23COX/88Qdr14a2vjZ06FDMjO+++47ffvstYbx33nmH2bNn06FDhySr/gCxsbFUrVqV6tWrc/jw4STHbrzxRiIjI3nrrbcS2ooVK8Y555zDu+++m4lPIHP+/fdfHn74YVq1akW5cuUoWrQo9erVY/To0RzPpgW9jRs3ctttt1GrVi2io6OpXbs2gwcPJjY2NqFPRj6rYcOGYWYsWLCAq666igoVKlC0aFFatGjBl19+meTcY8eOpTo/WdGlSxfq1KkDwJAhQxK+Hx566H87g8+aNYtSpUrRrl07AObMmZPQL/mrRIkSmBnNmv3vGaF+fD+AzzesBpLn+B+zqgAlzOz/Al9/4pw7aGaPAE+Y2R68G1YvB87lf1tAgrcX/F3ATDMbDZwEDAOedIHtI51zh8xsFDDEzHbjrbbfi/cDTHpbUfrLDEaMgGPHYMwYKFQIJk702kVERMLAwYMH2bVrV5K2IkWKULx48aD9u3Xrxvbt25kyZQqDBw+mfv36AJx88skJfc477zw2btwYf49ami688EKKFSvGgAEDkpTwVK9enf3799OiRYsU58TExDB8+HBuvPFGnnnmGfr18ypyBw0axEsvvcTTTz/NlVdemeScM888kzlz5rB27Vrq1Uu5Wd3x48f5999/0403XpkyZYhIoyR23rx5vPPOO1x00UX06dOHI0eO8PbbbzNw4EDMjAEDBoR8rWAWL15Mp06dKFmyJNdddx2VK1dm6dKlPPHEE2zYsIE33ngDyNhntWLFCiIjI7nqqqs466yzePTRR9m0aRMTJkzgwgsv5Pfff6dSpUoALF++PNX5yYq+ffsSFxfHRx99xLPPPkuxYsUAb/7izZo1i86dOyf80FCjRg2mT5+ecHzAgAFERUUxYsQIYmNjiYmJ4aSTTkpynfS+H3JEasXwufECapL6TS41E/W7F1gPHAFW4T2MKflYp+LVwscC24FHgchkfQzvxtUtgX5fAU1DidWXG1YDEm72On7cuX79nAPn7rnH+1p8UxBvwgt3mpPwVBDnRTeseq8ePXqk6Jf4htVXXnnFAal+j9SoUcN5qUpo3nvvPQe4jz76KKHt5ZdfdoB7//33g55z7Ngx16BBA1euXDm3b98+N378eAe44cOHB+0/ffp0B7h333036PH169eneQNv8lfym3WTz8v+/ftTXOPIkSPupJNOcq1btw4aw9GjR92aNWvcxo0bgx6Pt2vXLleuXDnXrl07d+DAgSTHBgwY4AC3devWhLZQP6vq1as7wI0bNy5Je/x8J76BNL35yYpLL73UlStXLuix1atXO8C98847QY8fOXLEFS5c2F1xxRXOudT/vqT3/ZDatdNDuN6w6pzbQMp69mD9ngSeTKfPalKW1yTv44ARgVfeYwbjxkFcHEyY4K3AP/GEVuBFRMR3ffv2pXv37knaKlasmErv0GzYsCFD/X/44QfAq7+Pt3PnTsBb4Q4mMjKSUaNGcckll3DZZZexcOFC7rzzTh5++OGg/U888UQAduzYEfR4xYoVmTdvXsgxp/cZnXDCCYC32Lpv3z6OHPH21yhfvnyK8pV4f/31F/Xr16dNmzZpbkn4+OOPs2fPHp588kkOHjzIwYMHE441bNgQgN9++43KlSsDoX1Wu3fvZtOmTZx99tnce++9Sa533nnnAUnnNa352bNnDxMmTEg1/uTuuuuuJOP88MMPNG3aNGjf2bNnEx0dzQUXXBD0+Nq1azly5AiNGzdO85rpfT/khHDfbUaSM/MS92PHYOxYL4F//HEl8CIi4qs6derQoUMHX2P44YcfqFChQkJJBpCwi4hLo/Tm4osvpmnTpnz++edceeWVTJw4MdW+8eOktjtJdHR0tn4OM2bM4JlnnmHJkiVJatDB2+Ens5xzvPnmmxw9ejTVBBegVKlSSb5O77NasWIF4NXBJxdfox9fwgJpz8+ePXsYPnx4aG8I6NWrV0LyvnPnTrZs2UKvXr2C9p01axYdOnRIEktiK1euBKBJkyZpXjO974ecoOQ9LzKDp57yVuBHjYLISHj0USXwIiJSoK1YsSLJqjtAuXLlANKsQ3/77bf58UdvH4zixYunmYjFjxM/bnJxcXEJq8mhKFeuXKo78AwYMIAxY8bQuXNnxo0bR7Vq1YiOjuaPP/7glltuSTXprlq1arr3CezYsYPt27dzzTXX0Lt371T7nXrqqUm+Tu+zik96mzdvnmKsxYsXAySJO635qVmzZkj3OwQT7Lcw8bZs2cKyZct44YUXUj0//j2mt/Ke3vdDTlDynldFRMAzz3gJ/IgREBUFQ4f6HZWIiEjIsnO1ctu2bfz1118pEtrE5R/BzJ07l2uuuYauXbsSFRXFyy+/TL9+/RJuoE3u999/TzJucps3b6ZWrVohx71+/fqge9xv2bKFsWPH0rNnT15//fUkx+JLYYIlpqH677//AC/RD/U3BaF8VvHJe6FCKVPMJ598kjJlynD++ecntKU3P5kV/xuAYJ/R7NmzMTMuvfTSVM//5ZdfKFWqFFWqVEnzOul9P+QEJe95WUQEPP+8V0IzbJi3Ap9oCyQREZFwFl+ykNqq+B9//MHRo0dD2sUjtZXWpk2bUqJECb7//vsU5yxevJhu3brRunVrXn/9dbZs2cJ7773HoEGDUn1g0Pfff0+FChWoW7du0OPZVfO+efNmnHMp3vtXX33F2LFjgawl71WrVqVIkSLMmjWLIUOGEB0dneT4rl27KF26dMJvBUL9rOKT9y+++CLJZ/TSSy+xePFinnzyySSlKmnNT1b8+eefAEn2+483a9Yszj777DRXy7dv30758uXTvU563w85Qcl7XhcRAS++6K3ADxni1cAPHOh3VCIiIuk644wziIiIYMSIEezevZsTTjiBWrVq0bJlSyBjW0XGJ+/JV94jIyPp1q0bs2fP5vDhwxQpUgSA1atX07lzZ0455RRmz55NkSJFOPnkk7nhhht47rnn+Oabb2jdunWSsfbv389XX33F9ddfn2oc2VXz3rBhQ8qUKcPYsWM5fvw45cuXZ8mSJSxYsIAyZcpQpEgRSpcunenxixYtyl133cWYMWM4/fTT6d27N+XKlWPr1q389NNPfP/992zduhUI/bM6fPgwa9asoWnTpvTr14+NGzdSs2ZNFi1axJtvvkmPHj245557ksSR2vxkVfyWjnfddRdnnnkmkZGR9OzZk927d/Pll1/yxBNPpHl+pUqVWLBgAY899hiNGzembdu2KfqE8v2QI1LbhkavMNwqMi3HjjnXs6e3jeSYMTkekxTM7e/CneYkPBXEeSmIW0WOSef/PcG2inTOualTp7r69eu7qKgoB7g+ffokHMvIVpFdunRxpUqVCnps8eLFSbbz27hxo6tatao7+eST3V9//ZWk79atW11MTIw766yzUowzdepUB7hVq1aFFFNmJJ6Xb7/91rVs2dLFxMS4SpUqub59+7otW7a4YsWKuW7dumX5WnFxce7VV191LVu2dGXKlHExMTGuZs2arlu3bm7GjBnOuYx9VsuWLXOAmz59unvqqadczZo1XeHChV39+vXdhAkTXFxcXNA4ks9Pdjhw4IDr3bu3K1u2rANc9erVnXPOvfrqq0G36Exu+fLlrnHjxi4yMtJ17tw56N+XzH4/ZHWrSHOZvBGgoGnevLlbtmyZL9detGhR0J/4Ujh2DHr1grffhiefhMADFCRnhDwvkms0J+GpIM7LmjVrUq2ZDhf79u1L9QFK+dEFF1zAgQMH+OqrrzI9xumnn07NmjWZOXNmNkaWVF6el5deeokbb7yRH3/8kdNOOy1D52bH/ISia9eurF+/PqG8J1TB5iWz3w+h/PtgZsudcynv+kVlM/lLoULw2mteCc2993o18Hfd5XdUIiIivhs3bhyNGzdm7ty5SW6YDNXs2bP5+eefefvtt3MguvxhxYoVREVFZepJo1mdn1CdeeaZ3HTTTVkex8/vByXv+U2hQvDGG14Cf/fd4Jz3p4iISAHWoEEDjh07lunzu3TpkvCAJAlu5cqV1K1bl8KFC2f43KzOT6gGDBiQLeP4+f0Q4ctVJWdFRXmlM926wT33wPjxfkckIiIi+Zhzjp9++olGjRr5HUq+p5X3/CoqCt56C3r29Epojh+H++7zOyoRERHJh8yMvXv3+h1GgaDkPT+LivJKaCIi4P77vQS+f3+/oxIRERGRTFLynt9FRcHrr3sJ/IABXi289oEXERERyZOUvBcEhQrB9OleAj9okLcCP3iw31GJiIiISAYpeS8oChWCadO8BP7BB70E/qGH/I5KRERERDJAyXtBEhkJU6eCGQwZ4iXwDz/sd1QiIiIiEiJtFVnQREbCK69Anz4wdCgMG+btBS8iIlIAjBw5ku7du3PSSSdhZtSsWTNT4/z777/cf//91K5dm+joaMqVK0e7du1y/AmhaTl+/Djjx4+nXr16REdHU61aNe677z4OHDiQpN+6deu4+uqrqV+/PiVLlqRo0aLUq1ePe++9l+3bt/sUfdbjGjZsGGaW6isqKioX3kXO08p7QRQZCS+95JXQDB/urcAPH+6tyIuIiORjgwcPpkyZMpx++uns2bMnU2Ns3LiRtm3bsn//fm644QZOOeUU/vvvP3766Se2bt2avQFnQL9+/Zg0aRJdu3blvvvuY82aNUyaNIkVK1Ywf/58IiK8NdstW7awfft2unbtStWqVSlUqBCrVq1iypQpvPXWW6xcuZLy5cvnevxZjatbt27Url07RftPP/3EmDFjuOSSS3Iy/NzjnNMrhFezZs2cXxYuXJgzA8fFOXfjjc6Bcw8+6Nzx4zlznXwqx+ZFMk1zEp4K4rysXr3a7xDStXfvXr9D8MUff/yR8N8NGjRwNWrUyPAYZ599tqtatarbtm1bNkbmSTwvCxcudEBIf4d+/vlnZ2auW7duSdonTZrkAPf666+nO8aMGTMc4EaPHp3huDMab0ZkNa6+ffs6wH300UeZjiE7/76E8u8DsMylkpOqbKYgi4iA55+Hm26CESO8HWhUQiMiItng33//5eGHH6ZVq1aUK1cuoQRi9OjRHD9+3Le4TjrppCyd/+WXX/L1118zYMAAKlWqxNGjRzl48GCq/Q8fPszjjz9OgwYNiI6OplSpUlxyySWsWLEiS3Ek9+abb+Kc45577knSftNNN1G0aFFee+21dMeoUaMGALt3787W2LIqK3EdOHCAt956i6pVq3LBBRdkd2i+UNlMQRcRAc895/05apRXQjNqlEpoREQkS+bNm8c777zDRRddRJ8+fThy5Ahvv/02AwcOxMwYMGBAmucfP36cf//9N+TrlSlTJqEsJCd98sknAFSvXp1LLrmETz/9lLi4OOrUqcPDDz9Mr169EvoePXqUCy64gG+//ZbevXtzxx138N9///HCCy/QunVrvvzyS5o3b54tcS1dupSIiAhatGiRpD06OpomTZqwdOnSFOccOnSI/fv3c+jQIVavXs0DDzwAQOfOndO9XrD5+e+//xL+3LVrV5JjGZmfrMSV3DvvvMPevXu56667iIyMzPD54UjJu3iJ+zPPeH8+8YT3IKcxY5TAi4hIpl188cX06NEjSdttt91GvXr1+OCDD9JN3jdt2kStWrVCvt769eszffNpRqxbtw7wVrTr1KnDq6++ypEjRxg3bhy9e/fm6NGjXHfddQBMnjyZRYsW8dlnn9GpU6eEMW677TYaNmzI/fffz6JFi7Ilrm3btlG2bFmKFCmS4liVKlX49ttvOXLkCIULF05of/HFF7nzzjsTvq5ZsyavvfYa55xzTrrXS2t+unTpkqItI/OTlbiSe+mllzAzrr/++gyfG66UvIsnIgKeftq7mXXcODhyBCZOVAIvIpKd7rkHVq70OwoAYuLivH/zmzSBCROyffwTTjgB8O6t27dvH0eOHAGgfPnyHD58ON3zK1asyLx580K+XsWKFTMXaAbt27cPgOLFi7Nw4cKEZLhLly6cdNJJDB48mD59+hAREcFrr71GvXr1aNasWYqV6I4dO/Lqq68SGxtLTExMwkr2/v37Ez6fjKxkHzx4MGjiDt7qe3yfxMl7ly5dqFevHvv372fFihV88MEHKa6TmmDz8+OPP3L//fczduxYGjdunKJ/qLISV2Lr1q3j66+/5rzzzsvQD4LhTsm7/I8ZTJoEUVEwfjwcPgzPPusl9iIiIhkwY8YMnnnmGZYsWUJsbGySY1dddVW650dHR9OhQ4ecCi/TYmJiAO89JE6ES5cuzaWXXsq0adNYt24d9evXZ82aNcTGxlKuXLlUx9u1axfVqlXL8kp20aJF2bFjR9DzDx06lNAnsapVq1K1atWEa1x++eWcccYZHDx4kEGDBqUaMwSfn0KFvLSyWbNmtG3bNs3z05KVuBJ76aWXALjxxhszHUs4UvIuSZkxu9e9jCncmm2uMJUHvEv/q86kS7NqfkcmIpL35cAKd2bF7ttH8eLFc2TsAQMGMGbMGDp37sy4ceOoVq0a0dHR/PHHH9xyyy00bdo03THi4uLYuXNnyNcsV65crtQ0xyeVwVaSK1WqBPzvxkrnHI0aNeLJJ59Mdbz4xD5+JfvgwYMJSXZGVrIrV67M6tWrOXz4cIoV+K1bt1K2bNkkP2wEc9ppp9G0aVOeeeaZDCXJOS0zcR07doxp06Zx4okn0rVr1xyOMHcpeZckZq/YyqBZPxNLNBhsLXQCg97+AdxxujSv4Xd4IiIS5rZs2cLYsWPp2bMnr7/+epJj8fXdp59+errjbN68OSxr3lu0aMFzzz3Hli1bUhyLb4vfi7xOnTrs3LmT9u3bp3uzZvxK9r5EP1RlZCX7jDPOYO7cuSxZsiRJbfihQ4dYuXIl5557bkjvLzY2NkM3CueWjMb14Ycf8vfff3P33XenWk6UV6keQpIYM2cdsUfjkrTFRhRizJvfeXXwIiIiadi8eTPOOerVq5ek/auvvmLs2LFAaMl7/Ep0qK/srnk/evQoa9euZdOmTUnau3TpQvHixXnttdfYv39/Qvv27duZPXs2p5xySsKDgq655hr++uuvVFfe//7772yLt0ePHpgZE5L9dueFF17g4MGDXH311Qltf/31V9AxFi5cyM8//0yrVq0yFUPbtm1xzmW6ZCYjcaU2P/HiS2ZuuOGGTMUSzrTyLkls2xMbvL3QCdCtG7z7LgRufBEREUmuYcOGlClThrFjx3L8+HHKly/PkiVLWLBgAWXKlKFIkSKULl063XFyquZ9+vTpbNy4EYCdO3dy5MgRHnvsMcDbT7x3796AV2pSv3592rRpk2RHmNKlSzN27FhuvvlmWrVqxfXXX8+RI0d49tlnOXLkCE899VRC37vvvpt58+bRv39/Pv/8c9q3b0+JEiXYtGkTCxYsIDo6moULF2bL+2rUqBG33347kydPplu3bnTu3DnhCatt2rShZ8+eCX1vvfVWtm/fTvv27alRowaHDh1i+fLlvPXWWxQvXpxx48ale70DBw4wa9askOPr2rVrwk3MqclIXKnND3g773z22We0aNGCRo0ahRxjXqHkXZKoXCqGrUES+MpRx+GTT+CSS+D99yHZTS8iIiLg7cLy0Ucf0a9fP0aPHp3wUKLvvvuOevXqceaZZ/oa30svvcQXX3yRpG3IkCEAtGnTJiF5T0vfvn0pW7YsTzzxBEOGDCEiIoIzzzyTN954g9atWyf0i4qK4uOPP+aZZ55h+vTpDB06FPDq01u0aEGfPn2y8Z3BhAkTqFmzJlOmTOHjjz+mbNmy3HnnnTzyyCNJynauuuoqpk2bxvTp09m5cydmRo0aNbj55pvp378/1atXT/daO3fuDOmzird+/fp0k/fsiAtg6tSpxMXF5bsbVeOZ0xM1Q9K8eXO3bNkyX669aNGiLN21nRGzV2xl0MxVSUpnYqIiGdmtEV1+mg/XXw9nnw0ffQQ5dKNTXpGb8yKh0ZyEp4I4L2vWrKF+/fp+h5GmfTl4w6pknuYlPGXnvITy74OZLXfOBX2Cl1beJYkuTasAXu37tj2xVC4VQ/9Odb32pn2gSBHo1Qs6dYJPP4WSJX2OWERERKTgUPIuKXRpWiUhiU/hyiu9BL5HDzjvPJg7F8qUyd0ARURERAoo7TYjGde1K8yaBT//DO3aQQb24RURERGRzFPyLplz0UXw4Yfw22/Qpg1s3+53RCIiIiL5npJ3ybyOHb26902b4NxzYfNmvyMSERERydeUvEvWtGnj1b3v2OEl8OvX+x2RiIiISL6l5F2y7qyzYMEC2LvX20ZyzRq/IxIRERHJl5S8S/Zo3hwWLYK4OG8FfsUKvyMSERFJ4tdff+Xhhx+mVatWlCtXjuLFi9OkSRNGjBjBgQMHQh7n77//5pZbbqFatWoULlyY6tWrc/fdd7Nnz54s9c1Nx48fZ/z48dSrV4/o6GiqVavGfffdl6HPISNjZNdnL9oqUrJTo0bw1VfQoYO3C83HH0OiJ82JiIj46eWXX+bpp5/m0ksv5eqrryYqKoqFCxfy0EMPMWPGDL7//ntiYmLSHGPHjh20bNmSbdu2cfPNN9OwYUN+/vlnnn32Wb788ku++eYbigaeQp6RvrmtX79+TJo0ia5du3LfffexZs0aJk2axIoVK5g/f36SJ7JmxxjZ8dlLgHNOrxBezZo1c35ZuHChb9fOlI0bnatTx7miRZ2bN8/vaHJMnpuXAkBzEp4K4rysXr3a7xDStXfvXr9DyHVLly51e/bsSdH+4IMPOsA99dRT6Y5x9913O8C98cYbSdrfeOMNB7hHH300U33jhTIvCxcudECm/279/PPPzsxct27dkrRPmjTJAe7111/P9jGy47P3U3b+fQnl3wdgmUslJ1XZjGS/6tW9FfiTT/a2lHz/fb8jEhGRXDRnzhzMLM1Xs2bNcj2u5s2bUzLIk8F79OgBwM8//5zuGAsXLiQmJoYrr7wyxRjR0dG88sormeqbm958802cc9xzzz1J2m+66SaKFi3Ka6+9lu1jZMdnLx6VzUjOqFDBq4Hv3BkuvxymTYOePf2OSkREckGNGjWYPn16wtcDBgwgKiqKESNGJLSddNJJaY5x/Phx/v3335CvWaZMmZBKPYLZsmULABUqVEi37+HDh4mOjsbMkrRHREQQExPDn3/+ya5duyhbtmyG+qYm2Ofw33//Jfy5a9euJMdC+RyWLl1KREQELVq0SNIeHR1NkyZNWLp0aZrnZ9cYkLHPXjxK3iXnlCkD8+bBZZdBr16wfz/07et3VCIiksPq1atHvXr1ADh69Cg33HADXbp0oVevXiGPsWnTJmrVqhVy//Xr11OzZs2MhkpcXByPPvoohQoVomcIi0wNGjRg3bp1rFy5kiZNmiS0r1y5kt27dwNe7GXLls1Q39Sk9Tl06dIlRVson8O2bdsoW7YsRYoUSXGsSpUqfPvttxw5coTChQvn6BgZ/ezFo+Rdclbx4t6Nq927w803e9tJ3n+/31GJiEguWbt2LUeOHKFx48YZOq9ixYrMmzcvQ/0z45577uG7777j8ccfp27duiH1nz17NldccQUTJkygYcOG/PLLL9xzzz1ERUVx9OhRDh48mOG+ab2v5J/Djz/+yP3338/YsWNTfK6hfA4HDx4MmnSDt3Ie3yetxDs7xsjoZy8eJe+S82JiYOZM6N0b+vf3EvjhwyHZrxFFRCT/WblyJUCSledQREdH06FDh+wPKJEhQ4YwefJk+vbty6BBg0I655xzzuGtt97irrvu4qKLLgIgMjKSG2+8kQYNGjBr1ixKlCiR4b6pCfY5FCrkpW/NmjWjbdu2GXnLABQtWpQdO3YEPXbo0KGEPjk5RmY+e/EoeZfcUbgwvPEGFCsGjz4K+/bBk08qgRcRyed+/PFHgAyvvMfFxbFz586Q+5crV47IyMiQ+w8bNozHHnuM6667jueeey5DsXXv3p1u3bqxatUq9u3bR926dSlfvjwtWrSgUKFC1K5dO1N9c0vlypVZvXo1hw8fTrF6vnXrVsqWLZvminlWx8jKZy9K3iU3RUbCCy94pTQTJngJ/PPPe+0iIpIv/fLLL5QqVYoqVapk6LzNmzfnWM37sGHDGD58OH369OHFF19McUNpKCIjI5P8NuGvv/5ixYoVtGnTJsWKc0b65oYzzjiDuXPnsmTJEs4555yE9kOHDrFy5UrOPffcHBsjOz77gk7Ju+SuiAgYPx5KloRHHvFuYp02zVuZFxGRfGf79u2UL18+w+flVM37I488wvDhw+nduzcvv/xyqjuzHD16lD/++IOiRYtSvXr1NMc8fvw4d911F3FxcTz44IPZ1jc1bdu2xdsKPHN69OjB448/zoQJE5Ik3i+88AIHDx7k6quvTtI/2GeR0TEg9M9e0qbkXXKfmVfzXry4VwO/fz+8845XGy8iIvlKpUqVWLBgAY899hiNGzfmkksuCem8nKh5f/rppxk6dCjVq1enQ4cOvPHGG0mOV6hQgY4dOwJe6Uf9+vVp06YNixYtSuizf/9+WrRoQdeuXalVqxb//fcfb775JsuXL2fEiBG0a9cuU31Tc+DAAWbNmhXye+zatSsnnHBCmn0aNWrE7bffzuTJk+nWrRudO3dOeDpqmzZtUuz8EuyzyOgYGfnsJW1K3sU/99/vJfC33goXXggffADp3LgjIiJ5y4gRI9i+fTvDhg2jU6dOISfvOSF+7/FNmzbRp0+fFMfbtGmTbgJZuHBhGjduzBtvvMH27dspWrQoZ5xxBp999hmdOnXKdN/U7Ny5k969e4f4Dr3yofSSd4AJEyZQs2ZNpkyZwscff0zZsmW58847eeSRR0JeEc/IGNnx2YvHsvJrl4KkefPmbtmyZb5ce9GiRZm6mzzPePNNuOYaOO00+PRTyMSvV/2Q7+clD9KchKeCOC9r1qyhfv36foeRpn379lG8eHG/w5BkNC/hKTvnJZR/H8xsuXOuebBjKjYS/111lbfqvmYNnHMObNzod0QiIiIiYUnJu4SHCy/0nsa6YwecfbaXyIuIiIhIEkreJXy0bg1ffAHHjnkr8EuW+B2RiIiISFhR8i7h5bTT4Ouvva0k27eHBQv8jkhEREQkbCh5l/Bz8sleAn/SSdC5M8yc6XdEIiIiImFBybuEp0qVvBKa5s2he3d48UW/IxIRERHxnZJ3CV+lS8PcuXD++XDTTTB6tN8RiYiIiPhKybuEtxNOgPff97aTHDgQBgwAPZtARERECig9YVXCX+HC8Npr3kr8mDHwzz/w/PNQSN++IiIiUrAo+5G8ISICJk+GsmXhkUdg92544w2IjvY7MhEREZFco7IZyTvMYPhwmDgRZs2Ciy6Cffv8jkpEREQk1yh5l7znrrtg2jRvN5p27bynsoqIiIgUAEreJW/q3Rtmz4bVq70ns/75p98RiYhIiNq2bUvNmjVz/brDhg3DzNiwYUOuX7ugCfZZ6/PPHkreJe+6+GLvCaz//gtnnQUrVvgdkYhIgbJo0SLMjLFjx6bax8y4+OKL0x1r6tSpTJgwIVNxLFiwgCuuuIJq1apRpEgRihcvTrNmzXjwwQfZsmVLpsbMy+KTZDPj3XffDdpn1qxZCX2GDRuWuwFKlviavJtZbTN73sx+MrM4M1uUTv/xZubMLMW/EmZ2qpktMLODZrbNzB4xs8hkfczMBpvZZjOLNbMvzaxJ9r4ryVVnnuk9jbVwYWjTBj7/3O+IREQkHXPnzmXdunVJ2jKTvB8/fpybbrqJDh06sGTJEnr27MnTTz/N6NGjadKkCU8//TSnn356Nkaet0RHR/PKK68EPfbyyy8TncubPjz00EPExsZSo0aNXL1ufuP3bjMNgM7A90BUWh3N7FTgBmBvkGOlgfnAauAy4GRgHN4PJw8l6joQGAL0B9YC9wLzzayhc+6vrL4Z8Un9+vDtt3DBBd7rtdfgiiv8jkpERFJRuHDhbBln2LBhvPjii1x11VVMnTo1xbjjxo1j+PDh2XKtzNi3bx/Fixf37fpdu3ZlxowZbN++nUqVKiW0//XXX3z22WdcccUVvPHGG7kWT6FChSikbZ6zzO+ymQ+dc9Wcc92BX9Lp+xQwEdgd5NgtQAzQzTk3zzn3HDAcuNfMSgCYWTRe8j7SOTfZOTcf6A444I7seTvim6pV4auvoGVLuPJKeOopvyMSEckRs1dspfWoz6k18GNaj/qc2Su2+h1ShiWvea9ZsyZffPEFGzduTCjlMDMWLVqU6hg7duxgzJgx1KhRg5dffjnoDwSlSpVi/PjxKdoPHz7M4MGDqVq1KkWKFKFx48Z88sknKfo988wznH/++VSpUoXChQtTqVIlevXqFbRm28y49tprWbBgAWeffTbFihXjkksuSTj+7LPPUrduXYoUKUKdOnWYPHkyU6dODfo+//vvPx544AFq165NkSJFKFeuHFdddRV/ZvD+rl69ehEREcG0adOStE+bNg0zo1evXqme+/bbb3P22WdTvHhxihYtSsuWLYOW4Bw/fpyRI0dSq1YtoqOjadiwIa+//nrQMYPVvG/bto377ruPJk2aULp0aaKjozn11FMZPXo0cXFxSc6P/7w+//xzxo4dy8knn0yRIkU45ZRTePXVVzPwyeRtvv7445w7Hko/M/s/oB5wKdA7SJcLgTnOucSr8m8Bo4E2wIfAWUAJYEai6x8wsw8D5ydeoZe8qHRpmDvXexrrXXfB9u0wYoS3xaSISD4we8VWBs1cRexRL6nZuieWQTNXAdClaRXf4jp48CC7du3K9PkTJkxg0KBB7Nq1K0myXb9+/VTP+fjjjzl06BDXXHNNhss/+vTpQ1RUFPfffz9HjhxhwoQJdOnShV9//TXJDxVjx46lVatW3HXXXZQpU4aff/6ZF198kc8//5xVq1Zx4oknJhl32bJlvPfee9x000306dMnoX306NEMHDiQ008/nZEjR3Lw4EHGjBlDuXLlUsT233//0alTJzZt2sT1119PgwYN2L59O8888wwtW7Zk2bJlIZedlC9fnosuuohXXnmFBx54IKH9lVde4eKLLw56ffDKW0aMGMEFF1zAo48+SkREBLNmzaJ79+5MnjyZ22+/PaHvvffey8SJEzn33HPp168fO3bs4Pbbb+ekk04KKcaffvqJmTNn0rVrV04++WSOHj3KZ599xsCBA/nzzz95/vnnU5wzePBgYmNjufnmmylSpAjPPvss1157LbVr16Z169YhXTdPc86FxQt4F1gUpD0G2Aj0Dny9ARibrM8OYFiQcw8A/QP/fRtwDIhM1qc/cCC9+Jo1a+b8snDhQt+unScdPepc377OgXPXXed9nQM0L+FHcxKeCuK8rF69OkfGPWvkAlfjgY9SvM4auSDDY+3duzfL8SxcuNDh/QY7zddFF12U5Lw2bdq4GjVqpNuWlnvvvdcB7r333gv5nKFDhybEc/z48YT2JUuWOMANHDgwSf/9+/enGGP+/PkOcKNHj07SHv9e582bl6T9n3/+cdHR0a5Ro0YuNjY2oX379u2uRIkSDkjyd+SWW25x0dHRbuXKlUnG2bBhgytevLjr06dPyO9z6dKl7oMPPnCA++abb5xzzn3zzTcOcB9++KFbunSpA9zQoUMTzl2+fLkD3KBBg1KMe9lll7nixYsnfO+sXbvWmZlr3769O3bsWJIxzMwBbv369SniStx28ODBJHMRr1evXi4iIsJt27Ytoe2VV15xgGvSpIk7fPhwQvuWLVtc4cKF3ZVXXpnuZ5NZ2fH3JV4o/z4Ay1wqOanfZTOhGARsB15Lo09pYE+Q9t2BY/F99jvn4oL0KWpm2VOAJ/4rVAieew6GDoVXXoGuXeHgQb+jEhHJsm17YjPUnlv69u3LvHnzgr5yyt693i/bS5QokeFz7777bizRb2XPOOMMihUrxm+//Zak3wknnAB4pSH//fcfu3btonHjxpQsWZLFixenGLdx48Z06NAhSdu8efM4dOgQt956a5LfEFSsWJGrr746SV/nHDNmzODcc8+lSpUq7Nq1K+F1wgkn0KpVK+bOnZuh93rhhRdSsWLFhBtXX3nlFSpVqsSFF14YtP/rr7+OmdGnT58k19+1axeXXnop+/bt47vvvgPg/fffxznHvffeS2Tk//YIOf300+nYsWNI8cXExCTMxZEjR/j333/ZtWsXnTp14vjx4yxbtizFObfddluSMqkqVapwyimnpJi//Cqs7xows1rA/UC7wE8huX39vkBfgAoVKqRZe5eT9u/f79u187S2bam8dy91Jkxgb4sWrBoxgmMlS2bb8JqX8KM5CU8FcV5KlizJvhx4AnTFEkXYvvdw0PaMXi8uLi7LMR4MLIxUr16dli1bptrv2LFjSa4VFxeHcy7dtrTEJ8I7duwI+ZzDh73Prnz58inOKVOmTIqxvvjiC0aPHs2yZcs4dOhQkv67du1KMcZJJ52Uom3t2rUAVKtWLcWx+PKXgwcPsm/fPnbu3Mm///7L3LlzUy1piYiISPf9xr/PAwcOEBsbS48ePXjllVcYPHgwb7/9NjfccAMHDx7kwIEDCf3jx1y1ahXOOerVq5fq+Bs2bGDfvn0JOwZVrVo1RUy1a9dm7ty57N+/P+FYfFyJ244dO8aTTz7Jm2++yZ9//knydG/btm0JfePnoGLFiimuV6pUKTZv3pwjf+8ge/6+xDt06FCW/k0M6+QdGAV8Cqwzs1KBtgigSODr/wJJ/W4gWFZWmv/d4LobKGZmkclW30sDB51zR5Kf7JybAkwBaN68uWvbtm2W31BmLFq0CL+unee1bQtnn03Jnj05e+BAmDMHqlfPlqE1L+FHcxKeCuK8rFmzJkd2GXngwvpJat4BYqIieeDC+hm+XnbshFK0aFGAhL3VU1OoUKEkxyMjIzGzdNvSEr8F5Nq1a+nZs2dI5xQpUgTwfrhKfh0zIyIiIqF96dKldOnShdq1azNq1Chq1aqVsEp85ZVXBo21RIkSKdrir1m0aNEUx+J/AIk/Fv/DUIcOHZLUqCeX3mcUf80TTjiB4sWLc8sttzBx4kRuvvlm9u3bxy233ELx4sUTfrOQeP7i5+HTTz9NspqeWIMGDShevDhRUd5GgcWKFUsRU/zKeOJj8XElbrvrrrt46qmn6NGjB0OGDKF8+fJERUXxww8/8MADDySJLf7zKl68eIrrxceaU7v7ZOfOQdHR0TRt2jTT54d78l4XaAx0S9Z+R+BVDdiCt+1jkh8RzawaUDRwjMCfkUBtIPHmsvUS9ZH8qFs3L2m/7DLvYU6ffQYNG/odlYhIhsXflDpmzjq27YmlcqkY+neq6+vNqtnFMri5wEUXXUR0dDTTp0/nwQcfTEgMs8sbb7xBXFwcn376KbVq1UpoP3DgALt3B9v4Lrj4G2DXrVtH+/btkxxLvtd9uXLlKFWqFHv37k1RfpMV9erV48wzz2TevHmcddZZ1K1bN9W+derU4bPPPqN69epp3jAMJNyUunbtWk4++eQkx1avXh1SbNOnT+fcc8/lrbfeStL++++/h3R+QRTuNe83Au2Svf7G2zGmHbAz0O9ToJOZJf6RqAcQC3wR+PpbvD3iu8d3MLOiwCWB8yU/a9PG20rSOTjnHO+/RUTyoC5Nq/DNwPasH3UR3wxsny8Sd/BWY3fv3p2ibCI15cuXp3///mzYsIEbb7yRI0dS/AKdvXv30q9fv0zFE7+Smzyexx9/nOPHQ9osD4COHTsm7IiSuPTmr7/+SrGlYkREBN27d2fJkiWpPhl1x44dIV87sVGjRjF06FBGjhyZZr/evb1N/QYPHpxiq0aAv//+O+G/L730UsyMJ598MknfH374gfnz54cUV2RkZIrP+MCBA0G3+BSPryvvgeS5c+DLKkCJwLaQAJ8451LcpWBmh4DNzrlFiZqfA+4CZprZaOAkYBjwpAtsH+mcO2Rmo4AhZrab/z2kKQJvD3nJ7xo18h7m1KkTdOwIr78Ol18OeNuv5ceVLBGRvKJVq1Z89NFH3HHHHZx11llERkbSvn17ypcvn+o5w4YNY/v27bz44ot8/fXXXHnlldSuXZsjR46wcuVK3nnnHQoXLpypRLBr166MHz+ezp0707dvXwoXLsy8efP46aefKFu2bMjjnHjiiQwdOpTBgwfTunVrevXqxcGDB5kyZQqnnHIKy5YtS/Jbh4cffpilS5dyxRVXcMUVV9CqVSsKFy7Mxo0b+eSTT2jWrBlTp07N8Ps599xzOffcc9Ptd8YZZzBs2DCGDRtGkyZN6N69O5UrV2b79u0sX76cTz75JOEHpXr16nH77bczefJk2rdvz+WXX86OHTuYPHkyjRs3ZsWKFele7//+7/94/vnn6dGjBx06dODvv//m5ZdfTrENp/yP32Uz5YF3krXFf10Lb1vIdDnndpvZecBkvD3d9wDj8RL4xEbhJeuDgBOBZUBH59zfSMFQowZ8/TVceil07w4TJjD7nMvDct9kEZGCpF+/fvz555+8++67PPfccxw/fpyFCxemmbxHRETwwgsv0KNHD55//nmmT5/Ojh07Eh7cc/vtt3PbbbdlKp7WrVvz3nvv8eijjzJkyBBiYmLo0KEDX3zxRUhJcGKDBg2iRIkSTJw4kYEDB1K9enX69++Pc45ly5YRExOT0LdkyZJ88803jBs3jhkzZvD+++9TqFAhqlatytlnn82NN96YqfeTEUOHDqV58+ZMmjSJCRMmcODAAcqXL0/Dhg2ZNGlSkr4TJ06kYsWKTJkyhf79+1OnTh2efvppfvvtt5CS9yeffJLixYsnvNdq1arRt29fzjjjjGwtHcpPzIdNXPKk5s2bu2DbFeWGgnizV46LjYWrr4ZZs2g94B22WkyKLlVKxfDNwPZBTvZoXsKP5iQ8FcR5WbNmTbr1wn7LzhvwJHPuvPNOJk+ezPbt26lYsSKgeQlX2Tkvofz7YGbLnXPNgx0L95p3kZwREwPvvAN33sk2gt/k5Pe+ySIikj8k32YSYPv27UybNo2GDRsmJO4iofC7bEbEP5GRMHEilR98n63HU/4cW7lUytV4ERGRjFq0aBH9+/enW7duVK1alQ0bNvDCCy+wf/9+Ro0a5Xd4kscoeZeCzYz+3c9g0IwVxLr/3TAUExVJ/06pb6UlIiISqtq1a3PyySfzwgsv8M8//xAdHU3z5s0ZNGiQ6rolw5S8S4GXsG/y+z+yLTaOygf+pX+H2rpZVUREskXt2rWZPXu232FIPqHkXQQvge/StAr88gtceDu8uhvefdfbVlJEREQkTOiGVZHEGjSA77+Hk0+Giy6CV17xOyIRERGRBEreRZKrXBm+/BLat4frr4dHHvGezCoikgHaillEksuOfxeUvIsEU6IEfPwx9OkDQ4fCTTfB0aN+RyUieUShQoU4duyY32GISJg5evQokZGRWRpDNe8iqYmK8spmqleHRx+FrVu9veGLFfM7MhEJc9HR0ezfv5/SpUv7HYqIhJG9e/dm+WFPWnkXSYuZVzYzZQrMmwdt2sD27X5HJSJhrly5cuzcuZODBw+qfEakgHPOceTIEXbt2sXu3bspU6ZMlsbTyrtIKG66CapUgSuugFatvJIaEZFUREdHU6FCBf766y8OHz7sdzhBHTp0iOjoaL/DkGQ0L+Epq/MSGRlJ8eLFqV69OkWKBH+ye6iUvIuEqnNn70bWiy+G1q0p/dBD0Lat31GJSJgqWbIkJUuW9DuMVC1atIimTZv6HYYko3kJT+E0LyqbEcmI00+HxYuhRg1OGzgQXnzR74hERESkAFHyLpJR1arB11+zu1kzr5xm0CA4ftzvqERERKQAUPIukhklSrBq5Ei4+WYYNQquugpiY/2OSkRERPI51byLZJKLjIRnn4XataF/f9i8Gd5/H8qV8zs0ERERyae08i6SFWZw//3w7ruwYoW3E83atX5HJSIiIvmUkneR7HD55bBwIezbB2edBV984XdEIiIikg8peRfJLq1aeTvRVKgAHTvC9Ol+RyQiIiL5jJJ3kexUqxZ8+y2cfTZccw0MGwZ6uqKIiIhkEyXvItmtdGn47DPo0weGD/f+DNMnLIqIiEjeot1mRHJC4cLwyitw8snw8MOwaRPMnAllyvgdmYiIiORhWnkXySlmMGQIvPYafPedVxP/669+RyUiIiJ5mJJ3kZx29dWwYAHs3u0l8AsX+h2RiIiI5FFK3kVyw9lnezvRVKoE558PL77od0QiIiKSByl5F8ktJ53k7URz3nlw003ew53i4vyOSkRERPIQJe8iualkSfjoI7jzThg3Drp08R7sJCIiIhICJe8iua1QIZg0CZ5+Gj791Cup2bjR76hEREQkD1DyLuKX226DTz6BDRugRQv4/nu/IxIREZEwp+RdxE/nn+8l7cWKQdu28NZbfkckIiIiYUzJu4jf6tf3dqJp0QKuugqGDQPn/I5KREREwpCSd5FwULYszJsH114Lw4dDz54QG+t3VCIiIhJmlLyLhIsiReDll2H0aHj7bWjXDv76y++oREREJIwoeRcJJ2YwYAC89x6sWuWV0vz4o99RiYiISJhQ8i4Sjrp2ha+/huPHoXVrmDXL74hEREQkDCh5FwlXTZvC0qXQsCF06waPPaYbWUVERAo4Je8i4axSJVi0CHr3hiFD4Mor4eBBv6MSERERnyh5Fwl30dHw6qvwxBPwzjveE1k3b/Y7KhEREfGBkneRvMAM+veHjz6CP/6AM86Ab7/1OyoRERHJZakm72YWl4XXMTNrn5tvRKRA6NzZeyJr8eLeVpJTp/odkYiIiOSiQmkcM+Ar4M8MjhkNXJHpiEQkbfFPZO3RA667Dn76ySupKZTWX2cRERHJD9L7v/3zzrk3MjKgmZUFemQ+JBFJV5ky8OmncN99MH48rF4Nb70FpUr5HZmIiIjkoLRq3ucA2zIx5uHAubsyFZGIhKZQIZg4EV54AT7/HFq2hHXr/I5KREREclCqybtz7kLn3KKMDuic2xc496csRSYiobnxRliwAHbv9hL4OXP8jkhERERyiHabEckPzjnHe6BTjRreTa1PPqkHOomIiORDaSbvZhZpZqPM7JZ0+t1qZo+bmWVveCISsho14JtvoEsXrxb++uvh0CG/oxIREZFslN7Key+gP7A0nX5LgAeAq7IjKBHJpGLFvAc5DR3qbSPZpg1s3ep3VCIiIpJN0kverwDmO+eWp9UpcHwOSt5F/BcRAcOGwcyZ3i40zZp5K/IiIiKS56WXvDcD5oc41kKgedbCEZFs07Wrtx98/AOdnn/e74hEREQki9JL3ssAO0Ica2egv4iEi1NP9W5k7dABbrkFbr4ZDh/2OyoRERHJpPQe0rQPKBviWCcC+7MWjohku1Kl4MMPYcgQGDkSVq2C995j9l/HGTNnHdv2xFK5VAz9O9WlS9MqfkcrIiIiaUhv5f0X4PwQx+oY6C8i4SYyEh5/HGbMgB9/ZPbltzLo3ZVs3ROLA7buiWXQzFXMXqGbW0VERMJZesn7TKCDmV2WViczuxQveX8vuwITkRzQvTt8/z1jml1ObFzSQ7FH4xgzR09oFRERCWfpJe/PA78DM8xshJnVTHzQzGqa2WPADODXQH8RCWeNGrHthOC3p2zbE5vLwYiIiEhGpJm8O+digYuA9cAg4A8z221mm8xsN/AHMDhw/GLnnJ4II5IHVC4Vk6F2ERERCQ/prbzjnPsdaALcDXwNxAEVA39+FWg/3Tn3R86FKSLZqX+nusRERSZpizl2mP510ruHXURERPwU0v+pAyvqTwVeIpLHxe8qk7DbTNFI+s9/gy6TP4L9z0OfPj5HKCIiIsFomU2kgOrStErSrSFvaw49esC113p7wz/5JBQu7Ft8IiIiklK6ZTMAZhZhZj3N7HUzW2pm6wJ/vmZmV5pZSOOISBgrWxbmzIH77oOnn/aeyrptm99RiYiISCLpJt1mVg1YAUwHrgKaAXUCf/YEXgeWmVnlHIxTRHJDoUIwdiy8/Tb8+COcfjp8+aXfUYmIiEhAmsm7mUUCs4BGwBtAO7wnqUYF/mwHvIl3Q+ssrcCL5BNXXAGLF0PJktC+PUyYAM75HZWIiEiBl16y3RU4HbjHOdfbOfeFc263cy4u8OcXzrleQD+gOdAlh+MVkdzSoAEsWQKXXAL9+kHPnnDggN9RiYiIFGjpJe+XA6udc5PS6uScmwisAf4vuwITkTBQsiS89x48/jjMmAGtWsFvv/kdlYiISIGVXvLeFPgoxLE+wlulF5H8JCICBg2Czz6D7duheXP48EO/oxIRESmQ0kveKwJ/hjjWH4H+IpIfdewIy5dDnTpw6aUwZAjExfkdlYiISIGSXvJeHNgf4lgHgWIZubiZ1Taz583sJzOLM7NFyY5XMrMxZvajme03s81m9mqwnW3MrIqZzTKzfWa2y8wmm1nRIP1uMrPfzOyQmS03s/MyErNIgVajBnz9NdxwAzz2GFx0Efzzj99RiYiIFBjpJe+WwfEy2r8B0BlYB/wa5HgzvJtm3wQuAfoDLYFvzSzhBwUziwLmADWAK4G7ge7AlCTBmV0FPAdMAy4EfgE+MrOGGYxbpOCKjoYXX4QpU2DhQq+M5ocf/I5KRESkQAjlCavXmFmrEPqdkonrf+icex/AzN4FyiY7/jVQzzl3LL7BzH7AS/YvB14NNP8fUB+o7ZxbH+h3FHjLzIY75+LvsBsGvOqcezTQ5wu8uv6BQK9MxC9ScN10EzRuDJdfDq1bw7PPek9nFRERkRwTSvJ+fuAVigxtBO2cO57O8T1B2n41s4NA4tKZC4Gl8Yl7wGzgCHAB8JuZnYT3A8bdia9vZu8kbhORDGjRwlt1v/JKuO46+O47mDjRW50XERGRbJde8l4rV6LIADM7DShK0jKbesDqxP2cc0fM7I/AMRL9uTbZkGuAMmZWzjm3MwdCFsnfypWDOXPgoYdg9GhYtgzefRdqhd0/HyIiInlemsm7c25jbgUSisATXCcCvwEfJDpUGtgT5JTdgWMk+jN5v92Jjit5F8mMQoVg1Cg46yy45ho4/XSYNs17wJOIiIhkm1DKZtIVuGG0K3Cdc+7C7BgzFSOBM4E2zrmjOXgdAMysL9AXoEKFCixatCinLxnU/v37fbu2pE7zEkSJEkQ/8wwNhg2j+KWXsrFnTzZcfz0uMjJXLq85CU+al/CkeQlPmpfwFE7zkqXkPVDCcgPQEzgRSLOGPYvXug1vt5mrnHOLkx3eDZQMclpp4MdEfQj025OsT+LjCZxzUwjsWNO8eXPXtm3bzISeZYsWLcKva0vqNC9p6NYN7r6bGlOmUGPbNnjzTaiY84+B0JyEJ81LeNK8hCfNS3gKp3lJb6vIFMyspJndambLgBXAbcAq4E6gejbHF3/Ny4GngAHOubeDdFnL/2ra488pDJzE/2rc4/9M0i/w9b+qdxfJRtHR8Pzz8OqrsHgxNG0KX37pd1QiIiJ5XsjJu5m1N7PXgG3A00CJwKHezrn2zrmnnXPbsjtAM2sLvA485Zwbm0q3T4EzzKxGorZLgSLAZwDOuT/xbnLtnmjsiMDXn2Z33CKCV/++eDGUKAHt28MTT4DL0KZUIiIikkiaZTNmVhW4DrgWqIl3Q+fzwFS8J6r+ircdY6YEnoDaOfBlFaCEmf1f4OtP8B66NBtv1fztZPvN73TO/RH473eBB4GZZjYErzRmPPBGoj3ewdvn/TUz2wB8A/QB6uCV/YhITmjUCJYuhRtvhAcegG++8VbkS5XyOzIREZE8J72a9/XAMbxE+h7gE+dcHICZnZwN1y8PvJOsLf7rWnhPUy0JNAa+TdbvVbwfKnDOHTWzC4DJwAzgMPAWXo18Aufcm4Ensz4ADMF7wurFzrmfs+G9iEhqSpSAt9+Gs8+G++7zdqN5913vTxEREQlZemUzkcDfwA/Aj/GJe3Zxzm1wzlkqrw3OualpHL822VhbnHNdnHPFnHMnOudud84dDHLNF5xztZ1zRZxzpzvnFmTnexKRVJjBXXd5te9Hj3rbSr7wgspoREREMiC95L0zsBR4GPjTzBaYWe9AuYuISMadeSasWAFt2kDfvnDttXAwxc/ZIiIiEkSaybtz7jPnXHe8evQBeGUurwJ/4dWUu8BLRCR0ZcvCJ5/AsGEwfTq0aAFr1vgdlYiISNgLabcZ59wu59yTzrlGeA9JegtoAxgwyczGm9k5ORiniOQ3kZEwdCh89hns2AHNm3uJvIiIiKQqw/u8O+cWO+f6ApWA64E/gbuBRWa2PZvjE5H87vzzYeVKOOMMb2vJG25QGY2IiEgqMpy8x3POHQzcUNoGqAuMIQefsCoi+VjlyjB/Pjz0ELzyildGs3q131GJiIiEnUwn74k5535zzg0EqmXHeCJSABUqBI8+CnPmeGU0Z5wB06b5HZWIiEhYyZbkPZ5zTivvIpI1HTv+r4ymTx+4/nqV0YiIiASkmryb2REzuzKjA5pZmcC5bbMSmIgUYPFlNEOGwNSpKqMREREJSGvlvRDebjIZZYFzs3VVX0QKmEKF4JFHYO5c2LnTW4l/9VW/oxIREfFVoXSOTzCzERkcMwLt/S4i2aVDB6+MpmdP74FOixbB5Mlwwgk+ByYiIpL70krevyTzSfh6YHcmzxURSapSJa+M5tFHvdX4JUvgnXfg1FP9jkxERCRXpZq8O+fa5mIcIiJpi4z0nsh6zjlw9dXeQ52eftpbjbfMVPiJiIjkPapLF5G85bzzvDKaM8/0dqLp3Rv27fM7KhERkVyh5F1E8p6KFb0bWR99FN58E5o2hWXL/I5KREQkxyl5F5G8KTLSeyLrF1/AkSNw1llUnTEDjutxEyIikn8peReRvO3ss70ymosvpvazz8LFF3tPaBUREcmHlLyLSN5Xpgy89x6/3n03fP45NG4MCxb4HZWIiEi2U/IuIvmDGdu6dPG2kSxdGjp2hAcfhKNH/Y5MREQk2yh5F5H85bTTYOlSbyeaxx+HNm1gwwa/oxIREckWGUrezayamb1sZlvM7IiZtQ+0lwu0n5EzYYqIZMAJJ8CLL8Jbb8Evv0CTJvDee35HJSIikmUhJ+9mVgtYBlwO/AJExh9zzu0EmgM3ZneAIiKZ1qMHrFgBdevC//0f3HILxMb6HZWIiEimZWTlfQRwHGgIXA0kf6ThJ8DZ2RSXiEj2OOkk+PprGDAAnn8eWrTwVuNFRETyoIwk7x2AZ5xzmwEX5PhGoGq2RCUikp2iomD0aPjsM2afUIvWTy+h1sCPaD1qAbNXbPU7OhERkZAVykDfEsD2NI4XzuB4IiK5anb5hgzqcAuxx7z1h617DjHovZ8A6NK0ip+hiYiIhCQjK++bgQZpHG8F/J61cEREcs6YOesSEvd4sceOM2b2Sn8CEhERyaCMJO8zgevNrGGiNgdgZpcD3YEZ2RibiEi22rYn+M2q2w4dh3vvhcOHczkiERGRjMnoDatbgMXAa3iJ+0Az+w4vaf8RGJftEYqIZJPKpWKCt7vDMH48tGwJq1fnclQiIiKhCzl5d87tBc4EXsTbFtKAjkBd4BmgnXPuUE4EKSKSHfp3qktMVGSStpioSPpfdSZ89BFs2wbNmsEzz4ALdl++iIiIvzL0kCbn3F7n3N3OuXJABaAicKJz7s5Aci8iEra6NK3CyG6NqFIqBgOqlIphZLdG3s2qF10EP/0EbdvC7bfDZZfBzp1+hywiIpJEpneHCTyYSUQkT+nStErqO8tUrAgffwyTJ3v7wjdqBK++Cp065W6QIiIiqQg5eTezc9Pp4oBYYJNzbkeWohIR8UtEBNx1F7RrB1ddBRdcAPfcAyNHQnS039GJiEgBl5GV90UEfzhTCma2ChjonPssM0GJiPiuUSNYutRbgZ8wAT7/HN54AxqktWOuiIhIzspIzfv1wA/APuA5oF/g9XygbRlwN97NqzWBD82sXXYGKyKSq2Ji4KmnvFKav/6C5s29khrdzCoiIj7JSPJ+AlAWOMU5d7tzblLgdRtQD+8G1jjn3J1AfeBfYFC2Rywikts6d/ZuZm3XDu68Ey65BHaoOlBERHJfRpL3u4EXgtWzO+f+Al4A7gl8vR1vS8kzsiFGERH/VajgrcBPmgTz50PDhvDBB35HJSIiBUxGkvfqwME0jh8I9Im3HtDdXSKSf5h5K+/Ll0OVKt52kjfdBPv2+R2ZiIgUEBlJ3jcAPc2scPIDgbZewMZEzVWBf7IUnYhIOGrQABYvhoED4aWXoEkT+OYbv6MSEZECICPJ+0S8J6suNrO+ZtY28LoZWAI0DfSJ1y3QLiKS/xQu7G0f+eWX3g2s554LgwfDkSN+RyYiIvlYyFtFOueeNbMSwFC83Wbit1sw4DDwoHPuWQAzKwL0B37P3nBFRMLM2WfDjz9Cv35eMv/pp/Daa9pSUkREckRGVt5xzo0GqgBXAoMDr6uAKs65UYn6HXbOzXHO/ZGdwYqIhKXixeHFF+H992HrVmjWzNsb/vhxvyMTEZF8JqSVdzMrBnwAvO6cewmYkaNRiYjkRZdeCj//7N3E2q8ffPghTJ0K1ar5HZmIiOQTIa28O+f2o20fRUTSV748zJ7trcQvXuw9qfWNN/RgJxERyRYZKZtZiffwJRERSYsZ3HCDVwvfoAFcfTVceSX8+6/fkYmISB6XkeR9KHCTmbXLqWBERPKVk0/2dqN5/HGYOdNbhZ871++oREQkDwt5txm8fdw3AfPN7EfgV1I+tMk5527IruBERPK8yEgYNAguuAB69YJOneCOO2D0aCha1O/oREQkj8lI8n5tov9uEngl5wAl7yIiyTVt6j2ZdfBgGD/eW4F/9VVo1crvyEREJA8JuWzGORcRwisyJ4MVEcnToqPhySdhwQI4dAhat/ZW5Q8f9jsyERHJIzK0z7uIiGSD9u1h1Sq47joYNQqaN4cffvA7KhERyQOUvIuI+KFECW87yY8/9nahadkShg+Ho0f9jkxERMJYRmreMbPSeDXtLYHSpEz+nXPuvGyKTUQk/+vc2Xuw0113wbBh8MEHXi18w4Z+RyYiImEo5JV3M6sBrAKeADoA7YBGwLlAW6AhcFL2hygiks+VLg3Tp3vbSW7eDM2awciRcOyY35GJiEiYyUjZzGNAKeA8oA5gQA+gBDAS2Aeck83xiYgUHF27wi+/wKWXervSnH02rFvnd1QiIhJGMpK8nwe84JxbiLclJIA55w465x7EW5Ufnd0BiogUKOXKwYwZ8Oab8Ntv0KSJt7Xk8eN+RyYiImEgI8n7icDPgf+Ov6MqJtHxeUDH7AhKRKRAM4Mrr/Rq4Tt2hHvvhbZt4Y8//I5MRER8lpHkfSdQJvDf+4BDQM1ExwuTNJkXEZGsqFQJ3n8fpk6FH3+Exo3hmWe0Ci8iUoBlJHn/BWgM3pYywBLgNjOrbmY1gb7A2myPUESkIDODPn28VfizzoLbb4dOnWDTJr8jExERH2QkeX8fONPM4lfXH8G7cXU98Efgvx/N3vBERASAatVgzhx47jn47jtvK8kpU8C59M8VEZF8I+Tk3Tn3jHPuZOdcbODrz4EzgYnAk8C5zrkPciZMERHBDG6+2Xs6a/Pm3n937AgbNvgdmYiI5JIsPWHVObfMOXevc66/c+7b7ApKRETSUKsWzJ8Pzz4Lixd7q/BPP61aeBGRAiBLybuIiPgkIgJuucXbF751a7jjDmjXDn7/3e/IREQkBxXKSGczqw7cjFfffiLeg5oSc86587IpNhERSU/16vDZZ96ONP36wWmnwWOPwd13Q2QkALNXbGXMnHVs2xNL5VIx9O9Uly5Nq/gbt4iIZErIybuZXQjMwtsScj/wT04FJSIiGWAG110H55/vrcbfdx+8+y68/DKzY4szaOYqYo/GAbB1TyyDZq4CUAIvIpIHZaRsZiSwC2jhnCvhnKsV7JVDcYqISHqqVIEPPoDXXoN166BJE8bMWJKQuMeLPRrHmDnrfApSRESyIiPJez1ggnNuWU4FIyIiWWQGV1/t1cJfdBHbjgf/Beu2PbG5HJiIiGSHjD5h9UhOBSIiItmoYkV47z0qFwl+uHIpPRBbRCQvykjyPh24PKcCERGR7Ne/6+nEFEr6T31MJPTvVNeniEREJCtSTd7NrHriFzAVKGxm75tZezOrlbxPoF/IzKy2mT1vZj+ZWZyZLQrSx8xssJltNrNYM/vSzJoE6XeqmS0ws4Nmts3MHjGzyMyMJSKSX3RpWoWRl59GlVIxGI4q+3cx8v1xdHnvWTh82O/wREQkg9LabWYDkPy52/FbQ16cxnmRaRxLrgHQGfgeiEqlz0BgCNAfWAvcC8w3s4bOub8AzKw0MB9YDVwGnAyMw/vh5KGMjCUikt90aVrlfzvL7N4N/RbCiBHw3nvw4ovePvEiIpInpJW8P0LK5D27feicex/AzN4FyiY+aGbReAn3SOfc5EDbd3g/WNzB/xLzW4AYoJtzbi8wz8xKAMPM7Ann3N4MjCUikn+VLu3tCX/lld62kmefDbfdBiNHQokSfkcnIiLpSDV5d84Ny+mLO+fSe5b3WUAJYEaicw6Y2YfAhfwv4b4QmBNI3OO9BYwG2gAfZmAsEZH874IL4OefYcgQmDgR3n8fnn0WLrnE78hERCQNGblh1Q/1gDjgt2TtawLHEvdbm7iDc24TcDBRv1DHEhEpGIoVg/Hj4bvvvBX5Sy+FHj3g77/9jkxERFKRZvJuZlXM7C8zG5dOvycDN4lWyN7wKA3sd87FJWvfDRQ1s8KJ+u0Jcv7uwLGMjCUiUrC0bAnLl8Njj8Hs2VC/vlda43K6clJERDIqrZp3gFuBwsDwdPoNA/oE+g/LclRhwsz6An0BKlSowKJFi3yJY//+/b5dW1KneQk/mpMsat2aoi+8wCljx1LquuvY/dRTrLvvPg5VrpylYTUv4UnzEp40L+EpnOYlveT9AuC9ZLXkKQRuCH0HuIjsTd53A8XMLDLZinlp4KBz7kiifiWDnF86cCwjYyVwzk0BpgA0b97ctW3bNktvJrMWLVqEX9eW1Glewo/mJJv06gVTplB6wABa3XgjPPII3HMPFErvfxnBaV7Ck+YlPGlewlM4zUt6Ne+nAMtDHGtloH92Wou39WTtZO3Ja9zXkqxu3cyqAUUT9Qt1LBGRgi0iwtuJZvVq6NgR+vf3SmtWrvQ7MhGRAi+95L0wkGJFOhVHgFQexJ1p3wJ7ge7xDWZWFLgE+DRRv0+BTmZWPFFbDyAW+CKDY4mICEDVql4N/IwZsGULNG8OgwZBbKzfkYmIFFjpJe87gDohjlU70D9kZlbUzP7PzP4PqAKUi//azIo65w4Bo4DBZna7mZ0HvBOI+6lEQz0HHAZmmlmHQK36MODJ+JKfDIwlIiLxzKB7d1izBvr0gVGj4LTTIExqP0VECpr0kvfvgR5mlmaho5lFAVcC32Xw+uXxEuh3gFbAqYm+Lh/oMwoYAQwCPsLbq72jcy5hLzPn3G7gPLyymA/xbrAdDwxNdr10xxIRkSDKlIGXXoL58+H4cWjXDm68Ef791+/IREQKlPSS9+eBmsArqW2lGEjcXwJqBPqHzDm3wTlnqbw2BPo459wI51xV51yMc+4c59yKIGOtds61D/Sp5JwbknxbyFDHEhGRVJx3Hqxa5dXBT50K9erBa69pW0kRkVySZvLunFuAl5hfDawxs6Fm1sXM2pvZZWY2DO9mz6uBF51zn+d4xCIi4q+iReGJJ7y94U86CXr39m5s/S35M/BERCS7hfKE1b7AY0AlvDKU94B5wEzg4UD7Y8AtORSjiIiEo8aN4Ztv4JlnYOlSaNTIe9DT4cN+RyYikm+lm7wHSk0exiuLuR6vlvylwJ/XAzWcc0Od0+9MRUQKnMhIuPVWWLsWLrsMhgyBpk3hyy/9jkxEJF8K+YkbzrmdwNScC0VERPKsSpXg7bfh2mvhttugTRu4/nqvvEZERLJNKGUzIiIiobnwQvjlF3jgAXj1VahXjwpz5+qGVhGRbKLkXUREslfRot5+8D/8ALVrU3/kSOjQAX791e/IRETyPCXvIiKSM047Db75hl/79fN2pmnUCB55RDe0iohkgZJ3ERHJORERbLv0Uu8JrV27wtCh3i41X3zhd2QiInmSkncREcl5lSrBW2/Bp5/CkSPQti1cdx3s3Ol3ZCIieUrIybuZnWtm5dI4XtbMzs2esEREJF+64AL4+WcYONB7MmvduvD883D8uN+RiYjkCRlZeV8IdEzj+HmBPiIiIqkrWhRGjoQff/Tq4m+5Bc4806uLFxGRNGUkebd0jkcCWjoREZHQnHoqLFzorcBv3AgtWsAdd8CePX5HJiIStjJa857WRr1nAbuyEIuIiBQ0ZnD11d4TWm+7DZ591iulee017Q0vIhJEmsm7md1tZn+a2Z+BpgnxXyd77QZuBT7K8YhFRCT/KVUKnnoKli6FmjWhd29o18574JOIiCRIb+V9D7Ax8AL4J9HX8a8NwFfAEOCunAhSREQKiNNPh+++825i/eknaNLEe1rr/v1+RyYiEhYKpXXQOfcq8CqAma0HBjrnPsiNwEREpICKiIC+fb194QcOhCeegDfegAkToFs3r9RGRKSACrnm3TlXS4m7iIjkmnLl4KWX4JtvoEwZ+L//g86d4fff/Y5MRMQ3ekiTiIiEt7PO8raRHD/eS+QbNoRhw+DQIb8jExHJdakm72a23sz+MLOowNfBblRN/voj90IXEZECo1AhuOceb1earl1h+HAvif/4Y78jExHJVWmtvG8ENvG/7SE3kfJm1eSvTTkWqYiISOXK8OabMH++l9BffDFccolKaUSkwEj1hlXnXNu0vhYREfHNeed5u9FMmuStwjdoAP37w6BBcMIJfkcnIpJjVPMuIiJ5U+HCcP/9sG4dXHEFjBgB9evDO+/oAU8ikm8peRcRkbytcmWYPh2++srbleaKK5jd/XZaP/oZtQZ+TOtRnzN7xVa/oxQRyRZp7vNuZhndGtI55y7LQjwiIiKZc/bZsHw5s8dNZ9DfJYg9EAfA1j2xDJq5CoAuTav4GaGISJalmbwDFwdpc0BqT8jQ7ylFRMQ/kZGMOV6d2KjYJM2xR+MYM2etkncRyfPSLJtxzkUkfgHl8RL3DsmPBV6RuRK1iIhIKrbtiQ3evjvW2y9eRCQPy2jNu1bWRUQkrFUuFRO8/cA/cMYZcPPNsGtXLkclIpI9dMOqiIjkK/071SUmKukvgmOiIunf8yy4+2546SU45RR45hmIi/MpShGRzFHyLiIi+UqXplUY2a0RVUrFYECVUjGM7NaILmfVgfHj4ccfoUkTuP12OP10WLjQ75BFREKW3g2rIiIieU6XplVSvzm1QQNYsADefdd7sFP79tCtG4wdC7Vq5W6gIiIZpJV3EREpeMyge3dYswYefRQ++8x7wNPgwbBvn9/RiYikKr193u9N1lQU76bV7mbWJMgpzjk3PptiExERyVkxMfDQQ3DddTBwIIwcCVOnen/27g0RWuMSkfCSXtnM2FTab06l3QFK3kVEJG+pUsV7Suvtt3s3tV57LTz9NEycCGee6Xd0IiIJ0kve2+VKFCIiIuGgVSv47jt4/XV44AE46yy4+moYNQqqVvU7OhGRtJN359wXuRWIiIhIWIiI8Epmunb1kvaxY2HWLK+s5v77vVIbERGfqJhPREQkmGLF4LHHvJtaO3eGhx+GevVgxgxwemahiPhDybuIiEhaatWCd96BRYugdGno0QPatIEVK/yOTEQKICXvIiIioWjTBpYvh+efh7VroVkzuPFG2L7d78hEpABR8i4iIhKqyEjo2xd++w3uvRemTYM6dbzymoMH/Y5ORAoAJe8iIiIZVbKkdyPr6tXQqRMMGQJ163rbTR4/7nd0IpKPKXkXERHJrNq14b334MsvoWJFuOYaaNHC+1pEJAcoeRcREcmqc86BxYu9lfe///bq47t188prRESykZJ3ERGR7BARAb16wbp1Xg38vHnQoAH06wf//ut3dCKSTyh5FxERyU5Fi8KDD3qr7tdeC5MmeeU1EyfCkSN+RycieZySdxERkZxQsSJMmQIrV0Lz5nDPPd5K/OzZesiTiGSakncREZGc1KgRzJkDn3wCUVHQtSu0awc//OB3ZCKSByl5FxERyWlmcOGF8NNP8Mwz3haTzZtDnz6webPf0YlIHqLkXUREJLcUKgS33urVww8YAG+/7T3k6YEHYM8ev6MTkTxAybuIiEhuK1kSRo3ydqa54goYMwZOPhnGj4fDh/2OTkTCmJJ3ERERv9SoAdOmefXvzZvDvfdCvXrw5pt6UquIBKXkXURExG9Nmng3tc6Z463K9+zpPan188/9jkxEwoySdxERkXBx/vneKvy0abBjB5x3HnTuDKtW+R2ZiIQJJe8iIiLhJCICeveGX3/1auG/+w4aN4brr4ctW/yOTkR8puRdREQkHEVHw/33wx9/eLXwr7/u7UwzaBD895/f0YmIT5S8i4iIhLMyZWDsWG9nmssv93apOflkmDgRjhzxOzoRyWVK3kVERPKCmjXhtddg+XLvBtd77oH69bUzjUgBo+RdREQkLzn9dJg3Dz77DIoV83amadaM2a9+QutRC6g18GNaj/qc2Su2+h2piOQAJe8iIiJ5jRl06gQrVsDrrzO7ZB0G/RTL1j2HcMDWPbEMmrlKCbxIPqTkXUREJK+KiICePRnT6WZio6KTHIo9GseYOet8CkxEcoqSdxERkTxu23+HgrfvPggbN+ZyNCKSk5S8i4iI5HGVS8UEb9+3E045Bfr1g507czkqEckJSt5FRETyuP6d6hITFZmkLSYqkv6XN/Me+DRpEpx0EgwfDvv2+RSliGQHJe8iIiJ5XJemVRjZrRFVSsVgQJVSMYzs1ogu550GL74Iv/zi3eA6bJi3R/ykSZj2iBfJkwr5HYCIiIhkXZemVejStErwg/XqwbvvwpIl3hNa776blhUqwBNPwNVXQ2Rk8PNEJOxo5V1ERKSgaNEC5s+HuXM5WrIk9OkDjRvDzJngnN/RiUgI8kTybmZXmtkPZrbfzLaa2TQzq5ysj5nZYDPbbGaxZvalmTUJMtapZrbAzA6a2TYze8TMtOQgIiIFgxl07MjyZ5+FGTMgLg4uvxyaN4dPP1USLxLmwj55N7NLgTeBb4HLgAeAc4GPzSxx/AOBIcBo4BJgPzDfzComGqs0MB9wgbEeAe4Dhuf8OxEREQkjERHQvTusWgVTp8K//0LnznDOObBokd/RiUgqwj55B3oCPzjn7nDOLXDOvQbcBTQB6gKYWTRe8j7SOTfZOTcf6I6XpN+RaKxbgBigm3NunnPuObzE/V4zK5Fr70hERCRcFCrklc+sWwfPPgvr10O7dtCxI3z/vd/RiUgyeSF5jwL+S9a2J/CnBf48CygBzIjv4Jw7AHwIXJjovAuBOc65vYna3sJL6NtkX8giIiJ5TOHCcMst8Pvv8OST8OOPcOaZcMklsHKl39GJSEBeSN5fBs4xs2vMrISZnQI8BnzunFsd6FMPiAN+S3bumsAxEvVbm7iDc24TcDBZPxERkYIpJsZ7qNOff8KIEfD119C0KfToAWvXpn++iOSosE/enXMfA9cCU/BW4NcBkcDlibqVBvY75+KSnb4bKGpmhRP12xPkMrsDx0RERASgWDEYPNgro3noIfjkE2jQAK691kvsRcQX5sL8rnIzawd8ADwDfApUAIYBfwEdnHNxZvYg0N85VyrZuTcCLwBFnHNHzOxooN+EZP22ANOcc4OTtfcF+gJUqFCh2VtvvZX9bzAE+/fvp1ixYr5cW1KneQk/mpPwpHkJTxmdl6g9e6j+5ptUnj0bi4tj+0UXsbFXL46UK5eDURY8+vsSnnJ7Xtq1a7fcOdc82LG88JCmccAHzrkH4hvMbCVe+ctlwEy8lfNiZhaZbPW9NHDQORf/GLndQMkg1ygdOJaEc24K3oo/zZs3d23bts3ym8mMRYsW4de1JXWal/CjOQlPmpfwlKl56dIFtm6FESOo8uKLVJkzB267DR54ACpUyIkwCxz9fQlP4TQvYV82g1eLvjJxg3NuHRALnBxoWotXSlM7yLmJC/TWkqy23cyqAUWT9RMREZFgqlSBZ57xdqe56iqYOBFq1YL774cdO/yOTiTfywvJ+0bg9MQNZlYfb4eYDYGmb4G9eNtDxvcpirff+6eJTv0U6GRmxRO19cD7QeCL7A5cREQk36pVC155xbuJ9f/+D8aP99oGDICdO/2OTiTfygvJ+3NADzMbZ2YdzOxqYDZe4v4JgHPuEDAKGGxmt5vZecA7eO/vqWRjHQZmBsbqi1c//2Sy7SNFREQkFHXqwLRpsHo1dO0K48ZBzZpeKc2uXX5HJ5Lv5IXkfRJwO9AReB94Aq+M5rzAXu7xRgEjgEHAR3j7vnd0zv0d38E5txs4D6/E5kO8BzSNB4bm+LsQERHJz+rWhddeg19+8Wrjx4zxkvhBg+Cff/yOTiTfCPvk3Xmedc6d5pw7wTlXxTnXwzn3Z5B+I5xzVZ1zMc65c5xzK4KMt9o51z7Qp5JzbkiQLSZFREQkM+rVg9df95L4Sy6B0aO9JP7BB+Hff/2OTiTPC/vkXURERPKg+vXhzTdh1Sro3BlGjvSS+CFDYHeKDd5EJERK3kVERCTnNGgAb78NP/0EF1wAjz3mJfFDh8KePX5HJ5LnKHkXERGRnNewIcyY4SXxHTvCI494SfywYUriRTJAybuIiIjknkaN4N13YeVKaN8ehg/3tph85BEl8SIhUPIuIiIiua9xY5g5E1asgLZtvTKamjXh4Yd1Y6tIGpS8i4iIiH+aNIFZs7wkvkMHePRRqFEDBg7UE1tFglDyLiIiIv5r0sQrp1m1Ci6+GJ54wluJv/de2L7d7+hEwoaSdxEREQkfDRt6W0yuWQPdu8OkSV5N/B13wObNfkcn4jsl7yIiIhJ+6taFV1+FX3+F3r1hyhQ4+WTo2xf+/DP980XyKSXvIiIiEr5OOgleeAF+/x1uugmmTYNTToFrr2X2p8toPepzag38mNajPmf2iq1+RyuS45S8i4iISPirXh2eftpbdb/zTmav3Mag+RvZuicWB2zdE8ugmauUwEu+p+RdRERE8o7KlWH8eMZ0709sVHSSQ7FH4xgzZ51PgYnkDiXvIiIikuds23ckePvug7BkSS5HI5J7lLyLiIhInlO5VEzw9v3/QMuWcN55sGABOJfLkYnkLCXvIiIikuf071SXmKjIJG0xUZH079Uaxo71tprs0MFL5GfPhuPH/QlUJJspeRcREZE8p0vTKozs1ogqpWIwoEqpGEZ2a0SXM2vDffd5N7Y+/zz88w907QqNGnk71Rw96nfoIlmi5F1ERETypC5Nq/DNwPasH3UR3wxsT5emVf53MDra2xN+3Tp44w2IjIQ+faBOHW/XmthY/wIXyQIl7yIiIpJ/FSoEV10FP/4IH37o7VZzxx1QsyaMGgX//ed3hCIZouRdRERE8j8zuPhi+OYbWLQImjaFQYO8/eMHD4YdO/yOUCQkSt5FRESk4DCDNm3gs89g2TI4/3xvBb5GDbjzTti40e8IRdKk5F1EREQKpmbN4J13vJ1prroKnnsOateGa6/12kTCkJJ3ERERKdjq1oWXX/Z2qLn9dpgxAxo0gG7dYPFiv6MTSULJu4iIiAhAtWowYYJXOvPgg7BwIbRq5ZXZfPSR9oqXsKDkXURERCSxcuXg0Udh0yYYPx7Wr4dLLvH2ip86FY4c8TtCKcCUvIuIiIgEU7w43HMP/PEHTJ/ubTt53XVQqxaMGaNtJsUXSt5FRERE0hIVBb16wcqV3i419erBgAHeNpMPPADbtvkdoRQgSt5FREREQmEGnTrBggXeNpMXXghjx3oPfLr+eli92u8IpQBQ8i4iIiKSUc2awVtvwW+/Qd++3n83aACXXgpffw3O+R2h5FNK3kVEREQy66STYPJk7+bWYcPg22/hnHPgrLNg1iyIi/M7QslnlLyLiIiIZFXZsjB0qJfEP/007Njh7RNfvz5MmQKxsX5HKPmEkncRERGR7FK0KNx2G6xbB2+/DSVKwM03Q40a3sr8jh1+Ryh5nJJ3ERERkexWqBBccQUsXQqffw4tW8Lw4d4ONTfdpJtbJdOUvIuIiIjkFDNo1w4+/BDWrvX2iX/tNe/m1gsvhHnzdHOrZIiSdxEREZHcULcuPPssbN7sPcF1xQo4/3xo3Nh7cuvhw35HKHmAkncRERGR3FS2LDz0EGzcCC+/7K28X3cd1KhBjenT4Z9//I5QwpiSdxERERE/FCniJe0//QRz50LTptR6+WWoVg1uvdW76VUkGSXvIiIiIn4yg44d4dNPWfLyy9Czp7ciX68eXHIJLFqUUBc/e8VWWo/6nFoDP6b1qM+ZvWKrv7FLrlPyLiIiIhImDtaqBS++6O0XP3QofP+9d8Nrs2bMnvw2g2b+xNY9sThg655YBs1cpQS+gFHyLiIiIhJuKlTw9oXftCnhIU9jfjlI7NHjSbrFHo1jzByV1xQkSt5FREREwlVMjLcv/C+/sK1k+aBdtu3R01sLEiXvIiIiIuEuIoLKpWKCHqp8+D+YORPi4nI5KPGDkncRERGRPKB/p7rEREUmaYvhOP2Xz4TLL4eTT4axY2H3bp8ilNyg5F1EREQkD+jStAojuzWiSqkYDKhSKoaRPU6ny+dvwXvvQY0a0L8/VK0Kt93mPdFV8p1CfgcgIiIiIqHp0rQKXZpWSXmgWzfvtWIFTJoEL73kPc21Uye4+27vzwit2eYHmkURERGR/KJpU3jlFdi8GR591HsAVOfOUL8+TJ4M+/f7HaFkkZJ3ERERkfymfHl46CHYsAFefx1KlYI774QqVeDee+HPP/2OUDJJybuIiIhIflW4sPfE1sWL4bvvvFX4p56C2rW9p7fOmQPHj6c/joQNJe8iIiIiBUGrVvDmm95q/EMPwdKlcMEFULcuTJgAe/b4HKCEQsm7iIiISEFSpQo88oj39NY33vBKbPr189pvvtmrk5ewpeRdREREpCAqXBiuugq++QZ++MH772nToHFjOPdcmDEDjh71O0pJRsm7iIiISEHXtCm8+CJs3eo96GnrVujRw9s7fvhw2L7d7wglQMm7iIiIiHjKlIH77oPffoOPP4YmTWDYMKheHa68Er7+GpzzO8oCTcm7iIiIiCQVEeHtTPPJJ14if9dd3s4055zjrdK/8AIcOOB3lAWSkncRERERSV3t2jBunFdK88ILXlvfvlC1qrdn/G+/+RtfAaPkXURERETSV7Qo3HgjrFjhlc9ccIG3Z/wpp0CHDvDee7rBNRcoeRcRERGR0JlB69benvGbN8OIEfD77/B//+fVxg8Z4m1DKTlCybuIiIiIZE7FijB4MPzxB3z0ETRv7iXztWrBpZfCp59CXJzfUeYrSt5FREREJGsiI+Gii+DDD2H9ehg0CJYs8W56rV0bRo6Ev//2O8p8Qcm7iIiIiGSfGjXgsce80pkZM7xV+MGDoVo1b7vJL77QdpNZoORdRERERLJf4cLQvTt8/jmsWQN33AFz50LbtnDqqTBxIuzZ43eUeY6SdxERERHJWfXqwZNPettNTp0KJUvCPfdA5cpw/fWwdKlW40Ok5F1EREREckdMDPTpA99/Dz/8AL17e6U1LVpAs2bw7LPw339+RxnWlLyLiIiISO5r2hSefx62bYOnn/ZW3m+77X+r8d99B84xe8VWWo/6nFoDP6b1qM+ZvWKr35H7Ssm7iIiIiPinRAkvaf/hB6985uqr4Z134KyzmN2pN4Nm/MDWPbE4YOueWAbNXFWgE3gl7yIiIiLiPzNvn/gpU7zV+BdeYEz9C4l1SdPV2KNxjJmzzqcg/afkXURERETCS/HicOONbIspFfTwtj0HYefO3I0pTOSJ5N3MCpnZQDP7zcwOm9kWMxufrI+Z2WAz22xmsWb2pZk1CTLWqWa2wMwOmtk2M3vEzCJz7c2IiIiISEgql4oJ3v7fTqhSBXr0gPnz4fjxXI7MP3kieQemAncBY4HzgYFAbLI+A4EhwGjgEmA/MN/MKsZ3MLPSwHzAAZcBjwD3AcNzNnwRERERyaj+neoSE5V0jTUmKpL+nU+F22+HefOgY0eoU8d7iutff/kUae4J++TdzC4AegAdnHPPO+e+cM695pwbnKhPNF7yPtI5N9k5Nx/ojpek35FouFuAGKCbc26ec+45vMT9XjMrkVvvSURERETS16VpFUZ2a0SVUjEYUKVUDCO7NaLLJS1h/HivNv7116F6de8prlWrQteu8NFHcOyY3+HniEJ+BxCC64HPnXOr0+hzFlACmBHf4Jw7YGYfAhcCDwWaLwTmOOf2Jjr3LbzV+jbAh9kZuIiIiIhkTZemVejStErwg9HR0LOn9/r1V3jxRXj1VZg9GypV8vaUv+46OOWUXI05J4X9yjvQEvjVzCab2d5ArfpMM6ucqE89IA74Ldm5awLHEvdbm7iDc24TcDBZPxERERHJS045BZ54ArZsgVmzvJ1rxoyBunXhnHO8J7vu3+93lFlmLswfRWtmh4EjwI/A40Bx4AngL6CVc86Z2YNAf+dcqWTn3gi8ABRxzh0xs6OBfhOS9dsCTEtcihNo7wv0BahQoUKzt956KwfeYfr2799PsWLFfLm2pE7zEn40J+FJ8xKeNC/hSfOSvQr/8w8V5s6l0qefUnTzZo7FxLCzXTu2d+7M3lNP9banDEFuz0u7du2WO+eaBzuWF8pmLPC6zDn3D4CZbQe+ANoDC3Lqws65KcAUgObNm7u2bdvm1KXStGjRIvy6tqRO8xJ+NCfhSfMSnjQv4UnzkgMuv9x7euu331Lo5Zep9PbbVPrkE6hXz3uS6zXXQIUKaQ4RTvOSF8pmdgOr4hP3gK/xVuNPTdSnWJAtH0sDB51zRxL1KxnkGqUDx0REREQkvzGD1q3hpZdg+3bvzzJlYMAAb8vJLl3ggw/g6FG/I01XXkje1+CtvCdnQPymnmuBSKB2sj7Ja9zXkqy23cyqAUWT9RMRERGR/Kh4cW/F/ZtvYM0auO8++P57uOwyb9eaBx6AteGbFuaF5P0joJGZlU3Udi4QhVcHD/AtsBdve0gAzKwo3n7vnyY671Ogk5kVT9TWA2/P+C+yP3QRERERCVv16sHo0bB5M7z/PrRsCePGQf363kr9ihV+R5hCXkjepwD/AB+a2SVm1hOYDsx3zn0N4Jw7BIwCBpvZ7WZ2HvAO3vt7KtFYzwGHgZlm1iFwQ+ow4Mlk20eKiIiISEERFQWXXuptMblli7dLzX//eaU1YSbsb1h1zu01s/bAJLw92Y8A7wP9knUdhZesDwJOBJYBHZ1zfycaa3cgsZ+Mt6f7HmA8XgIvIiIiIgVdxYpw//3eKwyFffIO4Jz7HeicTh8HjAi80uq3Gm+XGhERERGRPCUvlM2IiIiIiAhK3kVERERE8gwl7yIiIiIieYSSdxERERGRPELJu4iIiIhIHqHkXUREREQkj1DyLiIiIiKSRyh5FxERERHJI5S8i4iIiIjkEUreRURERETyCCXvIiIiIiJ5hJJ3EREREZE8Qsm7iIiIiEgeoeRdRERERCSPUPIuIiIiIpJHKHkXEREREckjlLyLiIiIiOQR5pzzO4Y8wcx2Aht9unxZYJdP15bUaV7Cj+YkPGlewpPmJTxpXsJTbs9LDedcuWAHlLznAWa2zDnX3O84JCnNS/jRnIQnzUt40ryEJ81LeAqneVHZjIiIiIhIHqHkXUREREQkj1DynjdM8TsACUrzEn40J+FJ8/L/7d171FxVecfx74+glFQugdSiQo1SBWFZW2RRRS6xpOUiFlphIdACBYpKqQUCdVmIxK4FS0u5CgZcBcQLRmQpFQgXQRLBluoytIgkgZgLgtxCE0MSgiU8/WPvwZPhvPO+75k5c97J+/usNeu8s8/ZZ54zOzvzzJl99hmb3C5jk9tlbBoz7eIx72ZmZmZmA8Jn3s3MzMzMBoST9wZJ2k3SPZLWSfqlpH+WNGEE9baRdJ2klZJ+JenrkrbvR8zjQZV2kTRFUpQ8Zvcr7k2ZpN+XdLWkhyRtkDR3hPXcV2pUpV3cV+ol6UhJ35X0pKQ1kn4i6egR1NtC0kWSnpW0VtJtkqb0IeRxoYt2KesrD/Qj5vFA0hGS/kPS85LWS1ok6VxJrx+mXqOfLZv364VsY5ImAXcDjwCHATsDF5G+UJ07TPUbgXcCJwOvAJ8Hbgb2rSnccaPLdgE4C/hh4bnn6u2N3YFDgAeA142invtKvaq2C7iv1OVMYClwBuk9PQS4QdLkiPhCh3qXA0fkes8BM4HvSXp3RKyvN+RxoWq7QPoMuqnw/IV6QhyXtge+D1wIrAL2Iv3b3wE4rUO9Zj9bIsKPBh7Ap4GVwNaFsn8E1hXLSuq9Hwhgv0LZXrlsWtPHNeiPLtplSm6DQ5s+hk3xAWxW+PsmYO4I6rivjM12cV+pt00ml5TdACztUGdH4GXguELZW4BfAyc3fUybwqNKu+RtAjit6fjH0wM4n5TIa4j1jX+2eNhMcw4G7oyI1YWy2cCWwP7D1HsmIn7QKoiIH5G+0R9cR6DjTNV2sRpFxCsVqrmv1Kxiu1iNIqLsF4wHgTd3qPZnefntwn6eBO7HfaUnKraLNeN5oNOwmcY/W5y8N2dXYGGxICIeJ53h3XU09bIFw9SzkanaLi3X5bG/T0m6WNKWdQRpI+K+Mra5r/TP+4FHO6zfFXgiIta0lbuv1Gu4dmmZKellSSskXStpu7oDG28kTZA0UdI+wCeBWZFPqZdo/LPFY96bM4n0s0y7lXldlXpv7zoqq9ouLwFXAncBq4GpwKdIY+YP62mENlLuK2OT+0ofSToAOBw4scNmVf/fs4pG2C4A1wO3kK5D2BOYAbxH0l4RsaHWIMeXtcAW+e+vAGd32LbxzxYn72Y9EBFPsfHFLXMlPQN8UdJ7IuJ/GgrNbExxX+mfPFvMDcC/R8SXm43GWkbTLhFxQuHpDyQtAOYAHyZdIGm9sTcwkTR2/TPAFcCpjUbUgYfNNGclsE1J+aS8rtf1bGR6+f62Zgd4b1cRWVXuK4PDfaXH8tCK24HlwLHDbO6+0iejbJcydwBrgD16Gdd4FxHzI+L+iLiYNGzmE5J2HmLzxvuLk/fmLKRtbJSknUjf/MrGUg1ZLxtqDJaNTtV2KRNtS+sv95XB4b7SQ5ImAreSLro7NCLWDVNlIbCTpN9uK3df6aEK7fIahXHY7iv1mZ+XbxtifeOfLU7em3M7cKCkrQplRwEvAvOGqbdDvqgCAEl7ksZZ3V5HoONM1XYpc0Re/qQXgdmoua8MDveVHpG0OfAt4B3AQRHx7Aiq3ZWXf1HYz5tJc1a7r/RAxXYp289BwBtwX6nTB/Jy6RDrG/9s0dAX01qd8s2AHgEeJk3u/3bgYuDSiDi3sN1iYF5EnFQou5P0H8BZ/ObmAM9GhG8806Wq7SJpJrAV6aYzq4H9SBe8zImIj/TzGDZF+YzVIfnpdGBr4Lz8fE5ErHNf6b8q7eK+Ui9JXwL+FvgH4Edtqx+MiJck3QMQEQcU6l0NfISNb9K0PeCbNPVAlXaRdArpItW7STd22oN0s8BFwN6+YLV7ku4gvb8/AzaQEvfpwK0R8dG8zZj7bPEFqw2JiJX5avMrSFeSrwIuIf2HWbQ5MKGt7Ki87bWkX09uJY3Rsi510S4LSZ34ZNKc8I+T7th2fr0RjxtvJJ21Kmo9fxuwDPeVJlRpF/eVerXmbL+sZF2rTdr7CaR+sZZ0smIi6ZfGo52490yVdvk5cDzpS9XWwNOkmVBmOHHvmR8DJ5BuHvcysIR0s8arCtuMuc8Wn3k3MzMzMxsQHvNuZmZmZjYgnLybmZmZmQ0IJ+9mZmZmZgPCybuZmZmZ2YBw8m5mZmZmNiCcvJuZmZmZDQgn72ZmY4ikZZLmlpSfKmmhpJckhaQpNccxsx+vU4WkqTm21uPc4Wu9WjckfbnCa07JdWeOtu4Q+3tf2zH0ZL9mtulz8m5mVkFJArlB0kpJD0u6XtJBktSj1/ogcCXpBkcfB/4aeC4n2IePcB/L2uLt9Jjai7j74Euk9+LmVoGkbfP7MrWhmEZqMSn2M5oOxMwGi++wambWnW8AcwABWwG7AIcDxwF3SzoyIlaNYn+7AO13z/vTvDwxIv63VSjpPOB6CslrB6cDbyg8fxfwT8B3gG+3bbsAuB/4HPDSCONuwn9GxNfayrYFzst/zy2psyXpNuiNiogVwNfyLxuXNByOmQ0QJ+9mZt2Z355ASjoT+BfgTFJyf3CnHUh6HTAhItZHRFmyvANAMXEfrYi4ue01p5KS94dKEuCWl6u+3lgVEeubjsHMrBseNmNm1mMRsSEippPOXh8kaZ/WusJY8t0lXSzpCWA98L68/tUx761x1sDf5OetYS3LcjnA8cUhL706hrIx74Wy3SRdKukpSesk3SNpl7zNX0qaL+nFHOcpQ+x/mqS7JK2StF7SQ5I+3mXMU4Gl+el5xfersE3pmHdJH5R0m6TnczxLJF0jafIwr3mgpBck3SdpUi7bXdK3JD2Zr1F4WtK9kj7UzfGZmYHPvJuZ1ekaYB/gQ6REvujrwIvARaRhMk+V1H+ONC76FGDf/DfAC6QhOl8F7iON/e6n64E1wAXA7wDTgTslzSD94jALuBY4Cbha0iMR8erx54T+KuAB4HxgLWlo0CxJO0fE2RXjWkAaQ34JGw8HWtOpkqSP5ZifzMvlwO8BHwZ2BFYMUe944N+AW4BjImK9pO2B7+dNrsr7mgzsCfwxcFvFYzMzA5y8m5nV6aG8fGfJulXAtIgYcmhKRKwljYueBuxbMjznq8CSDsNe6vI08OcRETmOFcBlpItqd4+IX+TybwK/AP6O/OVF0puAy4HZEXFMYZ9flHQZcKakWRGxZLRBRcQzkm4mJe+dhgO9StKOOZ6FwN5t1yfMkFT6C7WkT5O+vMwCTouIV/KqDwBvBI6KiBtHewxmZsPxsBkzs/qszsutS9Zd2ilxH+MubyXu2X15+d1W4g4QEc8Bi4B3FLY9AtgCuEbS5OKDdAZ7M2BaveFv5Ejg9cBnyy4sLiTlLZtJuoKUuM+IiFPbtvlVXh4sqazdzcy64jPvZmb1aSVvq0vWPdrPQHqs/az4yrxc2r5hXvfWwvN35eXdHfb/uxXjqqL1xeLBEW5/OmnI0jkRcUH7yoiYJ+krwAnAsZJ+TDrWb0bEI92Ha2bjnZN3M7P6/EFeLipZt66fgfTYUFMtDlWukr+Po3ycP7z2y8FY8j1gP+AUSbPLhvdExPGSLiTNMrQv6ZqAcySdHhFX9DdcM9vUOHk3M6vPSXnpixR/47G8XBERnc6+VzXaGXdav4D8ISP7NeSnwGdIF6XOk/QnEfFY+0YR8TDwMHChpG2B/wI+J+nKtiFHZmaj4jHvZmY9JmmCpH8lzTQzJyJ+WNNLrQG2q2nfdbmRdOOnz0rasn2lpG0kbdHF/lszy4z0fbkJ+DVpasnXjFGXXnuX3Ij4GbA/MIGUwO9a2H679otc81j6pcBE4LdGGJeZWSmfeTcz684ekv4q/128w+pbgbuAY4ao1wsPANMkfQp4HIiImF3j63UtIp6Q9AnSFIsL8ow5y0lTTr6b9N7tBiyruP/nJS0GPirp58AzwNqIuKVDPKeTZsr5aR6vvhx4C3AYcCLw3yX1Fkran3QGfq6kA3JSfxxwhqTvAIuB/yMl+gcCN0bEi1WOy8ysxcm7mVl3js6PV0hnfZ8A5gHfiIg7an7tU0lJ5zmkLw4AYzp5B4iI6yQ9CpwFfAzYljSX+iJgBmkqym4cS5ou8gLS2e7lpJlshopnVk70zwY+SZoN55fAPaSpLoeq91ghgb83T+k5F/gj4FDgTaTrAJaSjtXj3c2sa/LQOzMzGyT5Tqr3An9P+rKydtDOaEvanPSlZSdgPmmqyplNxmRmg8Fj3s3MbFB9gXQX2ulNB1LBnqTY5zcdiJkNFp95NzOzgSJpEvDeQtHiiFjWUDiV5Itj9yoULalyV1kzG3+cvJuZmZmZDQgPmzEzMzMzGxBO3s3MzMzMBoSTdzMzMzOzAeHk3czMzMxsQDh5NzMzMzMbEE7ezczMzMwGhJN3MzMzM7MB8f+CLWjKfH0RzgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "filenames": { "image/png": "/sdf/home/l/ldomine/lartpc_mlreco3d_tutorials/book/_build/jupyter_execute/Prerequisites/Python-04-ScientificPython_27_0.png" }, "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots(ncols=1, nrows=1, figsize=(12, 8))\n", "\n", "ax.errorbar(x=bin_center, y=charge_median, marker='o', linestyle='', label='Hit Charge Median')\n", "\n", "x = np.arange(0, 3.,0.01)\n", "\n", "legend = f'Fit: $f(x) = a\\cdot exp(-t/\\\\tau)$ \\n $a$ = {vals[0]:.2} $\\pm$ {errs[0]:.2} \\n $\\\\tau$ = {vals[1]:.3} $\\pm$ {errs[1]:.1}'\n", "\n", "plt.plot(x, fitf(x), 'r-', label=legend)\n", "\n", "ax.legend(fontsize=18, loc='best')\n", "ax.set_xlabel('Drift Time [ticks]',fontsize=18)\n", "ax.set_ylabel('Hit Charge [ADC]',fontsize=18)\n", "ax.set_title('Simulated lifetime = 3 ms', loc='right', fontsize=18)\n", "ax.tick_params(labelsize=15)\n", "ax.grid(True)\n", "\n", "plt.show()" ] }, { "cell_type": "markdown", "id": "a54c3d39", "metadata": {}, "source": [ "\n", "## Plotly \n", "\n", "`matplotlib` is great for addressing most of the plotting needs, yet we should not it's a _static_ visualization. You can think of it as \"it's creating an image file\" each time you are plotting. So once it's plotted, it is static, doesn't move, and _cannot be interactive_! \n", "\n", "An interactive visualization (zoom in, out, rotate, shift, etc.) can be quite helpful to understand data. For visualizing 3D image (or anything beyond 2D in general), the whole fetures cannot be seen on our 2D computer screen (OK, VR covers 3D, how about 4D? :)\n", "\n", "`plotly` is one of popular solution for science applications. Below, we try an example of plotting 3D points and create an interactive event display.\n", "\n", "" ] }, { "cell_type": "code", "execution_count": 15, "id": "cf2572fb", "metadata": {}, "outputs": [ { "data": { "text/html": [ " \n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "hovertext": [ "Energy 0.20 MeV", "Energy 0.35 MeV", "Energy 1.15 MeV", "Energy 0.06 MeV", "Energy 0.47 MeV", "Energy 0.90 MeV", "Energy 0.26 MeV", "Energy 0.63 MeV", "Energy 0.27 MeV", "Energy 0.47 MeV", "Energy 0.54 MeV", "Energy 0.13 MeV", "Energy 0.52 MeV", "Energy 0.15 MeV", "Energy 0.26 MeV", "Energy 0.68 MeV", "Energy 0.05 MeV", "Energy 0.64 MeV", "Energy 0.54 MeV", "Energy 0.12 MeV", "Energy 0.57 MeV", "Energy 0.26 MeV", "Energy 0.27 MeV", "Energy 0.50 MeV", "Energy 0.05 MeV", "Energy 0.48 MeV", "Energy 0.46 MeV", "Energy 0.11 MeV", "Energy 0.66 MeV", "Energy 0.25 MeV", "Energy 0.18 MeV", "Energy 0.11 MeV", "Energy 0.52 MeV", "Energy 0.13 MeV", "Energy 0.50 MeV", "Energy 0.51 MeV", "Energy 0.09 MeV", "Energy 0.66 MeV", "Energy 0.22 MeV", "Energy 0.66 MeV", "Energy 0.57 MeV", "Energy 0.08 MeV", "Energy 0.49 MeV", "Energy 0.86 MeV", "Energy 0.12 MeV", "Energy 0.53 MeV", "Energy 0.65 MeV", "Energy 0.12 MeV", "Energy 0.43 MeV", "Energy 0.17 MeV", "Energy 0.39 MeV", "Energy 0.47 MeV", "Energy 0.09 MeV", "Energy 0.62 MeV", "Energy 0.57 MeV", "Energy 0.25 MeV", "Energy 0.61 MeV", "Energy 0.09 MeV", "Energy 0.55 MeV", "Energy 0.58 MeV", "Energy 0.58 MeV", "Energy 0.30 MeV", "Energy 0.14 MeV", "Energy 0.42 MeV", "Energy 0.25 MeV", "Energy 0.56 MeV", "Energy 0.14 MeV", "Energy 0.25 MeV", "Energy 0.37 MeV", "Energy 0.60 MeV", "Energy 0.78 MeV", "Energy 0.51 MeV", "Energy 0.18 MeV", "Energy 0.56 MeV", "Energy 0.19 MeV", "Energy 1.22 MeV", "Energy 0.82 MeV", "Energy 0.52 MeV", "Energy 0.40 MeV", "Energy 0.33 MeV", "Energy 0.09 MeV", "Energy 0.07 MeV", "Energy 0.30 MeV", "Energy 0.75 MeV", "Energy 0.08 MeV", "Energy 0.49 MeV", "Energy 0.75 MeV", "Energy 0.36 MeV", "Energy 1.12 MeV", "Energy 0.58 MeV", "Energy 0.30 MeV", "Energy 0.89 MeV", "Energy 0.58 MeV", "Energy 0.36 MeV", "Energy 0.15 MeV", "Energy 0.43 MeV", "Energy 0.06 MeV", "Energy 0.64 MeV", "Energy 0.16 MeV", "Energy 0.42 MeV", "Energy 0.52 MeV", "Energy 0.08 MeV", "Energy 0.58 MeV", "Energy 0.35 MeV", "Energy 0.26 MeV", "Energy 0.63 MeV", "Energy 0.09 MeV", "Energy 0.41 MeV", "Energy 0.71 MeV", "Energy 0.10 MeV", "Energy 0.53 MeV", "Energy 0.23 MeV", "Energy 0.78 MeV", "Energy 0.16 MeV", "Energy 0.55 MeV", "Energy 0.22 MeV", "Energy 0.32 MeV", "Energy 0.61 MeV", "Energy 0.06 MeV", "Energy 0.53 MeV", "Energy 0.41 MeV", "Energy 0.16 MeV", "Energy 0.58 MeV", "Energy 0.21 MeV", "Energy 0.39 MeV", "Energy 0.52 MeV", "Energy 0.54 MeV", "Energy 0.35 MeV", "Energy 0.16 MeV", "Energy 0.32 MeV", "Energy 0.23 MeV", "Energy 0.49 MeV", "Energy 0.73 MeV", "Energy 0.49 MeV", "Energy 0.43 MeV", "Energy 0.16 MeV", "Energy 0.73 MeV", "Energy 0.22 MeV", "Energy 0.74 MeV", "Energy 0.53 MeV", "Energy 0.21 MeV", "Energy 0.58 MeV", "Energy 0.36 MeV", "Energy 0.17 MeV", "Energy 0.05 MeV", "Energy 0.26 MeV", "Energy 0.10 MeV", "Energy 0.54 MeV", "Energy 0.52 MeV", "Energy 0.69 MeV", "Energy 0.51 MeV", "Energy 0.74 MeV", "Energy 0.63 MeV", "Energy 0.22 MeV", "Energy 0.32 MeV", "Energy 0.81 MeV", "Energy 0.62 MeV", "Energy 0.36 MeV", "Energy 0.22 MeV", "Energy 0.22 MeV", "Energy 0.18 MeV", "Energy 0.73 MeV", "Energy 0.71 MeV", "Energy 0.60 MeV", "Energy 0.71 MeV", "Energy 0.32 MeV", "Energy 0.27 MeV", "Energy 0.55 MeV", "Energy 1.39 MeV", "Energy 0.17 MeV", "Energy 0.43 MeV", "Energy 0.53 MeV", "Energy 0.61 MeV", "Energy 1.54 MeV", "Energy 1.17 MeV", "Energy 0.46 MeV", "Energy 0.57 MeV", "Energy 0.43 MeV", "Energy 0.55 MeV", "Energy 0.40 MeV", "Energy 0.19 MeV", "Energy 0.55 MeV", "Energy 0.24 MeV", "Energy 0.37 MeV", "Energy 0.63 MeV", "Energy 0.47 MeV", "Energy 0.42 MeV", "Energy 0.17 MeV", "Energy 0.81 MeV", "Energy 0.26 MeV", "Energy 0.15 MeV", "Energy 0.05 MeV", "Energy 0.60 MeV", "Energy 0.41 MeV", "Energy 0.14 MeV", "Energy 0.51 MeV", "Energy 0.25 MeV", "Energy 0.33 MeV", "Energy 0.63 MeV", "Energy 0.51 MeV", "Energy 0.53 MeV", "Energy 0.35 MeV", "Energy 0.59 MeV", "Energy 0.25 MeV", "Energy 0.33 MeV", "Energy 0.29 MeV", "Energy 0.10 MeV", "Energy 0.33 MeV", "Energy 0.32 MeV", "Energy 0.61 MeV", "Energy 0.08 MeV", "Energy 0.51 MeV", "Energy 0.47 MeV", "Energy 0.55 MeV", "Energy 0.26 MeV", "Energy 0.20 MeV", "Energy 0.60 MeV", "Energy 0.15 MeV", "Energy 0.39 MeV", "Energy 0.49 MeV", "Energy 0.24 MeV", "Energy 0.52 MeV", "Energy 0.15 MeV", "Energy 0.58 MeV", "Energy 0.42 MeV", "Energy 0.68 MeV", "Energy 0.51 MeV", "Energy 0.15 MeV", "Energy 0.44 MeV", "Energy 0.60 MeV", "Energy 0.07 MeV", "Energy 0.64 MeV", "Energy 0.37 MeV", "Energy 0.16 MeV", "Energy 0.45 MeV", "Energy 0.18 MeV", "Energy 0.08 MeV", "Energy 0.07 MeV" ], "marker": { "color": [ 0.20271334052085876, 0.3516497313976288, 1.1481902599334717, 0.062467895448207855, 0.4676343500614166, 0.897640585899353, 0.256943017244339, 0.6282752156257629, 0.26988738775253296, 0.4722643494606018, 0.5441867113113403, 0.12999047338962555, 0.5228403806686401, 0.14605535566806793, 0.2649306356906891, 0.679548442363739, 0.05238170549273491, 0.6399734020233154, 0.5416833758354187, 0.12495944648981094, 0.5700752139091492, 0.2647254765033722, 0.27421560883522034, 0.49975907802581787, 0.05158006399869919, 0.4782959818840027, 0.45840752124786377, 0.10836963355541229, 0.6560908555984497, 0.2502191662788391, 0.17651785910129547, 0.10876491665840149, 0.5240970849990845, 0.1286221444606781, 0.5033072233200073, 0.5139390230178833, 0.08650095760822296, 0.6584801077842712, 0.22240599989891052, 0.6589779257774353, 0.5659485459327698, 0.08213146775960922, 0.48946499824523926, 0.8629884719848633, 0.12476549297571182, 0.5310972929000854, 0.6492505073547363, 0.11754019558429718, 0.4334266781806946, 0.165813148021698, 0.38526931405067444, 0.4724670648574829, 0.08792929351329803, 0.6218323707580566, 0.5736894011497498, 0.25121206045150757, 0.610586941242218, 0.08851069957017899, 0.5458711981773376, 0.5810089111328125, 0.5750969648361206, 0.29899120330810547, 0.1390506625175476, 0.42196041345596313, 0.2507402002811432, 0.5580828189849854, 0.14048618078231812, 0.24500679969787598, 0.36543866991996765, 0.5980854034423828, 0.7846952676773071, 0.5067322254180908, 0.17833711206912994, 0.5562670826911926, 0.18612736463546753, 1.2245839834213257, 0.8152186274528503, 0.5205293893814087, 0.4011217951774597, 0.3301297128200531, 0.09379991888999939, 0.06734305620193481, 0.29824066162109375, 0.747420608997345, 0.07871385663747787, 0.4909497797489166, 0.754991352558136, 0.3648398518562317, 1.1173295974731445, 0.5814051628112793, 0.30141183733940125, 0.8870142698287964, 0.5810760855674744, 0.3565387427806854, 0.15019279718399048, 0.42976248264312744, 0.06037535145878792, 0.6384075880050659, 0.15937790274620056, 0.416467547416687, 0.5220346450805664, 0.08360207825899124, 0.5821408629417419, 0.34999510645866394, 0.25879669189453125, 0.6309610605239868, 0.08655744791030884, 0.4143427014350891, 0.7134177684783936, 0.10401927679777145, 0.525242805480957, 0.22960448265075684, 0.776132345199585, 0.15660126507282257, 0.5487512350082397, 0.21974828839302063, 0.31806859374046326, 0.6146870851516724, 0.060928892344236374, 0.528177797794342, 0.40933746099472046, 0.15734632313251495, 0.5819476842880249, 0.21236006915569305, 0.3860286474227905, 0.5247597694396973, 0.5400549173355103, 0.3489519953727722, 0.155700221657753, 0.31813469529151917, 0.22759048640727997, 0.4891977906227112, 0.7252967357635498, 0.4913496971130371, 0.43004459142684937, 0.1591646671295166, 0.7260042428970337, 0.21839827299118042, 0.7377695441246033, 0.5327072143554688, 0.20738907158374786, 0.575341522693634, 0.35916009545326233, 0.16948938369750977, 0.05111972615122795, 0.25974270701408386, 0.10248634219169617, 0.5350481271743774, 0.5187386274337769, 0.6864127516746521, 0.5090169310569763, 0.7417587041854858, 0.633799135684967, 0.22260494530200958, 0.3189552128314972, 0.8149373531341553, 0.618771493434906, 0.35769400000572205, 0.21582737565040588, 0.21960170567035675, 0.17889541387557983, 0.7253443002700806, 0.7129855155944824, 0.5983960032463074, 0.7107477188110352, 0.3199203610420227, 0.26504677534103394, 0.5506798028945923, 1.3902720212936401, 0.16636206209659576, 0.4338318407535553, 0.5290193557739258, 0.608025074005127, 1.5405606031417847, 1.1668133735656738, 0.4574493169784546, 0.5705350041389465, 0.4262276291847229, 0.5484187602996826, 0.39759957790374756, 0.18525226414203644, 0.5485678315162659, 0.2357109636068344, 0.3691091537475586, 0.632943868637085, 0.473216712474823, 0.4154042601585388, 0.16561733186244965, 0.8131664395332336, 0.26354849338531494, 0.15062087774276733, 0.0515110045671463, 0.6035447120666504, 0.41392987966537476, 0.13992536067962646, 0.5119536519050598, 0.2518453598022461, 0.32518792152404785, 0.6332349181175232, 0.512545108795166, 0.5336645841598511, 0.34595274925231934, 0.5856916904449463, 0.247816264629364, 0.3271382749080658, 0.28766241669654846, 0.09982102364301682, 0.32684192061424255, 0.3223120868206024, 0.6116278767585754, 0.08177570253610611, 0.5145989060401917, 0.46962374448776245, 0.5458140969276428, 0.2621372640132904, 0.20022886991500854, 0.6042999029159546, 0.14569725096225739, 0.3907613456249237, 0.49404177069664, 0.236433744430542, 0.5167114734649658, 0.1538035124540329, 0.5831592679023743, 0.41967612504959106, 0.6811039447784424, 0.509920060634613, 0.15041667222976685, 0.4414372742176056, 0.5952797532081604, 0.06915881484746933, 0.6397182941436768, 0.3743572533130646, 0.16050691902637482, 0.4506809413433075, 0.18490846455097198, 0.07883598655462265, 0.06767576932907104 ], "colorscale": [ [ 0.0, "#000004" ], [ 0.1111111111111111, "#1b0c41" ], [ 0.2222222222222222, "#4a0c6b" ], [ 0.3333333333333333, "#781c6d" ], [ 0.4444444444444444, "#a52c60" ], [ 0.5555555555555556, "#cf4446" ], [ 0.6666666666666666, "#ed6925" ], [ 0.7777777777777778, "#fb9b06" ], [ 0.8888888888888888, "#f7d13d" ], [ 1.0, "#fcffa4" ] ], "size": 1.5 }, "mode": "markers", "name": "Trajectory 0", "type": "scatter3d", "x": [ 267.0, 267.0, 268.0, 269.0, 269.0, 270.0, 270.0, 271.0, 272.0, 272.0, 273.0, 274.0, 274.0, 275.0, 257.0, 258.0, 259.0, 259.0, 260.0, 260.0, 261.0, 262.0, 262.0, 263.0, 264.0, 264.0, 265.0, 265.0, 266.0, 267.0, 268.0, 247.0, 248.0, 249.0, 249.0, 250.0, 250.0, 251.0, 252.0, 252.0, 253.0, 254.0, 254.0, 255.0, 255.0, 256.0, 257.0, 234.0, 238.0, 239.0, 239.0, 240.0, 240.0, 241.0, 242.0, 242.0, 243.0, 244.0, 244.0, 245.0, 246.0, 247.0, 247.0, 223.0, 223.0, 224.0, 228.0, 229.0, 229.0, 230.0, 231.0, 232.0, 232.0, 233.0, 234.0, 234.0, 235.0, 236.0, 237.0, 237.0, 238.0, 219.0, 219.0, 220.0, 221.0, 221.0, 222.0, 222.0, 223.0, 224.0, 224.0, 225.0, 226.0, 227.0, 227.0, 228.0, 209.0, 210.0, 211.0, 211.0, 212.0, 212.0, 213.0, 214.0, 214.0, 215.0, 216.0, 216.0, 217.0, 217.0, 218.0, 219.0, 220.0, 196.0, 200.0, 201.0, 201.0, 202.0, 203.0, 203.0, 204.0, 204.0, 205.0, 206.0, 206.0, 207.0, 208.0, 209.0, 209.0, 190.0, 191.0, 191.0, 192.0, 193.0, 194.0, 194.0, 195.0, 196.0, 196.0, 197.0, 198.0, 198.0, 199.0, 199.0, 200.0, 180.0, 181.0, 181.0, 182.0, 183.0, 184.0, 184.0, 185.0, 186.0, 186.0, 187.0, 188.0, 189.0, 189.0, 190.0, 171.0, 172.0, 171.0, 172.0, 173.0, 174.0, 171.0, 174.0, 175.0, 176.0, 176.0, 177.0, 177.0, 178.0, 179.0, 179.0, 180.0, 162.0, 163.0, 164.0, 164.0, 165.0, 166.0, 166.0, 167.0, 168.0, 169.0, 169.0, 170.0, 171.0, 171.0, 152.0, 153.0, 154.0, 154.0, 155.0, 156.0, 156.0, 157.0, 158.0, 159.0, 159.0, 160.0, 161.0, 161.0, 162.0, 143.0, 144.0, 144.0, 145.0, 146.0, 146.0, 147.0, 148.0, 149.0, 149.0, 150.0, 151.0, 151.0, 152.0, 134.0, 135.0, 135.0, 136.0, 137.0, 137.0, 138.0, 139.0, 139.0, 140.0, 140.0, 141.0, 142.0, 142.0, 143.0, 134.0, 214.0, 155.0 ], "y": [ 598.0, 599.0, 599.0, 599.0, 600.0, 600.0, 601.0, 601.0, 601.0, 602.0, 602.0, 602.0, 603.0, 603.0, 593.0, 593.0, 593.0, 594.0, 594.0, 595.0, 595.0, 595.0, 596.0, 596.0, 596.0, 597.0, 597.0, 598.0, 598.0, 598.0, 599.0, 587.0, 587.0, 587.0, 588.0, 588.0, 589.0, 589.0, 589.0, 590.0, 590.0, 590.0, 591.0, 591.0, 592.0, 592.0, 592.0, 579.0, 581.0, 581.0, 582.0, 582.0, 583.0, 583.0, 583.0, 584.0, 584.0, 584.0, 585.0, 585.0, 586.0, 586.0, 587.0, 571.0, 572.0, 572.0, 575.0, 575.0, 576.0, 576.0, 577.0, 577.0, 578.0, 578.0, 578.0, 579.0, 579.0, 580.0, 580.0, 581.0, 581.0, 569.0, 570.0, 570.0, 570.0, 571.0, 571.0, 572.0, 572.0, 572.0, 573.0, 573.0, 574.0, 574.0, 575.0, 575.0, 564.0, 564.0, 564.0, 565.0, 565.0, 566.0, 566.0, 566.0, 567.0, 567.0, 567.0, 568.0, 568.0, 569.0, 569.0, 569.0, 570.0, 556.0, 558.0, 558.0, 559.0, 559.0, 559.0, 560.0, 560.0, 561.0, 561.0, 561.0, 562.0, 562.0, 563.0, 563.0, 564.0, 552.0, 552.0, 553.0, 553.0, 554.0, 554.0, 555.0, 555.0, 555.0, 556.0, 556.0, 556.0, 557.0, 557.0, 558.0, 558.0, 546.0, 546.0, 547.0, 547.0, 548.0, 548.0, 549.0, 549.0, 549.0, 550.0, 550.0, 551.0, 551.0, 552.0, 552.0, 541.0, 541.0, 542.0, 542.0, 542.0, 542.0, 543.0, 543.0, 543.0, 543.0, 544.0, 544.0, 545.0, 545.0, 545.0, 546.0, 546.0, 535.0, 536.0, 536.0, 537.0, 537.0, 537.0, 538.0, 538.0, 539.0, 539.0, 540.0, 540.0, 540.0, 541.0, 529.0, 530.0, 530.0, 531.0, 531.0, 531.0, 532.0, 532.0, 533.0, 533.0, 534.0, 534.0, 534.0, 535.0, 535.0, 524.0, 524.0, 525.0, 525.0, 525.0, 526.0, 526.0, 527.0, 527.0, 528.0, 528.0, 528.0, 529.0, 529.0, 519.0, 519.0, 520.0, 520.0, 520.0, 521.0, 521.0, 521.0, 522.0, 522.0, 523.0, 523.0, 523.0, 524.0, 524.0, 519.0, 545.0, 521.0 ], "z": [ 423.0, 423.0, 423.0, 423.0, 423.0, 423.0, 423.0, 423.0, 423.0, 423.0, 423.0, 423.0, 423.0, 423.0, 424.0, 424.0, 424.0, 424.0, 424.0, 424.0, 424.0, 424.0, 424.0, 424.0, 424.0, 424.0, 424.0, 424.0, 424.0, 424.0, 424.0, 425.0, 425.0, 425.0, 425.0, 425.0, 425.0, 425.0, 425.0, 425.0, 425.0, 425.0, 425.0, 425.0, 425.0, 425.0, 425.0, 426.0, 426.0, 426.0, 426.0, 426.0, 426.0, 426.0, 426.0, 426.0, 426.0, 426.0, 426.0, 426.0, 426.0, 426.0, 426.0, 427.0, 427.0, 427.0, 427.0, 427.0, 427.0, 427.0, 427.0, 427.0, 427.0, 427.0, 427.0, 427.0, 427.0, 427.0, 427.0, 427.0, 427.0, 428.0, 428.0, 428.0, 428.0, 428.0, 428.0, 428.0, 428.0, 428.0, 428.0, 428.0, 428.0, 428.0, 428.0, 428.0, 429.0, 429.0, 429.0, 429.0, 429.0, 429.0, 429.0, 429.0, 429.0, 429.0, 429.0, 429.0, 429.0, 429.0, 429.0, 429.0, 429.0, 430.0, 430.0, 430.0, 430.0, 430.0, 430.0, 430.0, 430.0, 430.0, 430.0, 430.0, 430.0, 430.0, 430.0, 430.0, 430.0, 431.0, 431.0, 431.0, 431.0, 431.0, 431.0, 431.0, 431.0, 431.0, 431.0, 431.0, 431.0, 431.0, 431.0, 431.0, 431.0, 432.0, 432.0, 432.0, 432.0, 432.0, 432.0, 432.0, 432.0, 432.0, 432.0, 432.0, 432.0, 432.0, 432.0, 432.0, 433.0, 433.0, 433.0, 433.0, 433.0, 433.0, 433.0, 433.0, 433.0, 433.0, 433.0, 433.0, 433.0, 433.0, 433.0, 433.0, 433.0, 434.0, 434.0, 434.0, 434.0, 434.0, 434.0, 434.0, 434.0, 434.0, 434.0, 434.0, 434.0, 434.0, 434.0, 435.0, 435.0, 435.0, 435.0, 435.0, 435.0, 435.0, 435.0, 435.0, 435.0, 435.0, 435.0, 435.0, 435.0, 435.0, 436.0, 436.0, 436.0, 436.0, 436.0, 436.0, 436.0, 436.0, 436.0, 436.0, 436.0, 436.0, 436.0, 436.0, 437.0, 437.0, 437.0, 437.0, 437.0, 437.0, 437.0, 437.0, 437.0, 437.0, 437.0, 437.0, 437.0, 437.0, 437.0, 438.0, 453.0, 482.0 ] }, { "hovertext": [ "Energy 0.08 MeV", "Energy 0.34 MeV", "Energy 0.08 MeV", "Energy 0.08 MeV", "Energy 0.16 MeV", "Energy 0.22 MeV", "Energy 0.17 MeV", "Energy 0.12 MeV", "Energy 0.06 MeV", "Energy 0.05 MeV", "Energy 0.09 MeV", "Energy 0.07 MeV", "Energy 0.06 MeV", "Energy 0.22 MeV", "Energy 0.07 MeV", "Energy 0.33 MeV", "Energy 0.15 MeV", "Energy 0.14 MeV", "Energy 1.10 MeV", "Energy 0.51 MeV", "Energy 0.14 MeV", "Energy 0.63 MeV", "Energy 0.27 MeV", "Energy 0.24 MeV", "Energy 0.21 MeV", "Energy 0.20 MeV", "Energy 0.34 MeV", "Energy 0.25 MeV", "Energy 0.89 MeV", "Energy 1.99 MeV", "Energy 0.51 MeV", "Energy 0.36 MeV", "Energy 0.11 MeV", "Energy 1.16 MeV", "Energy 0.39 MeV", "Energy 0.80 MeV", "Energy 0.52 MeV", "Energy 0.36 MeV", "Energy 0.56 MeV", "Energy 0.09 MeV", "Energy 0.06 MeV", "Energy 1.57 MeV", "Energy 0.76 MeV", "Energy 0.06 MeV", "Energy 0.49 MeV", "Energy 0.59 MeV", "Energy 0.25 MeV", "Energy 0.91 MeV", "Energy 0.08 MeV", "Energy 0.06 MeV", "Energy 0.67 MeV", "Energy 1.21 MeV", "Energy 0.46 MeV", "Energy 0.15 MeV", "Energy 0.23 MeV", "Energy 0.56 MeV", "Energy 0.55 MeV", "Energy 0.12 MeV", "Energy 0.16 MeV", "Energy 0.11 MeV", "Energy 0.69 MeV", "Energy 0.16 MeV", "Energy 0.34 MeV", "Energy 0.79 MeV", "Energy 0.08 MeV", "Energy 0.09 MeV", "Energy 0.07 MeV", "Energy 0.58 MeV", "Energy 0.68 MeV", "Energy 0.19 MeV", "Energy 0.09 MeV", "Energy 0.39 MeV", "Energy 0.53 MeV", "Energy 0.25 MeV", "Energy 0.07 MeV", "Energy 0.38 MeV", "Energy 0.86 MeV", "Energy 0.38 MeV", "Energy 0.15 MeV", "Energy 0.59 MeV", "Energy 0.57 MeV", "Energy 0.06 MeV", "Energy 0.06 MeV", "Energy 0.53 MeV", "Energy 0.70 MeV", "Energy 0.52 MeV", "Energy 0.33 MeV", "Energy 0.75 MeV", "Energy 0.45 MeV", "Energy 0.08 MeV", "Energy 0.09 MeV", "Energy 0.56 MeV", "Energy 0.60 MeV", "Energy 0.08 MeV", "Energy 0.76 MeV", "Energy 0.72 MeV", "Energy 0.25 MeV", "Energy 0.06 MeV", "Energy 0.44 MeV", "Energy 0.64 MeV", "Energy 0.41 MeV", "Energy 0.09 MeV", "Energy 0.14 MeV", "Energy 0.64 MeV", "Energy 0.93 MeV", "Energy 0.10 MeV", "Energy 0.55 MeV", "Energy 0.88 MeV", "Energy 0.06 MeV", "Energy 0.11 MeV", "Energy 0.54 MeV", "Energy 1.02 MeV", "Energy 0.19 MeV", "Energy 0.07 MeV", "Energy 0.21 MeV", "Energy 0.12 MeV", "Energy 0.43 MeV", "Energy 0.16 MeV", "Energy 0.57 MeV", "Energy 0.58 MeV", "Energy 0.18 MeV", "Energy 0.44 MeV", "Energy 0.64 MeV", "Energy 0.36 MeV", "Energy 0.06 MeV", "Energy 0.21 MeV", "Energy 0.28 MeV", "Energy 0.08 MeV", "Energy 0.20 MeV", "Energy 0.56 MeV", "Energy 0.60 MeV", "Energy 0.05 MeV", "Energy 0.47 MeV", "Energy 0.61 MeV", "Energy 0.29 MeV", "Energy 0.65 MeV", "Energy 1.74 MeV", "Energy 0.56 MeV", "Energy 0.06 MeV", "Energy 0.41 MeV", "Energy 0.88 MeV", "Energy 0.73 MeV", "Energy 1.60 MeV", "Energy 0.69 MeV", "Energy 0.45 MeV", "Energy 0.99 MeV", "Energy 2.95 MeV", "Energy 1.27 MeV", "Energy 1.87 MeV", "Energy 0.58 MeV", "Energy 0.13 MeV", "Energy 0.61 MeV", "Energy 0.07 MeV", "Energy 0.57 MeV", "Energy 0.51 MeV", "Energy 0.92 MeV", "Energy 0.82 MeV", "Energy 1.34 MeV", "Energy 1.00 MeV", "Energy 0.91 MeV", "Energy 1.75 MeV", "Energy 0.15 MeV", "Energy 0.41 MeV", "Energy 0.40 MeV", "Energy 0.06 MeV", "Energy 0.08 MeV", "Energy 0.24 MeV", "Energy 0.84 MeV", "Energy 1.06 MeV", "Energy 2.78 MeV", "Energy 0.96 MeV", "Energy 0.09 MeV", "Energy 0.06 MeV", "Energy 0.10 MeV", "Energy 0.34 MeV", "Energy 0.97 MeV", "Energy 0.26 MeV", "Energy 0.07 MeV", "Energy 0.17 MeV", "Energy 0.12 MeV", "Energy 0.72 MeV", "Energy 0.84 MeV", "Energy 0.27 MeV", "Energy 0.57 MeV", "Energy 1.93 MeV", "Energy 0.69 MeV", "Energy 0.23 MeV", "Energy 0.40 MeV", "Energy 1.71 MeV", "Energy 2.68 MeV", "Energy 0.80 MeV", "Energy 0.30 MeV", "Energy 0.22 MeV", "Energy 0.26 MeV", "Energy 0.41 MeV", "Energy 1.55 MeV", "Energy 0.06 MeV", "Energy 0.63 MeV", "Energy 0.76 MeV", "Energy 0.78 MeV", "Energy 0.28 MeV", "Energy 0.25 MeV", "Energy 0.31 MeV", "Energy 0.63 MeV", "Energy 0.49 MeV", "Energy 0.30 MeV", "Energy 0.43 MeV", "Energy 0.63 MeV", "Energy 0.10 MeV", "Energy 0.68 MeV", "Energy 0.53 MeV", "Energy 0.62 MeV", "Energy 0.11 MeV", "Energy 0.55 MeV", "Energy 1.16 MeV", "Energy 0.20 MeV", "Energy 0.39 MeV", "Energy 0.53 MeV", "Energy 0.57 MeV", "Energy 0.47 MeV", "Energy 0.12 MeV", "Energy 0.06 MeV", "Energy 0.52 MeV", "Energy 0.05 MeV", "Energy 0.65 MeV", "Energy 0.56 MeV", "Energy 0.53 MeV", "Energy 0.96 MeV", "Energy 0.07 MeV", "Energy 0.07 MeV", "Energy 0.15 MeV", "Energy 0.07 MeV", "Energy 0.10 MeV", "Energy 0.63 MeV", "Energy 0.40 MeV", "Energy 0.47 MeV", "Energy 0.27 MeV", "Energy 0.67 MeV", "Energy 0.77 MeV", "Energy 0.47 MeV", "Energy 0.06 MeV", "Energy 0.24 MeV", "Energy 0.54 MeV", "Energy 0.31 MeV", "Energy 0.07 MeV", "Energy 0.39 MeV", "Energy 0.74 MeV", "Energy 0.22 MeV", "Energy 0.36 MeV", "Energy 1.01 MeV", "Energy 0.65 MeV", "Energy 0.23 MeV", "Energy 0.55 MeV", "Energy 0.64 MeV", "Energy 0.29 MeV", "Energy 0.49 MeV", "Energy 1.14 MeV", "Energy 0.55 MeV", "Energy 0.68 MeV", "Energy 0.51 MeV", "Energy 0.13 MeV", "Energy 0.58 MeV", "Energy 0.20 MeV", "Energy 0.57 MeV", "Energy 0.58 MeV", "Energy 0.25 MeV", "Energy 1.05 MeV", "Energy 0.14 MeV", "Energy 0.54 MeV", "Energy 0.54 MeV", "Energy 0.66 MeV", "Energy 0.11 MeV", "Energy 0.52 MeV", "Energy 0.64 MeV", "Energy 0.46 MeV", "Energy 0.54 MeV", "Energy 0.09 MeV", "Energy 0.09 MeV", "Energy 0.06 MeV", "Energy 0.15 MeV", "Energy 0.51 MeV", "Energy 0.32 MeV", "Energy 0.63 MeV", "Energy 0.28 MeV", "Energy 0.47 MeV", "Energy 0.62 MeV", "Energy 0.33 MeV", "Energy 0.95 MeV", "Energy 0.50 MeV", "Energy 0.06 MeV", "Energy 0.18 MeV", "Energy 0.36 MeV", "Energy 0.15 MeV", "Energy 1.20 MeV", "Energy 0.34 MeV", "Energy 1.44 MeV", "Energy 0.31 MeV", "Energy 1.22 MeV", "Energy 0.16 MeV", "Energy 0.15 MeV", "Energy 0.07 MeV", "Energy 0.08 MeV", "Energy 0.07 MeV", "Energy 0.25 MeV", "Energy 1.06 MeV", "Energy 0.08 MeV", "Energy 0.89 MeV", "Energy 0.26 MeV", "Energy 0.24 MeV", "Energy 0.95 MeV", "Energy 0.90 MeV", "Energy 0.49 MeV", "Energy 0.24 MeV", "Energy 0.34 MeV", "Energy 0.10 MeV", "Energy 0.63 MeV", "Energy 0.97 MeV", "Energy 0.07 MeV", "Energy 0.44 MeV", "Energy 0.24 MeV", "Energy 0.64 MeV", "Energy 0.63 MeV", "Energy 0.43 MeV", "Energy 0.56 MeV", "Energy 0.07 MeV", "Energy 0.39 MeV", "Energy 0.80 MeV", "Energy 0.10 MeV", "Energy 0.59 MeV", "Energy 0.57 MeV", "Energy 0.59 MeV", "Energy 0.17 MeV", "Energy 0.35 MeV", "Energy 0.30 MeV", "Energy 0.60 MeV", "Energy 0.94 MeV", "Energy 0.60 MeV", "Energy 1.19 MeV", "Energy 0.68 MeV", "Energy 0.72 MeV", "Energy 0.95 MeV", "Energy 0.13 MeV", "Energy 0.12 MeV", "Energy 0.72 MeV", "Energy 0.31 MeV", "Energy 0.94 MeV", "Energy 0.40 MeV", "Energy 0.06 MeV", "Energy 0.05 MeV", "Energy 0.57 MeV", "Energy 0.18 MeV", "Energy 0.67 MeV", "Energy 0.37 MeV", "Energy 0.60 MeV", "Energy 0.72 MeV", "Energy 0.46 MeV", "Energy 0.55 MeV", "Energy 0.14 MeV", "Energy 0.38 MeV", "Energy 0.23 MeV", "Energy 0.54 MeV", "Energy 1.12 MeV", "Energy 1.41 MeV", "Energy 1.17 MeV", "Energy 1.28 MeV", "Energy 0.53 MeV", "Energy 0.79 MeV", "Energy 0.14 MeV", "Energy 1.04 MeV", "Energy 1.04 MeV", "Energy 0.37 MeV", "Energy 0.93 MeV", "Energy 0.21 MeV", "Energy 0.51 MeV", "Energy 0.56 MeV", "Energy 0.43 MeV", "Energy 0.45 MeV", "Energy 0.46 MeV", "Energy 0.16 MeV", "Energy 0.57 MeV", "Energy 0.59 MeV", "Energy 0.51 MeV", "Energy 1.14 MeV", "Energy 0.48 MeV", "Energy 0.27 MeV", "Energy 0.57 MeV", "Energy 0.43 MeV", "Energy 0.33 MeV", "Energy 0.44 MeV", "Energy 0.15 MeV", "Energy 0.30 MeV", "Energy 0.86 MeV", "Energy 0.59 MeV", "Energy 0.61 MeV", "Energy 0.92 MeV", "Energy 0.10 MeV", "Energy 0.06 MeV", "Energy 0.78 MeV", "Energy 0.80 MeV", "Energy 0.97 MeV", "Energy 0.14 MeV", "Energy 0.48 MeV", "Energy 0.27 MeV", "Energy 0.43 MeV", "Energy 0.13 MeV", "Energy 0.28 MeV", "Energy 0.05 MeV", "Energy 0.65 MeV", "Energy 0.63 MeV", "Energy 0.36 MeV", "Energy 0.10 MeV", "Energy 0.35 MeV", "Energy 0.24 MeV", "Energy 0.44 MeV", "Energy 0.31 MeV", "Energy 0.25 MeV", "Energy 1.10 MeV", "Energy 0.13 MeV", "Energy 0.38 MeV", "Energy 0.51 MeV", "Energy 0.93 MeV", "Energy 0.83 MeV", "Energy 0.52 MeV", "Energy 0.25 MeV", "Energy 0.15 MeV", "Energy 0.26 MeV", "Energy 0.50 MeV", "Energy 1.04 MeV", "Energy 0.44 MeV", "Energy 0.12 MeV", "Energy 0.55 MeV", "Energy 0.59 MeV", "Energy 0.54 MeV", "Energy 0.73 MeV", "Energy 0.32 MeV", "Energy 0.52 MeV", "Energy 0.73 MeV", "Energy 0.24 MeV", "Energy 0.35 MeV", "Energy 1.27 MeV", "Energy 0.43 MeV", "Energy 0.13 MeV", "Energy 0.43 MeV", "Energy 0.33 MeV", "Energy 0.64 MeV", "Energy 0.82 MeV", "Energy 0.08 MeV", "Energy 0.49 MeV", "Energy 0.59 MeV", "Energy 0.71 MeV", "Energy 0.30 MeV", "Energy 0.33 MeV", "Energy 0.53 MeV", "Energy 0.30 MeV", "Energy 0.52 MeV", "Energy 0.36 MeV", "Energy 0.08 MeV", "Energy 1.28 MeV", "Energy 0.41 MeV", "Energy 0.64 MeV", "Energy 0.46 MeV", "Energy 0.24 MeV", "Energy 0.45 MeV", "Energy 0.88 MeV", "Energy 1.45 MeV", "Energy 0.52 MeV", "Energy 0.73 MeV", "Energy 0.26 MeV", "Energy 0.42 MeV", "Energy 1.01 MeV", "Energy 0.20 MeV", "Energy 0.17 MeV", "Energy 0.42 MeV", "Energy 0.17 MeV", "Energy 0.06 MeV", "Energy 0.13 MeV", "Energy 0.06 MeV", "Energy 0.10 MeV", "Energy 0.21 MeV", "Energy 0.71 MeV", "Energy 0.37 MeV", "Energy 0.20 MeV", "Energy 0.75 MeV", "Energy 0.53 MeV", "Energy 0.40 MeV", "Energy 0.55 MeV", "Energy 0.63 MeV", "Energy 0.21 MeV", "Energy 0.59 MeV", "Energy 0.19 MeV", "Energy 0.17 MeV", "Energy 0.51 MeV", "Energy 0.27 MeV", "Energy 0.26 MeV", "Energy 0.08 MeV", "Energy 0.41 MeV", "Energy 0.19 MeV", "Energy 0.08 MeV", "Energy 0.09 MeV", "Energy 0.09 MeV", "Energy 0.14 MeV", "Energy 0.72 MeV", "Energy 0.14 MeV", "Energy 0.40 MeV", "Energy 0.07 MeV", "Energy 0.10 MeV", "Energy 0.07 MeV", "Energy 0.41 MeV", "Energy 0.47 MeV", "Energy 0.97 MeV", "Energy 0.63 MeV", "Energy 0.51 MeV", "Energy 0.72 MeV", "Energy 0.09 MeV", "Energy 0.28 MeV", "Energy 0.10 MeV", "Energy 0.65 MeV", "Energy 0.62 MeV", "Energy 0.08 MeV", "Energy 0.07 MeV", "Energy 0.33 MeV", "Energy 0.37 MeV", "Energy 0.32 MeV", "Energy 0.54 MeV", "Energy 0.69 MeV", "Energy 0.21 MeV", "Energy 0.31 MeV", "Energy 0.11 MeV", "Energy 0.14 MeV", "Energy 0.11 MeV", "Energy 0.12 MeV", "Energy 0.08 MeV", "Energy 0.14 MeV", "Energy 0.13 MeV", "Energy 0.13 MeV", "Energy 0.29 MeV", "Energy 0.17 MeV", "Energy 0.37 MeV", "Energy 0.08 MeV", "Energy 0.14 MeV", "Energy 0.05 MeV", "Energy 0.19 MeV", "Energy 0.07 MeV", "Energy 0.07 MeV", "Energy 0.08 MeV", "Energy 0.07 MeV", "Energy 0.11 MeV", "Energy 0.08 MeV", "Energy 0.07 MeV", "Energy 0.29 MeV", "Energy 0.11 MeV", "Energy 0.21 MeV", "Energy 0.09 MeV", "Energy 0.07 MeV", "Energy 0.47 MeV", "Energy 0.22 MeV", "Energy 0.09 MeV", "Energy 0.43 MeV", "Energy 0.76 MeV", "Energy 0.07 MeV", "Energy 0.18 MeV", "Energy 0.11 MeV", "Energy 0.11 MeV", "Energy 0.05 MeV", "Energy 0.20 MeV", "Energy 0.21 MeV", "Energy 1.48 MeV", "Energy 0.14 MeV", "Energy 0.64 MeV", "Energy 0.21 MeV", "Energy 0.96 MeV", "Energy 0.05 MeV", "Energy 0.15 MeV", "Energy 0.08 MeV", "Energy 0.18 MeV", "Energy 0.10 MeV", "Energy 0.29 MeV", "Energy 0.10 MeV", "Energy 0.19 MeV", "Energy 0.08 MeV", "Energy 0.63 MeV", "Energy 0.57 MeV", "Energy 0.10 MeV", "Energy 0.23 MeV", "Energy 1.28 MeV", "Energy 0.74 MeV", "Energy 0.15 MeV", "Energy 0.22 MeV", "Energy 0.49 MeV", "Energy 0.23 MeV", "Energy 0.20 MeV", "Energy 0.10 MeV", "Energy 0.19 MeV", "Energy 0.17 MeV", "Energy 0.13 MeV", "Energy 0.06 MeV", "Energy 0.14 MeV", "Energy 0.49 MeV", "Energy 0.37 MeV", "Energy 0.57 MeV", "Energy 1.20 MeV", "Energy 0.25 MeV", "Energy 0.46 MeV", "Energy 1.23 MeV", "Energy 0.35 MeV", "Energy 0.09 MeV", "Energy 0.24 MeV", "Energy 0.09 MeV", "Energy 0.07 MeV", "Energy 0.07 MeV", "Energy 0.07 MeV", "Energy 0.08 MeV", "Energy 0.07 MeV", "Energy 0.06 MeV", "Energy 0.06 MeV", "Energy 0.08 MeV", "Energy 0.15 MeV", "Energy 0.07 MeV", "Energy 0.08 MeV", "Energy 0.07 MeV", "Energy 0.16 MeV", "Energy 0.09 MeV", "Energy 0.28 MeV", "Energy 0.06 MeV", "Energy 0.09 MeV", "Energy 0.13 MeV", "Energy 0.07 MeV", "Energy 0.05 MeV", "Energy 0.05 MeV", "Energy 0.33 MeV", "Energy 0.19 MeV", "Energy 0.07 MeV", "Energy 0.08 MeV", "Energy 0.10 MeV", "Energy 0.32 MeV", "Energy 0.31 MeV", "Energy 0.14 MeV", "Energy 0.10 MeV", "Energy 0.86 MeV", "Energy 0.06 MeV", "Energy 0.06 MeV", "Energy 0.07 MeV", "Energy 0.23 MeV", "Energy 0.05 MeV", "Energy 0.36 MeV", "Energy 0.16 MeV", "Energy 0.38 MeV", "Energy 0.06 MeV", "Energy 0.12 MeV", "Energy 0.21 MeV", "Energy 0.17 MeV", "Energy 0.20 MeV", "Energy 0.29 MeV", "Energy 0.25 MeV", "Energy 0.12 MeV", "Energy 0.13 MeV", "Energy 0.08 MeV", "Energy 0.05 MeV", "Energy 0.09 MeV", "Energy 0.19 MeV", "Energy 0.07 MeV", "Energy 0.19 MeV", "Energy 0.06 MeV", "Energy 0.08 MeV", "Energy 0.34 MeV", "Energy 0.23 MeV", "Energy 0.48 MeV", "Energy 0.05 MeV", "Energy 0.06 MeV", "Energy 0.65 MeV", "Energy 0.47 MeV", "Energy 0.10 MeV", "Energy 0.08 MeV", "Energy 0.07 MeV", "Energy 0.15 MeV", "Energy 0.08 MeV", "Energy 0.11 MeV", "Energy 0.42 MeV", "Energy 0.08 MeV", "Energy 0.16 MeV", "Energy 0.58 MeV", "Energy 0.09 MeV", "Energy 0.11 MeV", "Energy 0.09 MeV", "Energy 0.06 MeV", "Energy 0.11 MeV", "Energy 0.31 MeV", "Energy 0.05 MeV", "Energy 0.17 MeV", "Energy 0.08 MeV", "Energy 0.11 MeV", "Energy 0.10 MeV", "Energy 0.26 MeV", "Energy 0.06 MeV", "Energy 0.23 MeV", "Energy 0.08 MeV", "Energy 0.08 MeV", "Energy 0.11 MeV", "Energy 0.30 MeV", "Energy 0.08 MeV", "Energy 0.09 MeV", "Energy 0.24 MeV", "Energy 0.51 MeV", "Energy 0.09 MeV", "Energy 0.06 MeV", "Energy 0.09 MeV", "Energy 0.11 MeV", "Energy 0.06 MeV", "Energy 0.07 MeV", "Energy 0.07 MeV", "Energy 0.16 MeV", "Energy 0.12 MeV", "Energy 0.14 MeV", "Energy 0.10 MeV", "Energy 0.39 MeV", "Energy 0.32 MeV", "Energy 0.43 MeV", "Energy 0.39 MeV", "Energy 1.23 MeV", "Energy 0.19 MeV", "Energy 0.74 MeV", "Energy 0.84 MeV", "Energy 0.07 MeV", "Energy 0.98 MeV", "Energy 0.11 MeV", "Energy 0.70 MeV", "Energy 0.10 MeV", "Energy 0.08 MeV", "Energy 0.33 MeV", "Energy 0.39 MeV", "Energy 0.77 MeV", "Energy 0.29 MeV", "Energy 0.39 MeV", "Energy 1.21 MeV", "Energy 1.06 MeV", "Energy 0.39 MeV", "Energy 0.37 MeV", "Energy 0.12 MeV", "Energy 0.67 MeV", "Energy 0.21 MeV", "Energy 0.60 MeV", "Energy 0.07 MeV", "Energy 0.32 MeV", "Energy 0.16 MeV", "Energy 0.05 MeV", "Energy 0.54 MeV", "Energy 0.07 MeV", "Energy 0.29 MeV", "Energy 0.55 MeV", "Energy 0.12 MeV", "Energy 0.66 MeV", "Energy 0.24 MeV", "Energy 1.01 MeV", "Energy 0.91 MeV", "Energy 0.60 MeV", "Energy 0.93 MeV", "Energy 0.06 MeV", "Energy 0.76 MeV", "Energy 0.16 MeV", "Energy 0.40 MeV", "Energy 0.22 MeV", "Energy 0.57 MeV", "Energy 0.17 MeV", "Energy 0.11 MeV", "Energy 0.50 MeV", "Energy 0.80 MeV", "Energy 0.13 MeV", "Energy 0.31 MeV", "Energy 0.38 MeV", "Energy 0.22 MeV", "Energy 0.20 MeV", "Energy 0.61 MeV", "Energy 0.08 MeV", "Energy 0.36 MeV", "Energy 0.93 MeV", "Energy 0.76 MeV", "Energy 0.11 MeV", "Energy 0.46 MeV", "Energy 0.26 MeV", "Energy 0.37 MeV", "Energy 0.12 MeV", "Energy 0.70 MeV", "Energy 0.76 MeV", "Energy 1.07 MeV", "Energy 1.05 MeV", "Energy 0.45 MeV", "Energy 0.68 MeV", "Energy 0.40 MeV", "Energy 0.35 MeV", "Energy 0.32 MeV", "Energy 0.12 MeV", "Energy 0.57 MeV", "Energy 0.68 MeV", "Energy 0.52 MeV", "Energy 0.12 MeV", "Energy 0.67 MeV", "Energy 0.32 MeV", "Energy 0.23 MeV", "Energy 0.36 MeV", "Energy 0.39 MeV", "Energy 0.58 MeV", "Energy 0.50 MeV", "Energy 0.84 MeV", "Energy 0.63 MeV", "Energy 1.11 MeV", "Energy 0.58 MeV", "Energy 0.42 MeV", "Energy 0.52 MeV", "Energy 0.31 MeV", "Energy 0.43 MeV", "Energy 0.07 MeV", "Energy 0.48 MeV", "Energy 0.20 MeV", "Energy 0.73 MeV", "Energy 0.71 MeV", "Energy 0.77 MeV", "Energy 0.55 MeV", "Energy 0.35 MeV", "Energy 0.31 MeV", "Energy 0.82 MeV", "Energy 1.13 MeV", "Energy 0.69 MeV", "Energy 1.48 MeV", "Energy 0.51 MeV", "Energy 0.39 MeV", "Energy 0.44 MeV", "Energy 0.47 MeV", "Energy 0.61 MeV", "Energy 0.56 MeV", "Energy 0.83 MeV", "Energy 0.60 MeV", "Energy 0.31 MeV", "Energy 0.74 MeV", "Energy 0.11 MeV", "Energy 0.05 MeV", "Energy 0.12 MeV", "Energy 0.76 MeV", "Energy 0.52 MeV", "Energy 0.73 MeV", "Energy 0.61 MeV", "Energy 0.32 MeV", "Energy 0.47 MeV", "Energy 0.66 MeV", "Energy 0.84 MeV", "Energy 0.50 MeV", "Energy 0.28 MeV", "Energy 0.05 MeV", "Energy 0.77 MeV", "Energy 0.51 MeV", "Energy 0.08 MeV", "Energy 0.55 MeV", "Energy 0.33 MeV", "Energy 0.13 MeV", "Energy 0.61 MeV", "Energy 0.19 MeV", "Energy 0.35 MeV", "Energy 0.59 MeV", "Energy 0.85 MeV", "Energy 1.71 MeV", "Energy 0.87 MeV", "Energy 0.22 MeV", "Energy 0.12 MeV", "Energy 0.22 MeV", "Energy 0.21 MeV", "Energy 0.57 MeV", "Energy 0.74 MeV", "Energy 0.41 MeV", "Energy 0.39 MeV", "Energy 0.20 MeV", "Energy 0.09 MeV", "Energy 0.54 MeV", "Energy 0.60 MeV", "Energy 0.17 MeV", "Energy 0.49 MeV", "Energy 0.31 MeV", "Energy 0.42 MeV", "Energy 0.25 MeV", "Energy 0.45 MeV", "Energy 0.63 MeV", "Energy 0.12 MeV", "Energy 0.75 MeV", "Energy 0.35 MeV", "Energy 0.05 MeV", "Energy 0.63 MeV", "Energy 0.41 MeV", "Energy 1.06 MeV", "Energy 0.67 MeV", "Energy 0.43 MeV", "Energy 0.36 MeV", "Energy 0.09 MeV", "Energy 0.40 MeV", "Energy 0.22 MeV", "Energy 0.58 MeV", "Energy 0.49 MeV", "Energy 0.38 MeV", "Energy 0.17 MeV", "Energy 0.82 MeV", "Energy 0.10 MeV", "Energy 0.41 MeV", "Energy 0.33 MeV", "Energy 0.32 MeV", "Energy 0.09 MeV", "Energy 0.60 MeV", "Energy 0.57 MeV", "Energy 0.49 MeV", "Energy 0.06 MeV", "Energy 0.11 MeV", "Energy 0.50 MeV", "Energy 0.33 MeV", "Energy 0.82 MeV", "Energy 0.20 MeV", "Energy 0.54 MeV", "Energy 0.07 MeV", "Energy 0.58 MeV", "Energy 0.61 MeV", "Energy 0.05 MeV", "Energy 0.47 MeV", "Energy 0.53 MeV", "Energy 0.13 MeV", "Energy 0.30 MeV", "Energy 0.76 MeV", "Energy 0.29 MeV", "Energy 0.61 MeV", "Energy 0.65 MeV", "Energy 0.16 MeV", "Energy 0.58 MeV", "Energy 0.09 MeV", "Energy 0.18 MeV", "Energy 0.58 MeV", "Energy 0.48 MeV", "Energy 1.12 MeV", "Energy 0.22 MeV", "Energy 1.25 MeV", "Energy 0.98 MeV", "Energy 0.15 MeV", "Energy 0.57 MeV", "Energy 0.10 MeV", "Energy 0.14 MeV", "Energy 0.30 MeV", "Energy 0.85 MeV", "Energy 0.06 MeV", "Energy 0.09 MeV", "Energy 0.10 MeV", "Energy 0.97 MeV", "Energy 0.66 MeV", "Energy 1.12 MeV", "Energy 0.11 MeV", "Energy 0.10 MeV", "Energy 0.72 MeV", "Energy 0.68 MeV", "Energy 0.44 MeV", "Energy 1.08 MeV", "Energy 0.18 MeV", "Energy 0.81 MeV", "Energy 0.54 MeV", "Energy 0.30 MeV", "Energy 0.35 MeV", "Energy 0.23 MeV", "Energy 0.54 MeV", "Energy 0.68 MeV", "Energy 0.82 MeV", "Energy 0.12 MeV", "Energy 0.45 MeV", "Energy 0.11 MeV", "Energy 0.18 MeV", "Energy 0.47 MeV", "Energy 0.73 MeV", "Energy 0.54 MeV", "Energy 0.14 MeV", "Energy 0.26 MeV", "Energy 0.82 MeV", "Energy 0.26 MeV", "Energy 0.77 MeV", "Energy 0.63 MeV", "Energy 0.43 MeV", "Energy 0.25 MeV", "Energy 0.48 MeV", "Energy 0.14 MeV", "Energy 0.19 MeV", "Energy 1.06 MeV", "Energy 1.33 MeV", "Energy 0.11 MeV", "Energy 0.07 MeV", "Energy 0.67 MeV", "Energy 0.37 MeV", "Energy 0.45 MeV", "Energy 0.32 MeV", "Energy 0.86 MeV", "Energy 0.52 MeV", "Energy 0.11 MeV", "Energy 0.23 MeV", "Energy 1.37 MeV", "Energy 0.29 MeV", "Energy 0.29 MeV", "Energy 0.59 MeV", "Energy 0.41 MeV", "Energy 0.34 MeV", "Energy 0.50 MeV", "Energy 0.18 MeV", "Energy 0.39 MeV", "Energy 0.49 MeV", "Energy 0.54 MeV", "Energy 0.31 MeV", "Energy 0.80 MeV", "Energy 0.15 MeV", "Energy 0.30 MeV", "Energy 0.12 MeV", "Energy 0.33 MeV", "Energy 0.35 MeV", "Energy 0.10 MeV", "Energy 0.66 MeV", "Energy 0.16 MeV", "Energy 0.57 MeV", "Energy 0.55 MeV", "Energy 0.17 MeV", "Energy 0.44 MeV", "Energy 0.43 MeV", "Energy 0.10 MeV", "Energy 0.15 MeV", "Energy 0.49 MeV", "Energy 0.44 MeV", "Energy 0.33 MeV", "Energy 0.71 MeV", "Energy 0.10 MeV", "Energy 0.41 MeV", "Energy 0.54 MeV", "Energy 0.56 MeV", "Energy 0.17 MeV", "Energy 1.30 MeV", "Energy 1.22 MeV", "Energy 0.61 MeV", "Energy 0.84 MeV", "Energy 0.24 MeV", "Energy 0.45 MeV", "Energy 0.74 MeV", "Energy 1.04 MeV", "Energy 0.27 MeV", "Energy 0.27 MeV", "Energy 0.51 MeV", "Energy 0.12 MeV", "Energy 1.25 MeV", "Energy 0.91 MeV", "Energy 0.15 MeV", "Energy 0.28 MeV", "Energy 0.34 MeV", "Energy 0.53 MeV", "Energy 0.31 MeV", "Energy 0.82 MeV", "Energy 0.47 MeV", "Energy 0.11 MeV", "Energy 0.41 MeV", "Energy 0.69 MeV", "Energy 0.60 MeV", "Energy 0.39 MeV", "Energy 0.27 MeV", "Energy 0.69 MeV", "Energy 0.38 MeV", "Energy 0.58 MeV", "Energy 0.32 MeV", "Energy 0.26 MeV", "Energy 0.21 MeV", "Energy 0.21 MeV", "Energy 1.75 MeV", "Energy 0.40 MeV", "Energy 0.16 MeV", "Energy 0.52 MeV", "Energy 0.62 MeV", "Energy 0.36 MeV", "Energy 0.33 MeV", "Energy 0.61 MeV", "Energy 0.64 MeV", "Energy 0.53 MeV", "Energy 0.54 MeV", "Energy 0.61 MeV", "Energy 0.65 MeV", "Energy 0.55 MeV", "Energy 0.15 MeV", "Energy 0.42 MeV", "Energy 0.56 MeV", "Energy 0.10 MeV", "Energy 0.69 MeV", "Energy 0.59 MeV", "Energy 0.56 MeV", "Energy 0.57 MeV", "Energy 0.13 MeV", "Energy 0.34 MeV", "Energy 0.58 MeV", "Energy 0.66 MeV", "Energy 0.06 MeV", "Energy 0.61 MeV", "Energy 0.41 MeV", "Energy 0.27 MeV", "Energy 0.78 MeV", "Energy 0.08 MeV", "Energy 0.65 MeV", "Energy 0.38 MeV", "Energy 0.09 MeV", "Energy 0.38 MeV", "Energy 0.57 MeV", "Energy 0.09 MeV", "Energy 0.33 MeV", "Energy 0.29 MeV", "Energy 0.79 MeV", "Energy 0.31 MeV", "Energy 0.50 MeV", "Energy 0.96 MeV", "Energy 0.88 MeV", "Energy 1.80 MeV", "Energy 0.44 MeV", "Energy 0.61 MeV", "Energy 0.54 MeV", "Energy 0.73 MeV", "Energy 0.14 MeV", "Energy 0.76 MeV", "Energy 0.28 MeV", "Energy 0.51 MeV", "Energy 1.22 MeV", "Energy 0.65 MeV", "Energy 0.15 MeV", "Energy 0.67 MeV", "Energy 0.80 MeV", "Energy 0.26 MeV", "Energy 0.17 MeV", "Energy 0.54 MeV", "Energy 0.21 MeV", "Energy 0.46 MeV", "Energy 0.21 MeV", "Energy 0.57 MeV", "Energy 0.96 MeV", "Energy 0.67 MeV", "Energy 0.13 MeV", "Energy 0.20 MeV", "Energy 1.39 MeV", "Energy 0.31 MeV", "Energy 0.44 MeV", "Energy 0.57 MeV", "Energy 0.91 MeV", "Energy 0.39 MeV", "Energy 0.51 MeV", "Energy 0.17 MeV", "Energy 0.21 MeV", "Energy 0.28 MeV", "Energy 0.17 MeV", "Energy 0.14 MeV", "Energy 0.70 MeV", "Energy 0.55 MeV", "Energy 0.85 MeV", "Energy 0.06 MeV", "Energy 0.28 MeV", "Energy 0.19 MeV", "Energy 0.38 MeV", "Energy 0.61 MeV", "Energy 0.38 MeV", "Energy 0.62 MeV", "Energy 0.16 MeV", "Energy 0.84 MeV", "Energy 0.42 MeV", "Energy 0.34 MeV", "Energy 0.84 MeV", "Energy 0.18 MeV", "Energy 0.19 MeV", "Energy 0.24 MeV", "Energy 0.63 MeV", "Energy 0.20 MeV", "Energy 0.34 MeV", "Energy 0.09 MeV", "Energy 0.71 MeV", "Energy 0.14 MeV", "Energy 0.64 MeV", "Energy 0.20 MeV", "Energy 0.29 MeV", "Energy 0.72 MeV", "Energy 0.07 MeV", "Energy 0.58 MeV", "Energy 0.47 MeV", "Energy 0.21 MeV", "Energy 0.87 MeV", "Energy 0.61 MeV" ], "marker": { "color": [ 0.08092939853668213, 0.33665746450424194, 0.0750657394528389, 0.07984974980354309, 0.16004106402397156, 0.2153674066066742, 0.1708117127418518, 0.1216135174036026, 0.06492654979228973, 0.054529834538698196, 0.0879606157541275, 0.06666405498981476, 0.06034691259264946, 0.21746549010276794, 0.0728795975446701, 0.3264995217323303, 0.15262088179588318, 0.14129072427749634, 1.096435546875, 0.5132493376731873, 0.1431128978729248, 0.6261610388755798, 0.2736903429031372, 0.237963005900383, 0.21393297612667084, 0.1958991289138794, 0.3385663330554962, 0.251139760017395, 0.8867253661155701, 1.9919049739837646, 0.5075430870056152, 0.36297744512557983, 0.11486820876598358, 1.1648262739181519, 0.389984667301178, 0.8039349317550659, 0.5182855129241943, 0.36011162400245667, 0.5571300387382507, 0.08855411410331726, 0.05593246966600418, 1.574965000152588, 0.7582621574401855, 0.06383538246154785, 0.4867214262485504, 0.5924003720283508, 0.25360819697380066, 0.9116758108139038, 0.08034434914588928, 0.05544538423418999, 0.665404200553894, 1.2118282318115234, 0.4579891562461853, 0.15152114629745483, 0.23120343685150146, 0.5637481808662415, 0.5466195940971375, 0.12437815964221954, 0.15609140694141388, 0.11287254840135574, 0.694340705871582, 0.16273242235183716, 0.3379144072532654, 0.7863411903381348, 0.07753971219062805, 0.0921846553683281, 0.06747958064079285, 0.5830042958259583, 0.6816325783729553, 0.18523143231868744, 0.0907055139541626, 0.39269188046455383, 0.5279852151870728, 0.24631905555725098, 0.07410135865211487, 0.3799571692943573, 0.8645178079605103, 0.3761531412601471, 0.15234068036079407, 0.5942940711975098, 0.5719923973083496, 0.05963372066617012, 0.057658806443214417, 0.5337271690368652, 0.6967940330505371, 0.5198578238487244, 0.33433181047439575, 0.7496985197067261, 0.4521579146385193, 0.08212436735630035, 0.09449493885040283, 0.5587679147720337, 0.5983976125717163, 0.08381816744804382, 0.764423131942749, 0.7240347266197205, 0.24798503518104553, 0.05562494695186615, 0.43547746539115906, 0.6436405777931213, 0.41177716851234436, 0.09316595643758774, 0.1436532884836197, 0.6379651427268982, 0.9250267744064331, 0.09804059565067291, 0.5478617548942566, 0.8844456672668457, 0.05853083357214928, 0.11236561089754105, 0.5406099557876587, 1.0172678232192993, 0.18738619983196259, 0.069330595433712, 0.21424654126167297, 0.12486797571182251, 0.4308732748031616, 0.1611965447664261, 0.5737553834915161, 0.5821613669395447, 0.175761878490448, 0.43870270252227783, 0.636042594909668, 0.36278289556503296, 0.05917981266975403, 0.20509174466133118, 0.2848072946071625, 0.08260716497898102, 0.20007437467575073, 0.5576574802398682, 0.5962126851081848, 0.05028672516345978, 0.47196871042251587, 0.6082358360290527, 0.28594425320625305, 0.652031660079956, 1.7389103174209595, 0.5619873404502869, 0.059967041015625, 0.4079883098602295, 0.8841550350189209, 0.7325221300125122, 1.5991655588150024, 0.6851587891578674, 0.4484827220439911, 0.9947393536567688, 2.9475090503692627, 1.273108720779419, 1.874692678451538, 0.5772857069969177, 0.12606967985630035, 0.6106017827987671, 0.06722888350486755, 0.5737264752388, 0.5055783987045288, 0.9215570092201233, 0.8216778635978699, 1.335954189300537, 0.9982364177703857, 0.9129920601844788, 1.7545757293701172, 0.15194642543792725, 0.41247227787971497, 0.4028608500957489, 0.06319514662027359, 0.07643265277147293, 0.23711919784545898, 0.8400170803070068, 1.0600601434707642, 2.784482955932617, 0.9582504630088806, 0.09388069063425064, 0.056220266968011856, 0.09878045320510864, 0.33628225326538086, 0.9727945327758789, 0.25529050827026367, 0.06934200972318649, 0.16977691650390625, 0.11973489075899124, 0.7203835248947144, 0.8367046117782593, 0.27267491817474365, 0.5744959712028503, 1.9318509101867676, 0.6888027191162109, 0.232998788356781, 0.40090468525886536, 1.712437629699707, 2.679473876953125, 0.8025783896446228, 0.2957233786582947, 0.21501046419143677, 0.2647015452384949, 0.41444718837738037, 1.5452828407287598, 0.06079724058508873, 0.6253788471221924, 0.756134033203125, 0.7804872393608093, 0.28365689516067505, 0.2461361289024353, 0.3134656548500061, 0.6276039481163025, 0.49413958191871643, 0.2984412908554077, 0.4270249605178833, 0.6347296237945557, 0.09801089763641357, 0.6813063025474548, 0.5341113209724426, 0.6210998296737671, 0.10681570321321487, 0.5544007420539856, 1.1595300436019897, 0.1987164318561554, 0.39435049891471863, 0.5288915634155273, 0.5678118467330933, 0.46881103515625, 0.11985209584236145, 0.06218821927905083, 0.5210810303688049, 0.05008017271757126, 0.6513177752494812, 0.562313973903656, 0.5303948521614075, 0.9631087779998779, 0.07032977044582367, 0.06975921243429184, 0.14959372580051422, 0.07040318846702576, 0.10227366536855698, 0.6267181038856506, 0.3963075280189514, 0.46942347288131714, 0.2678578794002533, 0.671083390712738, 0.7666976451873779, 0.4719511866569519, 0.060270197689533234, 0.23530420660972595, 0.5441970825195312, 0.31228578090667725, 0.06818073242902756, 0.3881669342517853, 0.735055148601532, 0.2196340262889862, 0.36237624287605286, 1.011916995048523, 0.6531237959861755, 0.23304222524166107, 0.5504342913627625, 0.6437592506408691, 0.2871183156967163, 0.4884205162525177, 1.1425199508666992, 0.5533227324485779, 0.6815565824508667, 0.5061549544334412, 0.13373425602912903, 0.5827032327651978, 0.19792182743549347, 0.5730818510055542, 0.5781185030937195, 0.25037744641304016, 1.0544869899749756, 0.143869087100029, 0.5433483123779297, 0.5350837111473083, 0.6643922924995422, 0.11001255363225937, 0.524124026298523, 0.6377438306808472, 0.4598824679851532, 0.5377302169799805, 0.08559820055961609, 0.09452848136425018, 0.05874006822705269, 0.1476241946220398, 0.5139051079750061, 0.3228566348552704, 0.6325457692146301, 0.27536672353744507, 0.4713277220726013, 0.6175444722175598, 0.3297634422779083, 0.9457443356513977, 0.4969400465488434, 0.055220261216163635, 0.17946122586727142, 0.3586309552192688, 0.1546851247549057, 1.2016639709472656, 0.3437547981739044, 1.4378631114959717, 0.30870044231414795, 1.2201370000839233, 0.15726402401924133, 0.15018883347511292, 0.07236498594284058, 0.07747740298509598, 0.07475023716688156, 0.2531270980834961, 1.0551581382751465, 0.0836997851729393, 0.885845422744751, 0.2590123414993286, 0.23512770235538483, 0.948940634727478, 0.9041835069656372, 0.4857252240180969, 0.23624175786972046, 0.33724626898765564, 0.09916293621063232, 0.6303805708885193, 0.9651373624801636, 0.07380754500627518, 0.43931862711906433, 0.23676139116287231, 0.6383139491081238, 0.6333062052726746, 0.4262375831604004, 0.563504159450531, 0.07001874595880508, 0.3854754865169525, 0.7960888147354126, 0.09934474527835846, 0.5925864577293396, 0.5676478743553162, 0.5922749042510986, 0.17411553859710693, 0.3474529981613159, 0.30323800444602966, 0.601799726486206, 0.9386323690414429, 0.6016832590103149, 1.1880931854248047, 0.6792010068893433, 0.7248967289924622, 0.9484885334968567, 0.1267818808555603, 0.11711301654577255, 0.7156031131744385, 0.3057294487953186, 0.944097101688385, 0.3980824649333954, 0.061150871217250824, 0.05492032319307327, 0.5664892792701721, 0.1823633760213852, 0.6652700901031494, 0.3717489242553711, 0.603289008140564, 0.7198046445846558, 0.46304863691329956, 0.5456005334854126, 0.1367485225200653, 0.3759366273880005, 0.23159822821617126, 0.5412836074829102, 1.1159683465957642, 1.4137189388275146, 1.170619010925293, 1.2800822257995605, 0.5344381332397461, 0.7904815673828125, 0.136362224817276, 1.0406547784805298, 1.0355926752090454, 0.36524128913879395, 0.9292184114456177, 0.2131357640028, 0.5107054710388184, 0.5591816902160645, 0.42986583709716797, 0.44773995876312256, 0.4629303812980652, 0.15999895334243774, 0.5699379444122314, 0.5883625745773315, 0.5077528953552246, 1.1397777795791626, 0.48275649547576904, 0.2662251591682434, 0.5719696879386902, 0.42558717727661133, 0.32650554180145264, 0.43774765729904175, 0.14809097349643707, 0.2977614402770996, 0.864543616771698, 0.5861612558364868, 0.6149571537971497, 0.9207401871681213, 0.10064990818500519, 0.0579749196767807, 0.7805473804473877, 0.8029572367668152, 0.9673524498939514, 0.1414712518453598, 0.4848428964614868, 0.27010035514831543, 0.4265994131565094, 0.12628571689128876, 0.283123642206192, 0.053677741438150406, 0.6498550772666931, 0.6260036826133728, 0.3649166524410248, 0.09641831368207932, 0.3452876806259155, 0.24311032891273499, 0.4354766309261322, 0.3118738532066345, 0.24554401636123657, 1.096454381942749, 0.12750749289989471, 0.38370901346206665, 0.5110395550727844, 0.925421416759491, 0.8259892463684082, 0.5240335464477539, 0.25129207968711853, 0.1546390801668167, 0.25549954175949097, 0.5019499063491821, 1.0398657321929932, 0.436678409576416, 0.12185640633106232, 0.5535139441490173, 0.5936668515205383, 0.54408198595047, 0.7349356412887573, 0.3162914514541626, 0.5179010033607483, 0.7296249270439148, 0.24221131205558777, 0.35261446237564087, 1.2674318552017212, 0.42719051241874695, 0.12734581530094147, 0.43474867939949036, 0.3289078176021576, 0.6391613483428955, 0.8158383369445801, 0.08440112322568893, 0.4888205826282501, 0.593096137046814, 0.7084820866584778, 0.29910874366760254, 0.32915571331977844, 0.5254331231117249, 0.296738862991333, 0.5213943123817444, 0.36173051595687866, 0.08092892169952393, 1.2792354822158813, 0.40620288252830505, 0.6376801133155823, 0.46395424008369446, 0.2369641810655594, 0.45338186621665955, 0.8841607570648193, 1.4508211612701416, 0.5186702609062195, 0.7305611371994019, 0.26413416862487793, 0.42220404744148254, 1.0089071989059448, 0.1977006494998932, 0.17178259789943695, 0.4208235442638397, 0.17183874547481537, 0.06211642175912857, 0.12968230247497559, 0.06108739227056503, 0.09553155303001404, 0.20731137692928314, 0.7108702659606934, 0.37323451042175293, 0.195368230342865, 0.7473664283752441, 0.5260649919509888, 0.3987087905406952, 0.5459133386611938, 0.6337655782699585, 0.2098902314901352, 0.5897121429443359, 0.18795816600322723, 0.16578449308872223, 0.5126124620437622, 0.26507633924484253, 0.26326388120651245, 0.07568307220935822, 0.4108577370643616, 0.18851831555366516, 0.08076788485050201, 0.085457444190979, 0.09400177747011185, 0.137288898229599, 0.7192723155021667, 0.13577744364738464, 0.40327486395835876, 0.071449413895607, 0.10246895253658295, 0.07484409213066101, 0.4109964966773987, 0.46779465675354004, 0.9678759574890137, 0.6347445249557495, 0.5111343264579773, 0.719601035118103, 0.0857234001159668, 0.28004151582717896, 0.10404100269079208, 0.6499884128570557, 0.6233471632003784, 0.081284299492836, 0.06534645706415176, 0.330741286277771, 0.36858701705932617, 0.3180384635925293, 0.5421252846717834, 0.6922486424446106, 0.20628418028354645, 0.3081272542476654, 0.11250998079776764, 0.13534818589687347, 0.11218537390232086, 0.11783446371555328, 0.07765353471040726, 0.14139577746391296, 0.1341850459575653, 0.13466256856918335, 0.2877793312072754, 0.17197063565254211, 0.3701052963733673, 0.07577070593833923, 0.14478638768196106, 0.05249771848320961, 0.19359971582889557, 0.06560912728309631, 0.06957341730594635, 0.07705581188201904, 0.07075294852256775, 0.10580310225486755, 0.08086144179105759, 0.07222862541675568, 0.2850157618522644, 0.11332155764102936, 0.20558103919029236, 0.08786338567733765, 0.0651707798242569, 0.4746251106262207, 0.22476640343666077, 0.08596257120370865, 0.4280517101287842, 0.7607200145721436, 0.07078424841165543, 0.17677685618400574, 0.11481402814388275, 0.11439376324415207, 0.05386100709438324, 0.1954547017812729, 0.2100439816713333, 1.483396053314209, 0.13693371415138245, 0.6424110531806946, 0.20823411643505096, 0.9589933753013611, 0.051496297121047974, 0.14803597331047058, 0.07857487350702286, 0.1819479614496231, 0.10336608439683914, 0.29258298873901367, 0.10027299076318741, 0.18846331536769867, 0.07809539884328842, 0.6268799304962158, 0.5682606101036072, 0.09864389151334763, 0.22980910539627075, 1.2841745615005493, 0.7379094362258911, 0.15074875950813293, 0.2156766653060913, 0.49239668250083923, 0.23294202983379364, 0.1950673907995224, 0.10042143613100052, 0.1937766671180725, 0.17116442322731018, 0.12937138974666595, 0.05925877392292023, 0.13547417521476746, 0.4888533651828766, 0.37230435013771057, 0.5699563026428223, 1.1994819641113281, 0.2507172226905823, 0.4559352695941925, 1.2284927368164062, 0.3476598262786865, 0.08532743155956268, 0.24093732237815857, 0.09334199130535126, 0.06914491206407547, 0.06938780099153519, 0.06961394846439362, 0.0774155855178833, 0.07473937422037125, 0.06381954997777939, 0.06388317048549652, 0.08490626513957977, 0.15041054785251617, 0.06952043622732162, 0.08180879056453705, 0.06696121394634247, 0.15701723098754883, 0.0918014869093895, 0.2795809507369995, 0.05583759397268295, 0.09381398558616638, 0.13464875519275665, 0.07335083186626434, 0.05454697832465172, 0.05453559756278992, 0.3306136131286621, 0.1916036158800125, 0.07142497599124908, 0.08440929651260376, 0.09507924318313599, 0.31988105177879333, 0.3149762749671936, 0.1376309096813202, 0.10065991431474686, 0.8610036969184875, 0.061822161078453064, 0.05915667489171028, 0.06680364906787872, 0.2311086803674698, 0.05049319937825203, 0.3640126883983612, 0.15507622063159943, 0.38385751843452454, 0.06331676244735718, 0.11695117503404617, 0.20726141333580017, 0.16848132014274597, 0.19616268575191498, 0.2860552966594696, 0.2491118609905243, 0.1177961528301239, 0.13185282051563263, 0.08076641708612442, 0.05106808990240097, 0.0900847464799881, 0.19210073351860046, 0.07457447052001953, 0.1862824708223343, 0.0643841102719307, 0.08468546718358994, 0.3363226652145386, 0.23106767237186432, 0.4837811589241028, 0.052584294229745865, 0.05640353262424469, 0.6532682180404663, 0.47244787216186523, 0.09876707196235657, 0.0843595340847969, 0.06680337339639664, 0.1504223346710205, 0.08162534236907959, 0.11276774108409882, 0.4190676808357239, 0.07587426900863647, 0.164853036403656, 0.5798776149749756, 0.09311756491661072, 0.1057918518781662, 0.08509394526481628, 0.06226169317960739, 0.10648539662361145, 0.30831465125083923, 0.05071890726685524, 0.17466618120670319, 0.08323527872562408, 0.11017367988824844, 0.09623190760612488, 0.2569444179534912, 0.05792012810707092, 0.23399238288402557, 0.08435720950365067, 0.08207112550735474, 0.11306679248809814, 0.29890692234039307, 0.07998506724834442, 0.08748775720596313, 0.24184168875217438, 0.5059995055198669, 0.09103372693061829, 0.06378744542598724, 0.08534028381109238, 0.1083972156047821, 0.06173229217529297, 0.06775936484336853, 0.07235068827867508, 0.15932013094425201, 0.1243767961859703, 0.1425919383764267, 0.10048136115074158, 0.3876085877418518, 0.3246057331562042, 0.43251702189445496, 0.39069199562072754, 1.2290250062942505, 0.19346611201763153, 0.7381218671798706, 0.8381830453872681, 0.06883552670478821, 0.9758557081222534, 0.10967711359262466, 0.6999032497406006, 0.10144741833209991, 0.08493462949991226, 0.333234965801239, 0.39315566420555115, 0.7727987170219421, 0.2940432131290436, 0.3870887756347656, 1.2096149921417236, 1.055306077003479, 0.3858165442943573, 0.36882975697517395, 0.11955562233924866, 0.6658468246459961, 0.21225309371948242, 0.595352828502655, 0.06886379420757294, 0.3177463412284851, 0.1550586223602295, 0.05384930968284607, 0.5425731539726257, 0.06679679453372955, 0.29280877113342285, 0.5510440468788147, 0.11612557619810104, 0.6634106636047363, 0.2378307580947876, 1.0073096752166748, 0.9123665690422058, 0.6028369665145874, 0.9292724132537842, 0.0623493418097496, 0.7617583274841309, 0.15784414112567902, 0.3982217013835907, 0.22175763547420502, 0.5674068927764893, 0.17432057857513428, 0.10797038674354553, 0.49730581045150757, 0.7974616885185242, 0.12679259479045868, 0.3148159384727478, 0.37576085329055786, 0.21572068333625793, 0.20019936561584473, 0.6085025668144226, 0.08202958106994629, 0.3553997576236725, 0.9255831837654114, 0.7583160400390625, 0.11326883733272552, 0.4561189115047455, 0.26279789209365845, 0.37270405888557434, 0.11783908307552338, 0.6989853978157043, 0.7605432271957397, 1.0727077722549438, 1.0516374111175537, 0.4515976011753082, 0.6827195882797241, 0.4028970003128052, 0.3494710624217987, 0.3207373321056366, 0.12431727349758148, 0.5738545656204224, 0.6763290166854858, 0.5214879512786865, 0.11728620529174805, 0.6739212870597839, 0.3173167407512665, 0.23123453557491302, 0.3602895140647888, 0.3908843994140625, 0.5794038772583008, 0.5049840211868286, 0.8413987159729004, 0.6251901984214783, 1.1093566417694092, 0.5835215449333191, 0.42390578985214233, 0.5169705748558044, 0.30892547965049744, 0.42980313301086426, 0.06790195405483246, 0.4775893986225128, 0.20484444499015808, 0.7315154075622559, 0.7054485082626343, 0.7666195631027222, 0.5544367432594299, 0.34734874963760376, 0.3056931495666504, 0.8241164684295654, 1.1346876621246338, 0.6855324506759644, 1.480503797531128, 0.5107565522193909, 0.39359697699546814, 0.43789437413215637, 0.4669078588485718, 0.613899290561676, 0.5580287575721741, 0.8304769992828369, 0.6004660129547119, 0.31493639945983887, 0.740618109703064, 0.10736509412527084, 0.05282983183860779, 0.12043775618076324, 0.7607356905937195, 0.5166729092597961, 0.7337485551834106, 0.6053471565246582, 0.32117438316345215, 0.46623605489730835, 0.662354588508606, 0.8444913625717163, 0.5045576691627502, 0.28205204010009766, 0.051831960678100586, 0.7692123651504517, 0.5068531632423401, 0.08323300629854202, 0.5524271726608276, 0.33250749111175537, 0.13275611400604248, 0.6134249567985535, 0.19397737085819244, 0.34993237257003784, 0.5877155065536499, 0.8548682332038879, 1.709648847579956, 0.8717169761657715, 0.22215862572193146, 0.11985282599925995, 0.2243364155292511, 0.20972581207752228, 0.5716472268104553, 0.7438521981239319, 0.40625619888305664, 0.38731104135513306, 0.19860264658927917, 0.09482410550117493, 0.5432376861572266, 0.5982843041419983, 0.1701602339744568, 0.493352472782135, 0.3103083670139313, 0.4218926429748535, 0.24730710685253143, 0.44558003544807434, 0.6297579407691956, 0.12205028533935547, 0.754281759262085, 0.34999918937683105, 0.05280322954058647, 0.6342720985412598, 0.4134391248226166, 1.0562305450439453, 0.6734271049499512, 0.42642849683761597, 0.3624849021434784, 0.09346266090869904, 0.4000556170940399, 0.21939346194267273, 0.5771333575248718, 0.4907061755657196, 0.38266193866729736, 0.17088589072227478, 0.8215830326080322, 0.10486670583486557, 0.4056818187236786, 0.3262750804424286, 0.322460412979126, 0.08609278500080109, 0.6006841659545898, 0.5737462043762207, 0.49493029713630676, 0.058896854519844055, 0.11459057033061981, 0.5048457980155945, 0.3308463394641876, 0.8237274289131165, 0.19838914275169373, 0.536574125289917, 0.07371241599321365, 0.5808811783790588, 0.608151912689209, 0.05452500283718109, 0.46771422028541565, 0.533397376537323, 0.1291477382183075, 0.30102506279945374, 0.7647703886032104, 0.2853817939758301, 0.6098126173019409, 0.6511865854263306, 0.15635280311107635, 0.5751117467880249, 0.09046226739883423, 0.1756075918674469, 0.5768107771873474, 0.48302939534187317, 1.1204328536987305, 0.21884842216968536, 1.2516381740570068, 0.9834549427032471, 0.1473335474729538, 0.5726247429847717, 0.10398702323436737, 0.1375451683998108, 0.3015764355659485, 0.8457707166671753, 0.05754208564758301, 0.08743973821401596, 0.09539155662059784, 0.9745086431503296, 0.6606861352920532, 1.1245548725128174, 0.11474935710430145, 0.10443906486034393, 0.7165188789367676, 0.6774458885192871, 0.4423896372318268, 1.084224820137024, 0.17569056153297424, 0.8055627346038818, 0.5395446419715881, 0.2976985275745392, 0.3534819185733795, 0.23164503276348114, 0.541563093662262, 0.6755040884017944, 0.8157407641410828, 0.12161871790885925, 0.4488714933395386, 0.11091499030590057, 0.18383243680000305, 0.47035330533981323, 0.728026807308197, 0.5399864315986633, 0.13791397213935852, 0.2608972191810608, 0.8177213668823242, 0.26107901334762573, 0.7740902900695801, 0.6322379112243652, 0.4322020411491394, 0.2464127242565155, 0.4758320152759552, 0.1438545137643814, 0.18868285417556763, 1.0559971332550049, 1.3275083303451538, 0.10785600543022156, 0.0658600777387619, 0.6680999398231506, 0.3692464232444763, 0.45003464818000793, 0.32391348481178284, 0.8571590781211853, 0.5156052112579346, 0.11234678328037262, 0.23449689149856567, 1.3654537200927734, 0.28694310784339905, 0.28686970472335815, 0.590442955493927, 0.40924394130706787, 0.34388938546180725, 0.497440367937088, 0.18471485376358032, 0.3916126489639282, 0.48779627680778503, 0.53691565990448, 0.3110377788543701, 0.7991176843643188, 0.1511521190404892, 0.29927071928977966, 0.12451097369194031, 0.32967984676361084, 0.3472241461277008, 0.10051348805427551, 0.6624053120613098, 0.16300037503242493, 0.5657163262367249, 0.5501629710197449, 0.17039521038532257, 0.44142946600914, 0.4283932149410248, 0.09628815948963165, 0.15285716950893402, 0.49415960907936096, 0.43582236766815186, 0.32873767614364624, 0.7074136137962341, 0.09704319387674332, 0.41089025139808655, 0.5449140667915344, 0.5567310452461243, 0.16670474410057068, 1.299349069595337, 1.2189728021621704, 0.6113020181655884, 0.8388907313346863, 0.23547932505607605, 0.4541222155094147, 0.7406944036483765, 1.0419751405715942, 0.270742803812027, 0.26502954959869385, 0.5063735842704773, 0.11800703406333923, 1.253845453262329, 0.9149506688117981, 0.1473558247089386, 0.2825299799442291, 0.3405051827430725, 0.5348547101020813, 0.3124314546585083, 0.819011926651001, 0.4711543619632721, 0.11223827302455902, 0.4092954993247986, 0.6901890635490417, 0.6014994978904724, 0.3949796259403229, 0.2714730203151703, 0.693230152130127, 0.3776310086250305, 0.5757899880409241, 0.3217293322086334, 0.2551864683628082, 0.20616230368614197, 0.21114148199558258, 1.754535436630249, 0.4042952060699463, 0.16493597626686096, 0.5154332518577576, 0.6164725422859192, 0.35998737812042236, 0.3293844759464264, 0.6113846898078918, 0.6409622430801392, 0.5283958315849304, 0.5350541472434998, 0.6132950186729431, 0.6492546796798706, 0.5472306609153748, 0.15292540192604065, 0.424460232257843, 0.5566181540489197, 0.09537234902381897, 0.6930060386657715, 0.5880910158157349, 0.5559179186820984, 0.574454665184021, 0.12873411178588867, 0.34368035197257996, 0.5822696089744568, 0.6603319048881531, 0.057016775012016296, 0.6138254404067993, 0.4100305736064911, 0.27291470766067505, 0.7836545705795288, 0.08340363204479218, 0.6509284377098083, 0.3810391426086426, 0.08973535895347595, 0.3792211413383484, 0.5716211199760437, 0.0935635045170784, 0.33302921056747437, 0.29032689332962036, 0.7949062585830688, 0.31444981694221497, 0.49898871779441833, 0.9621487855911255, 0.88431715965271, 1.800835132598877, 0.43626341223716736, 0.6058671474456787, 0.537702739238739, 0.7312158346176147, 0.14381559193134308, 0.7587624788284302, 0.28336405754089355, 0.5121774077415466, 1.2198920249938965, 0.6467724442481995, 0.1474657654762268, 0.6675267219543457, 0.801403284072876, 0.2569727897644043, 0.16881123185157776, 0.5378904938697815, 0.20515820384025574, 0.45925211906433105, 0.20917919278144836, 0.5655052065849304, 0.9614730477333069, 0.6651417016983032, 0.12670524418354034, 0.20072564482688904, 1.3926995992660522, 0.313772588968277, 0.4446260333061218, 0.5663597583770752, 0.9069284200668335, 0.38883456587791443, 0.5053091049194336, 0.17406609654426575, 0.21153101325035095, 0.2838071882724762, 0.17111457884311676, 0.1407850682735443, 0.6967712640762329, 0.5536084175109863, 0.8522602319717407, 0.05644994229078293, 0.2822444438934326, 0.19262182712554932, 0.38315048813819885, 0.6132754683494568, 0.3806439936161041, 0.617466151714325, 0.16204224526882172, 0.8411700129508972, 0.4157501757144928, 0.34136906266212463, 0.840491771697998, 0.17999602854251862, 0.1897384226322174, 0.24139109253883362, 0.6328479051589966, 0.19788601994514465, 0.3427485227584839, 0.08685538172721863, 0.7131232619285583, 0.14360108971595764, 0.6370598077774048, 0.20368033647537231, 0.2887343466281891, 0.7223825454711914, 0.07330154627561569, 0.5785923600196838, 0.46755653619766235, 0.21087226271629333, 0.8741388320922852, 0.6121302843093872 ], "colorscale": [ [ 0.0, "#000004" ], [ 0.1111111111111111, "#1b0c41" ], [ 0.2222222222222222, "#4a0c6b" ], [ 0.3333333333333333, "#781c6d" ], [ 0.4444444444444444, "#a52c60" ], [ 0.5555555555555556, "#cf4446" ], [ 0.6666666666666666, "#ed6925" ], [ 0.7777777777777778, "#fb9b06" ], [ 0.8888888888888888, "#f7d13d" ], [ 1.0, "#fcffa4" ] ], "size": 1.5 }, "mode": "markers", "name": "Trajectory 1", "type": "scatter3d", "x": [ 391.0, 474.0, 436.0, 541.0, 492.0, 327.0, 320.0, 323.0, 453.0, 479.0, 443.0, 540.0, 441.0, 566.0, 543.0, 413.0, 530.0, 530.0, 386.0, 386.0, 360.0, 382.0, 383.0, 386.0, 382.0, 383.0, 386.0, 383.0, 383.0, 384.0, 385.0, 386.0, 383.0, 384.0, 385.0, 386.0, 387.0, 384.0, 385.0, 464.0, 387.0, 388.0, 389.0, 390.0, 390.0, 391.0, 392.0, 394.0, 500.0, 414.0, 392.0, 393.0, 394.0, 557.0, 394.0, 395.0, 396.0, 559.0, 408.0, 396.0, 397.0, 398.0, 397.0, 398.0, 399.0, 411.0, 452.0, 399.0, 400.0, 401.0, 420.0, 401.0, 402.0, 403.0, 434.0, 403.0, 404.0, 405.0, 405.0, 406.0, 407.0, 408.0, 618.0, 408.0, 409.0, 410.0, 410.0, 411.0, 412.0, 618.0, 412.0, 413.0, 414.0, 514.0, 415.0, 416.0, 417.0, 361.0, 417.0, 418.0, 419.0, 478.0, 419.0, 420.0, 421.0, 421.0, 422.0, 423.0, 424.0, 444.0, 424.0, 425.0, 426.0, 450.0, 601.0, 443.0, 426.0, 427.0, 427.0, 428.0, 427.0, 428.0, 429.0, 430.0, 448.0, 439.0, 447.0, 481.0, 430.0, 431.0, 432.0, 432.0, 433.0, 434.0, 435.0, 432.0, 433.0, 434.0, 433.0, 435.0, 436.0, 434.0, 435.0, 436.0, 437.0, 436.0, 436.0, 437.0, 438.0, 439.0, 440.0, 437.0, 505.0, 442.0, 443.0, 437.0, 438.0, 439.0, 440.0, 441.0, 442.0, 437.0, 440.0, 441.0, 439.0, 463.0, 440.0, 441.0, 442.0, 443.0, 444.0, 445.0, 482.0, 441.0, 443.0, 444.0, 445.0, 448.0, 448.0, 451.0, 445.0, 446.0, 442.0, 443.0, 444.0, 445.0, 485.0, 444.0, 445.0, 446.0, 447.0, 448.0, 447.0, 486.0, 487.0, 487.0, 488.0, 444.0, 445.0, 446.0, 447.0, 447.0, 448.0, 449.0, 450.0, 451.0, 447.0, 448.0, 449.0, 488.0, 446.0, 447.0, 447.0, 448.0, 449.0, 450.0, 451.0, 452.0, 453.0, 449.0, 454.0, 449.0, 450.0, 453.0, 488.0, 483.0, 484.0, 484.0, 521.0, 460.0, 432.0, 429.0, 451.0, 448.0, 449.0, 450.0, 451.0, 454.0, 455.0, 456.0, 457.0, 450.0, 451.0, 451.0, 452.0, 486.0, 487.0, 508.0, 450.0, 451.0, 452.0, 449.0, 450.0, 451.0, 452.0, 457.0, 458.0, 459.0, 452.0, 453.0, 454.0, 485.0, 486.0, 454.0, 455.0, 462.0, 463.0, 455.0, 456.0, 457.0, 458.0, 459.0, 460.0, 461.0, 462.0, 459.0, 460.0, 483.0, 596.0, 508.0, 451.0, 452.0, 453.0, 452.0, 460.0, 461.0, 462.0, 464.0, 485.0, 463.0, 464.0, 472.0, 473.0, 475.0, 473.0, 474.0, 475.0, 483.0, 484.0, 415.0, 596.0, 362.0, 417.0, 452.0, 453.0, 453.0, 454.0, 455.0, 462.0, 463.0, 464.0, 465.0, 484.0, 484.0, 460.0, 454.0, 455.0, 464.0, 464.0, 465.0, 466.0, 467.0, 468.0, 484.0, 490.0, 455.0, 455.0, 464.0, 455.0, 456.0, 462.0, 463.0, 464.0, 465.0, 476.0, 476.0, 467.0, 468.0, 469.0, 470.0, 471.0, 472.0, 476.0, 484.0, 468.0, 469.0, 470.0, 465.0, 451.0, 455.0, 456.0, 457.0, 458.0, 462.0, 463.0, 463.0, 464.0, 465.0, 465.0, 466.0, 467.0, 472.0, 473.0, 474.0, 475.0, 476.0, 483.0, 469.0, 470.0, 471.0, 456.0, 456.0, 458.0, 459.0, 460.0, 461.0, 462.0, 467.0, 475.0, 476.0, 477.0, 478.0, 480.0, 482.0, 483.0, 471.0, 472.0, 471.0, 472.0, 417.0, 474.0, 461.0, 462.0, 463.0, 464.0, 465.0, 478.0, 479.0, 480.0, 481.0, 482.0, 472.0, 473.0, 479.0, 472.0, 473.0, 472.0, 473.0, 474.0, 475.0, 482.0, 483.0, 483.0, 484.0, 485.0, 441.0, 485.0, 479.0, 465.0, 468.0, 469.0, 466.0, 467.0, 468.0, 469.0, 468.0, 469.0, 470.0, 471.0, 471.0, 472.0, 473.0, 479.0, 480.0, 481.0, 482.0, 483.0, 484.0, 473.0, 473.0, 473.0, 475.0, 476.0, 476.0, 477.0, 478.0, 478.0, 479.0, 479.0, 480.0, 481.0, 481.0, 482.0, 484.0, 485.0, 485.0, 528.0, 469.0, 470.0, 469.0, 469.0, 467.0, 474.0, 475.0, 476.0, 477.0, 478.0, 479.0, 484.0, 485.0, 486.0, 485.0, 486.0, 582.0, 440.0, 441.0, 400.0, 600.0, 469.0, 469.0, 470.0, 476.0, 487.0, 488.0, 489.0, 518.0, 476.0, 489.0, 490.0, 478.0, 517.0, 518.0, 490.0, 491.0, 493.0, 491.0, 492.0, 450.0, 518.0, 518.0, 483.0, 492.0, 493.0, 493.0, 456.0, 446.0, 472.0, 478.0, 493.0, 493.0, 493.0, 493.0, 493.0, 471.0, 471.0, 493.0, 494.0, 493.0, 493.0, 399.0, 494.0, 493.0, 494.0, 493.0, 509.0, 510.0, 509.0, 510.0, 585.0, 498.0, 552.0, 495.0, 611.0, 542.0, 450.0, 499.0, 536.0, 537.0, 515.0, 460.0, 423.0, 549.0, 536.0, 549.0, 515.0, 495.0, 520.0, 512.0, 527.0, 528.0, 528.0, 475.0, 524.0, 556.0, 549.0, 580.0, 421.0, 548.0, 549.0, 524.0, 548.0, 514.0, 508.0, 508.0, 505.0, 544.0, 545.0, 505.0, 542.0, 526.0, 519.0, 546.0, 519.0, 529.0, 567.0, 552.0, 553.0, 529.0, 530.0, 517.0, 546.0, 545.0, 553.0, 546.0, 546.0, 545.0, 546.0, 547.0, 550.0, 550.0, 562.0, 565.0, 552.0, 500.0, 474.0, 553.0, 561.0, 562.0, 562.0, 563.0, 566.0, 563.0, 564.0, 565.0, 566.0, 542.0, 543.0, 536.0, 501.0, 535.0, 470.0, 492.0, 522.0, 567.0, 525.0, 570.0, 511.0, 513.0, 543.0, 513.0, 514.0, 552.0, 533.0, 568.0, 552.0, 560.0, 469.0, 533.0, 579.0, 585.0, 584.0, 575.0, 498.0, 542.0, 567.0, 584.0, 583.0, 468.0, 567.0, 526.0, 614.0, 512.0, 549.0, 563.0, 599.0, 600.0, 600.0, 547.0, 563.0, 599.0, 563.0, 600.0, 515.0, 515.0, 601.0, 585.0, 504.0, 574.0, 578.0, 580.0, 622.0, 569.0, 467.0, 567.0, 620.0, 619.0, 591.0, 600.0, 468.0, 619.0, 620.0, 569.0, 617.0, 472.0, 559.0, 528.0, 563.0, 601.0, 469.0, 591.0, 624.0, 582.0, 627.0, 625.0, 607.0, 590.0, 618.0, 506.0, 612.0, 600.0, 621.0, 572.0, 595.0, 618.0, 595.0, 617.0, 581.0, 477.0, 570.0, 579.0, 480.0, 595.0, 595.0, 597.0, 623.0, 623.0, 618.0, 539.0, 566.0, 622.0, 613.0, 616.0, 626.0, 544.0, 583.0, 584.0, 584.0, 583.0, 584.0, 584.0, 585.0, 586.0, 585.0, 584.0, 585.0, 585.0, 586.0, 586.0, 510.0, 513.0, 514.0, 515.0, 510.0, 511.0, 512.0, 513.0, 520.0, 515.0, 516.0, 520.0, 521.0, 522.0, 523.0, 515.0, 512.0, 512.0, 513.0, 518.0, 519.0, 520.0, 517.0, 518.0, 522.0, 523.0, 513.0, 513.0, 513.0, 514.0, 515.0, 516.0, 514.0, 515.0, 516.0, 517.0, 517.0, 518.0, 518.0, 518.0, 519.0, 519.0, 518.0, 519.0, 518.0, 517.0, 518.0, 541.0, 541.0, 541.0, 542.0, 527.0, 530.0, 541.0, 527.0, 528.0, 529.0, 530.0, 531.0, 532.0, 540.0, 541.0, 529.0, 530.0, 531.0, 532.0, 533.0, 535.0, 539.0, 540.0, 532.0, 533.0, 533.0, 534.0, 535.0, 536.0, 537.0, 538.0, 539.0, 537.0, 533.0, 534.0, 537.0, 538.0, 538.0, 539.0, 539.0, 539.0, 540.0, 534.0, 535.0, 537.0, 538.0, 539.0, 542.0, 541.0, 542.0, 540.0, 542.0, 543.0, 544.0, 545.0, 546.0, 540.0, 541.0, 542.0, 546.0, 547.0, 535.0, 539.0, 540.0, 540.0, 541.0, 540.0, 547.0, 548.0, 549.0, 550.0, 535.0, 536.0, 537.0, 540.0, 541.0, 542.0, 537.0, 538.0, 539.0, 539.0, 540.0, 540.0, 541.0, 542.0, 548.0, 550.0, 542.0, 543.0, 548.0, 550.0, 551.0, 543.0, 544.0, 541.0, 543.0, 544.0, 545.0, 540.0, 541.0, 551.0, 552.0, 544.0, 545.0, 540.0, 540.0, 545.0, 545.0, 546.0, 547.0, 552.0, 546.0, 547.0, 539.0, 539.0, 540.0, 547.0, 548.0, 549.0, 552.0, 547.0, 548.0, 549.0, 552.0, 539.0, 540.0, 549.0, 550.0, 551.0, 549.0, 550.0, 552.0, 540.0, 550.0, 552.0, 553.0, 553.0, 551.0, 552.0, 553.0, 554.0, 539.0, 539.0, 540.0, 550.0, 551.0, 553.0, 554.0, 555.0, 556.0, 539.0, 551.0, 552.0, 552.0, 556.0, 557.0, 558.0, 537.0, 538.0, 539.0, 553.0, 553.0, 558.0, 558.0, 559.0, 560.0, 537.0, 553.0, 554.0, 560.0, 561.0, 562.0, 554.0, 555.0, 555.0, 562.0, 563.0, 555.0, 556.0, 564.0, 565.0, 565.0, 556.0, 557.0, 566.0, 567.0, 568.0, 557.0, 557.0, 558.0, 567.0, 568.0, 569.0, 570.0, 570.0, 558.0, 570.0, 571.0, 572.0, 573.0, 558.0, 559.0, 559.0, 573.0, 574.0, 575.0, 576.0, 575.0, 576.0, 577.0, 559.0, 560.0, 576.0, 577.0, 578.0, 577.0, 578.0, 579.0, 579.0, 580.0, 560.0, 561.0, 578.0, 579.0, 579.0, 581.0, 582.0, 583.0, 591.0, 592.0, 590.0, 591.0, 561.0, 562.0, 579.0, 580.0, 583.0, 584.0, 585.0, 586.0, 591.0, 591.0, 592.0, 563.0, 591.0, 562.0, 563.0, 581.0, 582.0, 586.0, 587.0, 588.0, 589.0, 563.0, 591.0, 563.0, 582.0, 583.0, 589.0, 590.0, 591.0, 592.0, 563.0, 590.0, 591.0, 584.0, 585.0, 589.0, 590.0, 584.0, 585.0, 583.0, 584.0, 585.0, 583.0, 592.0, 593.0, 594.0, 595.0, 588.0, 589.0, 586.0, 587.0, 588.0, 585.0, 586.0, 595.0, 596.0, 597.0, 597.0, 598.0, 599.0, 600.0, 600.0, 601.0, 602.0, 603.0, 604.0, 605.0, 606.0, 607.0, 608.0, 608.0, 609.0, 610.0, 610.0, 611.0, 612.0, 613.0, 614.0, 614.0, 615.0, 616.0, 617.0, 617.0, 618.0, 618.0, 619.0, 620.0, 620.0, 621.0, 621.0, 621.0, 622.0, 622.0, 623.0, 622.0, 623.0, 623.0, 623.0, 623.0, 622.0, 623.0, 624.0, 624.0, 624.0, 623.0, 623.0, 584.0, 585.0, 584.0, 585.0, 585.0, 585.0, 586.0, 585.0, 585.0, 587.0, 588.0, 586.0, 587.0, 588.0, 588.0, 588.0, 618.0, 618.0, 619.0, 619.0, 601.0, 604.0, 604.0, 603.0, 604.0, 602.0, 603.0, 602.0, 605.0, 604.0, 605.0, 604.0, 605.0, 604.0, 577.0, 581.0, 582.0, 577.0, 578.0, 579.0, 581.0, 582.0, 581.0, 579.0, 580.0, 582.0, 580.0, 582.0, 580.0, 581.0, 580.0, 613.0, 614.0, 614.0, 614.0, 615.0, 615.0, 615.0, 615.0, 615.0, 616.0, 616.0, 617.0, 617.0, 618.0 ], "y": [ 643.0, 627.0, 580.0, 623.0, 647.0, 575.0, 566.0, 577.0, 599.0, 650.0, 591.0, 595.0, 638.0, 643.0, 601.0, 589.0, 581.0, 582.0, 613.0, 614.0, 674.0, 613.0, 613.0, 613.0, 614.0, 614.0, 614.0, 613.0, 614.0, 614.0, 614.0, 614.0, 615.0, 615.0, 614.0, 614.0, 614.0, 615.0, 615.0, 633.0, 614.0, 614.0, 614.0, 614.0, 614.0, 614.0, 614.0, 614.0, 618.0, 645.0, 614.0, 614.0, 614.0, 636.0, 614.0, 614.0, 614.0, 643.0, 645.0, 614.0, 614.0, 614.0, 615.0, 615.0, 615.0, 641.0, 674.0, 615.0, 615.0, 615.0, 639.0, 615.0, 615.0, 615.0, 601.0, 615.0, 615.0, 615.0, 615.0, 615.0, 615.0, 615.0, 637.0, 615.0, 615.0, 615.0, 615.0, 615.0, 615.0, 637.0, 615.0, 615.0, 615.0, 595.0, 616.0, 616.0, 616.0, 634.0, 616.0, 616.0, 616.0, 641.0, 616.0, 616.0, 616.0, 616.0, 616.0, 616.0, 616.0, 589.0, 616.0, 616.0, 616.0, 627.0, 647.0, 650.0, 616.0, 616.0, 617.0, 617.0, 617.0, 617.0, 617.0, 617.0, 662.0, 688.0, 609.0, 613.0, 617.0, 617.0, 617.0, 617.0, 617.0, 617.0, 617.0, 618.0, 618.0, 618.0, 575.0, 617.0, 617.0, 618.0, 618.0, 618.0, 618.0, 617.0, 618.0, 618.0, 618.0, 618.0, 618.0, 619.0, 619.0, 617.0, 617.0, 618.0, 618.0, 618.0, 618.0, 618.0, 618.0, 619.0, 619.0, 619.0, 669.0, 600.0, 618.0, 618.0, 618.0, 618.0, 618.0, 618.0, 618.0, 619.0, 619.0, 619.0, 619.0, 648.0, 650.0, 607.0, 617.0, 617.0, 618.0, 618.0, 618.0, 618.0, 618.0, 619.0, 619.0, 619.0, 619.0, 619.0, 620.0, 621.0, 621.0, 622.0, 622.0, 618.0, 618.0, 618.0, 618.0, 619.0, 619.0, 619.0, 619.0, 619.0, 620.0, 620.0, 620.0, 622.0, 618.0, 618.0, 619.0, 619.0, 619.0, 619.0, 619.0, 619.0, 619.0, 620.0, 620.0, 621.0, 621.0, 622.0, 622.0, 629.0, 629.0, 630.0, 660.0, 664.0, 597.0, 608.0, 610.0, 618.0, 618.0, 619.0, 619.0, 620.0, 620.0, 620.0, 620.0, 621.0, 621.0, 622.0, 622.0, 622.0, 622.0, 597.0, 617.0, 617.0, 617.0, 618.0, 618.0, 619.0, 619.0, 620.0, 620.0, 620.0, 622.0, 622.0, 622.0, 622.0, 622.0, 623.0, 623.0, 623.0, 623.0, 624.0, 624.0, 624.0, 624.0, 624.0, 624.0, 624.0, 624.0, 625.0, 625.0, 632.0, 590.0, 595.0, 617.0, 617.0, 618.0, 619.0, 620.0, 620.0, 620.0, 622.0, 622.0, 623.0, 623.0, 628.0, 628.0, 628.0, 629.0, 629.0, 629.0, 632.0, 632.0, 577.0, 590.0, 604.0, 611.0, 617.0, 617.0, 618.0, 618.0, 618.0, 620.0, 620.0, 620.0, 620.0, 621.0, 622.0, 575.0, 617.0, 617.0, 619.0, 620.0, 620.0, 620.0, 620.0, 621.0, 621.0, 623.0, 615.0, 616.0, 616.0, 617.0, 617.0, 617.0, 617.0, 619.0, 619.0, 619.0, 620.0, 621.0, 621.0, 621.0, 621.0, 621.0, 621.0, 621.0, 621.0, 622.0, 622.0, 622.0, 581.0, 606.0, 615.0, 615.0, 617.0, 617.0, 617.0, 617.0, 618.0, 618.0, 618.0, 619.0, 619.0, 619.0, 621.0, 621.0, 621.0, 621.0, 621.0, 621.0, 622.0, 622.0, 622.0, 614.0, 615.0, 617.0, 617.0, 617.0, 617.0, 617.0, 619.0, 621.0, 621.0, 621.0, 621.0, 621.0, 621.0, 621.0, 622.0, 622.0, 623.0, 623.0, 640.0, 608.0, 617.0, 617.0, 618.0, 618.0, 618.0, 621.0, 621.0, 621.0, 621.0, 621.0, 622.0, 622.0, 622.0, 623.0, 623.0, 624.0, 624.0, 624.0, 625.0, 630.0, 630.0, 631.0, 631.0, 631.0, 632.0, 632.0, 646.0, 618.0, 618.0, 618.0, 619.0, 619.0, 619.0, 619.0, 620.0, 620.0, 620.0, 620.0, 621.0, 621.0, 621.0, 621.0, 621.0, 621.0, 621.0, 621.0, 621.0, 623.0, 624.0, 625.0, 625.0, 625.0, 626.0, 626.0, 627.0, 628.0, 628.0, 629.0, 629.0, 629.0, 630.0, 630.0, 631.0, 631.0, 632.0, 611.0, 618.0, 618.0, 619.0, 620.0, 621.0, 621.0, 621.0, 621.0, 621.0, 621.0, 621.0, 621.0, 621.0, 621.0, 622.0, 622.0, 622.0, 643.0, 644.0, 579.0, 599.0, 620.0, 621.0, 621.0, 621.0, 622.0, 622.0, 622.0, 672.0, 618.0, 622.0, 622.0, 624.0, 672.0, 672.0, 622.0, 622.0, 622.0, 623.0, 623.0, 625.0, 671.0, 672.0, 621.0, 623.0, 623.0, 624.0, 658.0, 659.0, 618.0, 622.0, 624.0, 625.0, 626.0, 625.0, 626.0, 641.0, 599.0, 625.0, 625.0, 626.0, 627.0, 583.0, 625.0, 626.0, 626.0, 627.0, 623.0, 623.0, 624.0, 624.0, 578.0, 584.0, 585.0, 630.0, 692.0, 676.0, 605.0, 619.0, 624.0, 624.0, 632.0, 659.0, 597.0, 616.0, 624.0, 616.0, 661.0, 621.0, 623.0, 667.0, 629.0, 629.0, 631.0, 648.0, 593.0, 615.0, 624.0, 579.0, 622.0, 631.0, 631.0, 630.0, 631.0, 637.0, 640.0, 662.0, 624.0, 630.0, 630.0, 632.0, 632.0, 623.0, 624.0, 624.0, 625.0, 625.0, 631.0, 603.0, 603.0, 604.0, 611.0, 624.0, 625.0, 626.0, 597.0, 624.0, 625.0, 626.0, 626.0, 617.0, 631.0, 632.0, 592.0, 617.0, 631.0, 621.0, 604.0, 627.0, 632.0, 632.0, 632.0, 632.0, 631.0, 632.0, 632.0, 632.0, 632.0, 627.0, 627.0, 615.0, 619.0, 630.0, 662.0, 615.0, 622.0, 641.0, 654.0, 635.0, 665.0, 676.0, 622.0, 676.0, 678.0, 566.0, 640.0, 711.0, 567.0, 631.0, 632.0, 636.0, 636.0, 639.0, 640.0, 605.0, 616.0, 622.0, 631.0, 638.0, 702.0, 627.0, 631.0, 635.0, 627.0, 637.0, 614.0, 630.0, 630.0, 630.0, 631.0, 648.0, 630.0, 630.0, 631.0, 631.0, 637.0, 638.0, 667.0, 657.0, 504.0, 646.0, 608.0, 628.0, 642.0, 644.0, 596.0, 635.0, 619.0, 620.0, 637.0, 666.0, 600.0, 619.0, 619.0, 635.0, 657.0, 668.0, 671.0, 503.0, 612.0, 640.0, 665.0, 636.0, 645.0, 610.0, 651.0, 657.0, 716.0, 677.0, 704.0, 659.0, 669.0, 639.0, 650.0, 657.0, 637.0, 654.0, 637.0, 706.0, 670.0, 571.0, 659.0, 670.0, 575.0, 622.0, 623.0, 645.0, 647.0, 718.0, 678.0, 604.0, 563.0, 637.0, 626.0, 630.0, 618.0, 698.0, 628.0, 628.0, 628.0, 629.0, 629.0, 630.0, 632.0, 632.0, 633.0, 630.0, 630.0, 631.0, 631.0, 632.0, 625.0, 624.0, 624.0, 624.0, 625.0, 625.0, 625.0, 625.0, 622.0, 623.0, 623.0, 623.0, 623.0, 623.0, 623.0, 624.0, 625.0, 626.0, 626.0, 622.0, 622.0, 622.0, 623.0, 623.0, 623.0, 623.0, 626.0, 626.0, 626.0, 627.0, 626.0, 626.0, 627.0, 627.0, 627.0, 627.0, 627.0, 627.0, 628.0, 628.0, 628.0, 628.0, 629.0, 629.0, 629.0, 630.0, 630.0, 623.0, 624.0, 624.0, 624.0, 625.0, 624.0, 624.0, 625.0, 625.0, 625.0, 625.0, 624.0, 624.0, 624.0, 624.0, 625.0, 625.0, 625.0, 625.0, 625.0, 625.0, 625.0, 625.0, 624.0, 624.0, 625.0, 625.0, 625.0, 625.0, 625.0, 625.0, 625.0, 626.0, 624.0, 624.0, 626.0, 626.0, 627.0, 627.0, 628.0, 629.0, 629.0, 624.0, 624.0, 625.0, 625.0, 625.0, 626.0, 627.0, 627.0, 630.0, 623.0, 623.0, 623.0, 623.0, 623.0, 624.0, 624.0, 624.0, 624.0, 624.0, 625.0, 625.0, 625.0, 627.0, 627.0, 630.0, 624.0, 624.0, 624.0, 624.0, 625.0, 625.0, 625.0, 625.0, 625.0, 625.0, 626.0, 626.0, 626.0, 627.0, 627.0, 630.0, 630.0, 630.0, 624.0, 624.0, 625.0, 625.0, 625.0, 625.0, 625.0, 626.0, 626.0, 630.0, 630.0, 630.0, 630.0, 631.0, 631.0, 625.0, 625.0, 626.0, 626.0, 629.0, 630.0, 630.0, 631.0, 631.0, 631.0, 625.0, 626.0, 626.0, 628.0, 629.0, 629.0, 631.0, 631.0, 631.0, 625.0, 626.0, 626.0, 626.0, 626.0, 628.0, 628.0, 631.0, 631.0, 631.0, 626.0, 626.0, 626.0, 627.0, 627.0, 627.0, 627.0, 628.0, 631.0, 631.0, 632.0, 632.0, 626.0, 627.0, 627.0, 627.0, 627.0, 627.0, 632.0, 632.0, 632.0, 626.0, 627.0, 627.0, 628.0, 632.0, 632.0, 632.0, 626.0, 626.0, 626.0, 628.0, 629.0, 632.0, 633.0, 633.0, 633.0, 626.0, 629.0, 629.0, 633.0, 633.0, 633.0, 629.0, 629.0, 630.0, 633.0, 633.0, 630.0, 630.0, 633.0, 633.0, 634.0, 630.0, 630.0, 634.0, 634.0, 634.0, 630.0, 631.0, 631.0, 634.0, 634.0, 634.0, 634.0, 635.0, 631.0, 635.0, 635.0, 635.0, 635.0, 631.0, 631.0, 632.0, 635.0, 635.0, 635.0, 635.0, 636.0, 636.0, 636.0, 632.0, 632.0, 635.0, 635.0, 635.0, 636.0, 636.0, 636.0, 637.0, 637.0, 632.0, 632.0, 635.0, 635.0, 636.0, 637.0, 637.0, 637.0, 630.0, 630.0, 631.0, 631.0, 632.0, 632.0, 635.0, 635.0, 637.0, 637.0, 638.0, 638.0, 629.0, 630.0, 630.0, 631.0, 631.0, 632.0, 632.0, 635.0, 635.0, 638.0, 638.0, 638.0, 638.0, 631.0, 631.0, 632.0, 635.0, 635.0, 638.0, 638.0, 638.0, 638.0, 631.0, 631.0, 631.0, 632.0, 632.0, 632.0, 632.0, 633.0, 633.0, 634.0, 634.0, 634.0, 635.0, 638.0, 638.0, 638.0, 638.0, 632.0, 632.0, 633.0, 633.0, 633.0, 634.0, 634.0, 638.0, 638.0, 638.0, 638.0, 638.0, 638.0, 638.0, 638.0, 638.0, 638.0, 638.0, 638.0, 638.0, 638.0, 638.0, 638.0, 639.0, 639.0, 639.0, 639.0, 639.0, 639.0, 639.0, 639.0, 639.0, 639.0, 639.0, 639.0, 639.0, 639.0, 639.0, 639.0, 639.0, 640.0, 640.0, 641.0, 641.0, 641.0, 642.0, 642.0, 648.0, 648.0, 642.0, 643.0, 647.0, 648.0, 648.0, 643.0, 644.0, 645.0, 646.0, 647.0, 640.0, 642.0, 640.0, 640.0, 641.0, 642.0, 642.0, 640.0, 641.0, 641.0, 641.0, 642.0, 642.0, 642.0, 641.0, 642.0, 676.0, 677.0, 677.0, 677.0, 609.0, 605.0, 606.0, 607.0, 607.0, 608.0, 608.0, 609.0, 604.0, 605.0, 605.0, 603.0, 604.0, 603.0, 637.0, 636.0, 636.0, 637.0, 637.0, 637.0, 637.0, 637.0, 638.0, 636.0, 636.0, 636.0, 637.0, 637.0, 636.0, 636.0, 637.0, 639.0, 639.0, 639.0, 640.0, 640.0, 639.0, 640.0, 640.0, 640.0, 640.0, 640.0, 640.0, 641.0, 641.0 ], "z": [ 429.0, 440.0, 447.0, 448.0, 448.0, 449.0, 451.0, 451.0, 459.0, 459.0, 460.0, 461.0, 462.0, 462.0, 464.0, 469.0, 471.0, 471.0, 471.0, 471.0, 471.0, 472.0, 472.0, 472.0, 472.0, 472.0, 472.0, 473.0, 473.0, 473.0, 473.0, 473.0, 473.0, 473.0, 474.0, 474.0, 474.0, 474.0, 474.0, 474.0, 475.0, 475.0, 475.0, 475.0, 476.0, 476.0, 476.0, 476.0, 476.0, 476.0, 477.0, 477.0, 477.0, 477.0, 478.0, 478.0, 478.0, 478.0, 478.0, 479.0, 479.0, 479.0, 479.0, 479.0, 479.0, 479.0, 479.0, 480.0, 480.0, 480.0, 480.0, 481.0, 481.0, 481.0, 482.0, 482.0, 482.0, 482.0, 483.0, 483.0, 483.0, 483.0, 483.0, 484.0, 484.0, 484.0, 485.0, 485.0, 485.0, 485.0, 486.0, 486.0, 486.0, 487.0, 487.0, 487.0, 487.0, 487.0, 488.0, 488.0, 488.0, 488.0, 489.0, 489.0, 489.0, 490.0, 490.0, 490.0, 490.0, 491.0, 491.0, 491.0, 491.0, 491.0, 491.0, 491.0, 492.0, 492.0, 492.0, 492.0, 493.0, 493.0, 493.0, 493.0, 493.0, 493.0, 494.0, 494.0, 494.0, 494.0, 494.0, 495.0, 495.0, 495.0, 495.0, 495.0, 495.0, 495.0, 496.0, 496.0, 496.0, 496.0, 496.0, 496.0, 496.0, 497.0, 497.0, 497.0, 497.0, 497.0, 497.0, 497.0, 497.0, 498.0, 498.0, 498.0, 498.0, 498.0, 498.0, 498.0, 498.0, 498.0, 498.0, 498.0, 498.0, 499.0, 499.0, 499.0, 499.0, 499.0, 499.0, 499.0, 499.0, 499.0, 499.0, 499.0, 499.0, 499.0, 499.0, 500.0, 500.0, 500.0, 500.0, 500.0, 500.0, 500.0, 500.0, 500.0, 500.0, 500.0, 500.0, 500.0, 500.0, 500.0, 500.0, 500.0, 500.0, 501.0, 501.0, 501.0, 501.0, 501.0, 501.0, 501.0, 501.0, 501.0, 501.0, 501.0, 501.0, 501.0, 502.0, 502.0, 502.0, 502.0, 502.0, 502.0, 502.0, 502.0, 502.0, 502.0, 502.0, 502.0, 502.0, 502.0, 502.0, 502.0, 502.0, 502.0, 502.0, 502.0, 503.0, 503.0, 503.0, 503.0, 503.0, 503.0, 503.0, 503.0, 503.0, 503.0, 503.0, 503.0, 503.0, 503.0, 503.0, 503.0, 503.0, 504.0, 504.0, 504.0, 504.0, 504.0, 504.0, 504.0, 504.0, 504.0, 504.0, 504.0, 504.0, 504.0, 504.0, 504.0, 504.0, 504.0, 504.0, 504.0, 504.0, 504.0, 504.0, 504.0, 504.0, 504.0, 504.0, 504.0, 504.0, 504.0, 504.0, 504.0, 505.0, 505.0, 505.0, 505.0, 505.0, 505.0, 505.0, 505.0, 505.0, 505.0, 505.0, 505.0, 505.0, 505.0, 505.0, 505.0, 505.0, 505.0, 505.0, 505.0, 505.0, 506.0, 506.0, 506.0, 506.0, 506.0, 506.0, 506.0, 506.0, 506.0, 506.0, 506.0, 506.0, 506.0, 506.0, 506.0, 507.0, 507.0, 507.0, 507.0, 507.0, 507.0, 507.0, 507.0, 507.0, 507.0, 507.0, 508.0, 508.0, 508.0, 508.0, 508.0, 508.0, 508.0, 508.0, 508.0, 508.0, 508.0, 508.0, 508.0, 508.0, 508.0, 508.0, 508.0, 508.0, 508.0, 508.0, 508.0, 508.0, 509.0, 509.0, 509.0, 509.0, 509.0, 509.0, 509.0, 509.0, 509.0, 509.0, 509.0, 509.0, 509.0, 509.0, 509.0, 509.0, 509.0, 509.0, 509.0, 509.0, 509.0, 509.0, 509.0, 510.0, 510.0, 510.0, 510.0, 510.0, 510.0, 510.0, 510.0, 510.0, 510.0, 510.0, 510.0, 510.0, 510.0, 510.0, 510.0, 510.0, 510.0, 510.0, 510.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 511.0, 512.0, 512.0, 512.0, 512.0, 512.0, 512.0, 512.0, 512.0, 512.0, 512.0, 512.0, 512.0, 512.0, 512.0, 512.0, 512.0, 512.0, 512.0, 512.0, 512.0, 512.0, 512.0, 512.0, 512.0, 512.0, 512.0, 512.0, 512.0, 512.0, 512.0, 512.0, 512.0, 512.0, 512.0, 512.0, 512.0, 512.0, 512.0, 513.0, 513.0, 513.0, 513.0, 513.0, 513.0, 513.0, 513.0, 513.0, 513.0, 513.0, 513.0, 513.0, 513.0, 513.0, 513.0, 513.0, 513.0, 513.0, 513.0, 514.0, 514.0, 514.0, 514.0, 514.0, 514.0, 514.0, 514.0, 514.0, 514.0, 515.0, 515.0, 515.0, 515.0, 515.0, 515.0, 516.0, 516.0, 516.0, 516.0, 516.0, 516.0, 516.0, 516.0, 517.0, 517.0, 517.0, 517.0, 517.0, 517.0, 518.0, 518.0, 518.0, 518.0, 518.0, 519.0, 519.0, 519.0, 520.0, 520.0, 520.0, 520.0, 520.0, 521.0, 521.0, 521.0, 521.0, 521.0, 522.0, 522.0, 522.0, 522.0, 523.0, 523.0, 523.0, 524.0, 525.0, 526.0, 527.0, 527.0, 527.0, 527.0, 527.0, 527.0, 528.0, 528.0, 528.0, 529.0, 529.0, 530.0, 530.0, 530.0, 531.0, 531.0, 531.0, 531.0, 532.0, 532.0, 532.0, 533.0, 533.0, 533.0, 533.0, 534.0, 534.0, 534.0, 534.0, 534.0, 535.0, 535.0, 535.0, 535.0, 535.0, 536.0, 536.0, 536.0, 536.0, 536.0, 536.0, 537.0, 537.0, 537.0, 537.0, 537.0, 537.0, 537.0, 538.0, 538.0, 538.0, 538.0, 538.0, 539.0, 539.0, 539.0, 540.0, 540.0, 540.0, 541.0, 542.0, 542.0, 542.0, 542.0, 543.0, 543.0, 544.0, 544.0, 544.0, 544.0, 544.0, 545.0, 545.0, 546.0, 546.0, 546.0, 546.0, 547.0, 547.0, 547.0, 547.0, 548.0, 548.0, 548.0, 549.0, 549.0, 549.0, 550.0, 550.0, 550.0, 551.0, 551.0, 551.0, 551.0, 551.0, 551.0, 551.0, 552.0, 552.0, 552.0, 552.0, 552.0, 552.0, 553.0, 553.0, 553.0, 554.0, 554.0, 555.0, 555.0, 555.0, 555.0, 555.0, 555.0, 556.0, 556.0, 556.0, 556.0, 556.0, 556.0, 556.0, 557.0, 558.0, 558.0, 559.0, 559.0, 559.0, 559.0, 560.0, 560.0, 561.0, 561.0, 561.0, 561.0, 562.0, 562.0, 562.0, 562.0, 562.0, 564.0, 564.0, 565.0, 565.0, 565.0, 565.0, 566.0, 567.0, 568.0, 568.0, 568.0, 568.0, 571.0, 571.0, 572.0, 573.0, 574.0, 574.0, 576.0, 577.0, 577.0, 578.0, 579.0, 582.0, 583.0, 585.0, 585.0, 587.0, 594.0, 594.0, 606.0, 612.0, 612.0, 620.0, 626.0, 631.0, 641.0, 646.0, 648.0, 650.0, 708.0, 562.0, 562.0, 563.0, 563.0, 563.0, 563.0, 563.0, 563.0, 563.0, 564.0, 564.0, 564.0, 564.0, 564.0, 528.0, 529.0, 529.0, 529.0, 529.0, 529.0, 529.0, 529.0, 530.0, 530.0, 530.0, 530.0, 530.0, 530.0, 530.0, 530.0, 530.0, 530.0, 530.0, 531.0, 531.0, 531.0, 531.0, 531.0, 531.0, 531.0, 531.0, 532.0, 533.0, 533.0, 534.0, 534.0, 534.0, 534.0, 534.0, 534.0, 535.0, 535.0, 535.0, 536.0, 536.0, 537.0, 537.0, 537.0, 538.0, 538.0, 538.0, 527.0, 527.0, 528.0, 528.0, 528.0, 529.0, 529.0, 529.0, 529.0, 529.0, 529.0, 530.0, 530.0, 530.0, 530.0, 530.0, 530.0, 530.0, 530.0, 530.0, 530.0, 530.0, 530.0, 531.0, 531.0, 531.0, 531.0, 531.0, 531.0, 531.0, 531.0, 531.0, 531.0, 532.0, 532.0, 532.0, 532.0, 532.0, 532.0, 532.0, 532.0, 532.0, 533.0, 533.0, 533.0, 533.0, 533.0, 533.0, 533.0, 533.0, 533.0, 534.0, 534.0, 534.0, 534.0, 534.0, 534.0, 534.0, 534.0, 534.0, 534.0, 534.0, 534.0, 534.0, 534.0, 534.0, 534.0, 535.0, 535.0, 535.0, 535.0, 535.0, 535.0, 535.0, 535.0, 535.0, 535.0, 535.0, 535.0, 535.0, 535.0, 535.0, 535.0, 535.0, 535.0, 536.0, 536.0, 536.0, 536.0, 536.0, 536.0, 536.0, 536.0, 536.0, 536.0, 536.0, 536.0, 536.0, 536.0, 536.0, 537.0, 537.0, 537.0, 537.0, 537.0, 537.0, 537.0, 537.0, 537.0, 537.0, 538.0, 538.0, 538.0, 538.0, 538.0, 538.0, 538.0, 538.0, 538.0, 539.0, 539.0, 539.0, 539.0, 539.0, 539.0, 539.0, 539.0, 539.0, 539.0, 540.0, 540.0, 540.0, 540.0, 540.0, 540.0, 540.0, 540.0, 540.0, 540.0, 540.0, 540.0, 541.0, 541.0, 541.0, 541.0, 541.0, 541.0, 541.0, 541.0, 541.0, 542.0, 542.0, 542.0, 542.0, 542.0, 542.0, 542.0, 543.0, 543.0, 543.0, 543.0, 543.0, 543.0, 543.0, 543.0, 543.0, 544.0, 544.0, 544.0, 544.0, 544.0, 544.0, 545.0, 545.0, 545.0, 545.0, 545.0, 546.0, 546.0, 546.0, 546.0, 546.0, 547.0, 547.0, 547.0, 547.0, 547.0, 548.0, 548.0, 548.0, 548.0, 548.0, 548.0, 548.0, 548.0, 549.0, 549.0, 549.0, 549.0, 549.0, 550.0, 550.0, 550.0, 550.0, 550.0, 550.0, 550.0, 550.0, 550.0, 550.0, 551.0, 551.0, 551.0, 551.0, 551.0, 551.0, 551.0, 551.0, 551.0, 551.0, 552.0, 552.0, 552.0, 552.0, 552.0, 552.0, 552.0, 552.0, 553.0, 553.0, 553.0, 553.0, 553.0, 553.0, 553.0, 553.0, 553.0, 553.0, 553.0, 553.0, 554.0, 554.0, 554.0, 554.0, 554.0, 554.0, 554.0, 554.0, 554.0, 554.0, 554.0, 554.0, 554.0, 555.0, 555.0, 555.0, 555.0, 555.0, 555.0, 555.0, 555.0, 555.0, 556.0, 556.0, 556.0, 556.0, 556.0, 556.0, 556.0, 556.0, 556.0, 556.0, 556.0, 556.0, 556.0, 556.0, 556.0, 556.0, 556.0, 557.0, 557.0, 557.0, 557.0, 557.0, 557.0, 557.0, 557.0, 557.0, 557.0, 558.0, 558.0, 558.0, 558.0, 559.0, 559.0, 559.0, 559.0, 559.0, 559.0, 559.0, 559.0, 559.0, 559.0, 559.0, 559.0, 560.0, 560.0, 560.0, 560.0, 560.0, 561.0, 561.0, 561.0, 561.0, 562.0, 562.0, 563.0, 563.0, 563.0, 564.0, 564.0, 564.0, 565.0, 565.0, 565.0, 565.0, 565.0, 565.0, 566.0, 566.0, 566.0, 566.0, 566.0, 567.0, 567.0, 567.0, 567.0, 567.0, 549.0, 549.0, 550.0, 550.0, 550.0, 550.0, 550.0, 551.0, 551.0, 551.0, 551.0, 551.0, 551.0, 551.0, 552.0, 552.0, 598.0, 598.0, 598.0, 599.0, 604.0, 605.0, 605.0, 605.0, 605.0, 605.0, 605.0, 605.0, 606.0, 606.0, 606.0, 607.0, 607.0, 608.0, 567.0, 568.0, 568.0, 568.0, 568.0, 568.0, 568.0, 568.0, 568.0, 569.0, 569.0, 569.0, 569.0, 569.0, 570.0, 570.0, 570.0, 604.0, 604.0, 605.0, 605.0, 606.0, 607.0, 607.0, 608.0, 609.0, 609.0, 610.0, 610.0, 610.0, 610.0 ] }, { "hovertext": [ "Energy 0.10 MeV", "Energy 0.06 MeV", "Energy 0.15 MeV", "Energy 0.81 MeV", "Energy 0.27 MeV", "Energy 0.11 MeV", "Energy 0.25 MeV", "Energy 0.08 MeV", "Energy 0.17 MeV", "Energy 0.07 MeV", "Energy 0.07 MeV", "Energy 0.15 MeV", "Energy 0.22 MeV", "Energy 0.05 MeV", "Energy 0.41 MeV", "Energy 0.77 MeV", "Energy 0.34 MeV", "Energy 0.17 MeV", "Energy 0.38 MeV", "Energy 0.09 MeV", "Energy 0.27 MeV", "Energy 0.26 MeV", "Energy 0.07 MeV", "Energy 0.31 MeV", "Energy 0.53 MeV", "Energy 0.26 MeV", "Energy 0.58 MeV", "Energy 0.60 MeV", "Energy 0.32 MeV", "Energy 0.58 MeV", "Energy 0.39 MeV", "Energy 0.30 MeV", "Energy 0.68 MeV", "Energy 1.14 MeV", "Energy 0.06 MeV", "Energy 0.09 MeV", "Energy 0.61 MeV", "Energy 0.07 MeV", "Energy 0.68 MeV", "Energy 0.46 MeV", "Energy 0.57 MeV", "Energy 0.18 MeV", "Energy 0.38 MeV", "Energy 0.32 MeV", "Energy 0.28 MeV", "Energy 0.27 MeV", "Energy 0.88 MeV", "Energy 0.07 MeV", "Energy 0.50 MeV", "Energy 0.39 MeV", "Energy 0.15 MeV", "Energy 0.09 MeV", "Energy 0.18 MeV", "Energy 0.52 MeV", "Energy 0.60 MeV", "Energy 0.07 MeV", "Energy 0.25 MeV", "Energy 0.51 MeV", "Energy 0.50 MeV", "Energy 0.23 MeV", "Energy 0.84 MeV", "Energy 0.25 MeV", "Energy 0.72 MeV", "Energy 0.11 MeV", "Energy 0.23 MeV", "Energy 0.66 MeV", "Energy 0.56 MeV", "Energy 0.11 MeV", "Energy 0.10 MeV", "Energy 0.48 MeV", "Energy 0.56 MeV", "Energy 0.94 MeV", "Energy 0.64 MeV", "Energy 0.14 MeV", "Energy 0.62 MeV", "Energy 0.07 MeV", "Energy 0.41 MeV", "Energy 0.19 MeV", "Energy 0.63 MeV", "Energy 0.06 MeV", "Energy 0.10 MeV", "Energy 0.06 MeV", "Energy 0.09 MeV", "Energy 0.42 MeV", "Energy 0.62 MeV", "Energy 0.84 MeV", "Energy 0.35 MeV", "Energy 0.54 MeV", "Energy 0.19 MeV", "Energy 0.21 MeV", "Energy 0.38 MeV", "Energy 0.19 MeV", "Energy 0.57 MeV", "Energy 0.12 MeV", "Energy 0.72 MeV", "Energy 0.11 MeV", "Energy 0.59 MeV", "Energy 0.60 MeV", "Energy 0.47 MeV", "Energy 2.30 MeV", "Energy 0.52 MeV", "Energy 0.10 MeV", "Energy 0.55 MeV", "Energy 0.57 MeV", "Energy 0.37 MeV", "Energy 0.17 MeV", "Energy 0.92 MeV", "Energy 0.15 MeV", "Energy 0.31 MeV", "Energy 0.76 MeV", "Energy 0.77 MeV", "Energy 0.60 MeV", "Energy 0.22 MeV", "Energy 0.13 MeV", "Energy 0.31 MeV", "Energy 0.62 MeV", "Energy 0.69 MeV", "Energy 0.60 MeV", "Energy 0.43 MeV", "Energy 0.86 MeV", "Energy 0.40 MeV", "Energy 0.53 MeV", "Energy 0.27 MeV", "Energy 0.37 MeV", "Energy 0.17 MeV", "Energy 0.85 MeV", "Energy 0.62 MeV", "Energy 0.83 MeV", "Energy 0.67 MeV", "Energy 0.31 MeV", "Energy 0.77 MeV", "Energy 0.19 MeV", "Energy 0.44 MeV", "Energy 0.48 MeV", "Energy 0.17 MeV", "Energy 0.33 MeV", "Energy 0.10 MeV", "Energy 0.58 MeV", "Energy 0.33 MeV", "Energy 0.63 MeV", "Energy 0.54 MeV", "Energy 0.21 MeV", "Energy 0.27 MeV", "Energy 0.71 MeV", "Energy 0.06 MeV", "Energy 0.31 MeV", "Energy 0.65 MeV", "Energy 0.51 MeV", "Energy 0.43 MeV", "Energy 0.45 MeV", "Energy 0.13 MeV", "Energy 1.12 MeV", "Energy 1.14 MeV", "Energy 0.55 MeV", "Energy 0.26 MeV", "Energy 0.53 MeV", "Energy 2.10 MeV", "Energy 1.07 MeV", "Energy 0.13 MeV", "Energy 0.11 MeV", "Energy 0.17 MeV", "Energy 0.15 MeV", "Energy 0.12 MeV", "Energy 0.15 MeV", "Energy 0.09 MeV", "Energy 0.18 MeV", "Energy 0.07 MeV", "Energy 0.11 MeV", "Energy 0.16 MeV", "Energy 0.14 MeV", "Energy 0.22 MeV", "Energy 0.46 MeV", "Energy 0.30 MeV", "Energy 0.39 MeV", "Energy 0.19 MeV", "Energy 0.86 MeV", "Energy 0.48 MeV", "Energy 0.44 MeV", "Energy 0.18 MeV", "Energy 0.43 MeV", "Energy 0.67 MeV", "Energy 0.51 MeV", "Energy 0.37 MeV", "Energy 0.85 MeV", "Energy 0.64 MeV", "Energy 0.07 MeV", "Energy 0.06 MeV", "Energy 1.26 MeV" ], "marker": { "color": [ 0.09704796969890594, 0.061942264437675476, 0.14643101394176483, 0.8115656971931458, 0.26573893427848816, 0.10886948555707932, 0.2509327530860901, 0.0842268317937851, 0.1677539050579071, 0.07363398373126984, 0.0723080113530159, 0.15173175930976868, 0.21518732607364655, 0.05282502621412277, 0.4062122106552124, 0.767379641532898, 0.34359490871429443, 0.1666102111339569, 0.37735554575920105, 0.08674117922782898, 0.2673344910144806, 0.25540995597839355, 0.06877321004867554, 0.3062228262424469, 0.5300386548042297, 0.26433536410331726, 0.5787298679351807, 0.5971015691757202, 0.32261815667152405, 0.5757399797439575, 0.3928546905517578, 0.30170097947120667, 0.6821642518043518, 1.1405410766601562, 0.06274215131998062, 0.09483233094215393, 0.6078202128410339, 0.06893530488014221, 0.6762064695358276, 0.4570649266242981, 0.569243848323822, 0.1756742000579834, 0.3845885097980499, 0.317973256111145, 0.28241050243377686, 0.2735976278781891, 0.8842937350273132, 0.06664034724235535, 0.4986382722854614, 0.3935833275318146, 0.14824219048023224, 0.09157274663448334, 0.1755073219537735, 0.5209529399871826, 0.5989605188369751, 0.06974620372056961, 0.24520638585090637, 0.5085570216178894, 0.5041899681091309, 0.2339830994606018, 0.8421115279197693, 0.24737314879894257, 0.7205336093902588, 0.107854925096035, 0.22971045970916748, 0.6577099561691284, 0.5623476505279541, 0.11282659322023392, 0.10255751013755798, 0.4828231632709503, 0.559284508228302, 0.935757577419281, 0.6384438872337341, 0.13850022852420807, 0.6158552765846252, 0.07104421406984329, 0.4069285988807678, 0.18972885608673096, 0.6288049817085266, 0.05681660771369934, 0.09560488164424896, 0.056803155690431595, 0.09025109559297562, 0.4189039468765259, 0.619385838508606, 0.8413759469985962, 0.3484649956226349, 0.538123369216919, 0.18804432451725006, 0.20884957909584045, 0.37518730759620667, 0.1909385770559311, 0.5676037073135376, 0.12052282691001892, 0.7173410058021545, 0.10909079015254974, 0.5940878391265869, 0.6027187705039978, 0.4713217318058014, 2.2965574264526367, 0.5187352299690247, 0.0976618230342865, 0.5480026006698608, 0.5680535435676575, 0.374904066324234, 0.16770491003990173, 0.9163061380386353, 0.14974355697631836, 0.3112224042415619, 0.7578098773956299, 0.7732639312744141, 0.6013458967208862, 0.2222898006439209, 0.1251666098833084, 0.3094181716442108, 0.6216601729393005, 0.687263011932373, 0.6020983457565308, 0.42779770493507385, 0.8621717691421509, 0.396361380815506, 0.5253699421882629, 0.27137893438339233, 0.37300771474838257, 0.17176808416843414, 0.8492779731750488, 0.6230924129486084, 0.8280950784683228, 0.6724918484687805, 0.31325432658195496, 0.7687321305274963, 0.19182568788528442, 0.4372404217720032, 0.48205044865608215, 0.17194758355617523, 0.326029509305954, 0.09792932122945786, 0.5829154849052429, 0.3280068337917328, 0.6263735294342041, 0.5377429127693176, 0.20716480910778046, 0.2711167633533478, 0.7098814249038696, 0.05817738175392151, 0.3101058602333069, 0.6475823521614075, 0.5109855532646179, 0.4320436120033264, 0.4506831169128418, 0.13169488310813904, 1.118638277053833, 1.1404519081115723, 0.5451093912124634, 0.2609873414039612, 0.528124213218689, 2.096040725708008, 1.0746192932128906, 0.12693463265895844, 0.11386391520500183, 0.16628000140190125, 0.14937768876552582, 0.12233489751815796, 0.14735092222690582, 0.08955326676368713, 0.1835148185491562, 0.06972667574882507, 0.10899586975574493, 0.16428321599960327, 0.1409687101840973, 0.22356414794921875, 0.46475785970687866, 0.2973156273365021, 0.39480316638946533, 0.1888427436351776, 0.8590373992919922, 0.48059946298599243, 0.44296473264694214, 0.17836225032806396, 0.428972989320755, 0.6670984029769897, 0.5107199549674988, 0.36871588230133057, 0.8459457159042358, 0.6374986171722412, 0.06904693692922592, 0.05558156967163086, 1.264198660850525 ], "colorscale": [ [ 0.0, "#000004" ], [ 0.1111111111111111, "#1b0c41" ], [ 0.2222222222222222, "#4a0c6b" ], [ 0.3333333333333333, "#781c6d" ], [ 0.4444444444444444, "#a52c60" ], [ 0.5555555555555556, "#cf4446" ], [ 0.6666666666666666, "#ed6925" ], [ 0.7777777777777778, "#fb9b06" ], [ 0.8888888888888888, "#f7d13d" ], [ 1.0, "#fcffa4" ] ], "size": 1.5 }, "mode": "markers", "name": "Trajectory 2", "type": "scatter3d", "x": [ 509.0, 501.0, 529.0, 530.0, 531.0, 529.0, 531.0, 509.0, 494.0, 434.0, 438.0, 533.0, 467.0, 589.0, 601.0, 600.0, 601.0, 599.0, 600.0, 595.0, 457.0, 457.0, 456.0, 457.0, 457.0, 457.0, 457.0, 456.0, 456.0, 457.0, 457.0, 456.0, 456.0, 456.0, 449.0, 497.0, 457.0, 456.0, 456.0, 456.0, 457.0, 456.0, 455.0, 456.0, 457.0, 458.0, 455.0, 449.0, 489.0, 458.0, 458.0, 454.0, 455.0, 454.0, 487.0, 456.0, 456.0, 457.0, 458.0, 457.0, 454.0, 486.0, 487.0, 486.0, 457.0, 457.0, 454.0, 454.0, 453.0, 454.0, 453.0, 453.0, 453.0, 463.0, 453.0, 463.0, 453.0, 453.0, 453.0, 471.0, 471.0, 463.0, 452.0, 453.0, 452.0, 460.0, 452.0, 460.0, 461.0, 451.0, 452.0, 463.0, 451.0, 458.0, 450.0, 451.0, 470.0, 458.0, 459.0, 460.0, 461.0, 462.0, 462.0, 463.0, 464.0, 448.0, 449.0, 467.0, 467.0, 468.0, 469.0, 470.0, 468.0, 469.0, 454.0, 455.0, 456.0, 457.0, 447.0, 448.0, 464.0, 465.0, 466.0, 466.0, 467.0, 451.0, 452.0, 453.0, 454.0, 445.0, 446.0, 447.0, 449.0, 450.0, 451.0, 448.0, 449.0, 444.0, 445.0, 446.0, 447.0, 448.0, 442.0, 443.0, 441.0, 443.0, 444.0, 445.0, 441.0, 442.0, 439.0, 440.0, 441.0, 442.0, 443.0, 437.0, 438.0, 439.0, 440.0, 510.0, 510.0, 547.0, 548.0, 539.0, 488.0, 534.0, 465.0, 493.0, 494.0, 502.0, 502.0, 503.0, 503.0, 504.0, 500.0, 500.0, 501.0, 502.0, 504.0, 505.0, 505.0, 505.0, 504.0, 505.0, 504.0, 505.0, 504.0, 505.0 ], "y": [ 541.0, 550.0, 539.0, 539.0, 539.0, 539.0, 539.0, 533.0, 561.0, 620.0, 616.0, 533.0, 572.0, 559.0, 558.0, 559.0, 559.0, 560.0, 560.0, 559.0, 565.0, 566.0, 563.0, 563.0, 564.0, 565.0, 566.0, 562.0, 563.0, 567.0, 561.0, 562.0, 567.0, 568.0, 580.0, 549.0, 561.0, 568.0, 569.0, 570.0, 561.0, 570.0, 571.0, 571.0, 561.0, 561.0, 572.0, 577.0, 577.0, 560.0, 561.0, 572.0, 572.0, 573.0, 574.0, 553.0, 556.0, 560.0, 560.0, 561.0, 573.0, 574.0, 574.0, 575.0, 560.0, 561.0, 573.0, 574.0, 574.0, 574.0, 574.0, 574.0, 574.0, 622.0, 574.0, 622.0, 573.0, 574.0, 573.0, 752.0, 753.0, 559.0, 572.0, 573.0, 572.0, 572.0, 573.0, 572.0, 572.0, 573.0, 573.0, 583.0, 573.0, 570.0, 573.0, 573.0, 575.0, 571.0, 571.0, 571.0, 571.0, 571.0, 572.0, 572.0, 572.0, 573.0, 573.0, 574.0, 575.0, 575.0, 575.0, 575.0, 576.0, 576.0, 571.0, 571.0, 571.0, 571.0, 573.0, 573.0, 573.0, 573.0, 573.0, 574.0, 574.0, 571.0, 571.0, 571.0, 571.0, 573.0, 573.0, 573.0, 571.0, 571.0, 571.0, 572.0, 572.0, 573.0, 573.0, 572.0, 572.0, 572.0, 573.0, 573.0, 572.0, 572.0, 572.0, 572.0, 573.0, 573.0, 572.0, 572.0, 572.0, 572.0, 572.0, 572.0, 572.0, 572.0, 572.0, 751.0, 752.0, 601.0, 601.0, 603.0, 625.0, 641.0, 624.0, 598.0, 598.0, 561.0, 562.0, 562.0, 563.0, 563.0, 560.0, 561.0, 561.0, 561.0, 564.0, 564.0, 563.0, 564.0, 562.0, 563.0, 562.0, 562.0, 562.0, 562.0 ], "z": [ 327.0, 330.0, 334.0, 334.0, 334.0, 335.0, 335.0, 343.0, 343.0, 346.0, 349.0, 350.0, 354.0, 356.0, 358.0, 358.0, 358.0, 358.0, 358.0, 359.0, 364.0, 364.0, 365.0, 365.0, 365.0, 365.0, 365.0, 366.0, 366.0, 366.0, 367.0, 367.0, 367.0, 367.0, 367.0, 368.0, 368.0, 368.0, 368.0, 368.0, 369.0, 369.0, 369.0, 369.0, 370.0, 370.0, 370.0, 370.0, 370.0, 371.0, 371.0, 371.0, 371.0, 371.0, 371.0, 372.0, 372.0, 372.0, 372.0, 372.0, 372.0, 372.0, 372.0, 372.0, 373.0, 373.0, 373.0, 373.0, 374.0, 374.0, 375.0, 376.0, 377.0, 377.0, 378.0, 378.0, 379.0, 379.0, 380.0, 380.0, 380.0, 381.0, 381.0, 381.0, 382.0, 382.0, 382.0, 383.0, 383.0, 383.0, 383.0, 383.0, 384.0, 385.0, 385.0, 385.0, 385.0, 386.0, 386.0, 386.0, 386.0, 386.0, 386.0, 386.0, 386.0, 386.0, 386.0, 386.0, 386.0, 386.0, 386.0, 386.0, 386.0, 386.0, 387.0, 387.0, 387.0, 387.0, 387.0, 387.0, 387.0, 387.0, 387.0, 387.0, 387.0, 388.0, 388.0, 388.0, 388.0, 388.0, 388.0, 388.0, 389.0, 389.0, 389.0, 389.0, 389.0, 389.0, 389.0, 390.0, 390.0, 390.0, 390.0, 390.0, 391.0, 391.0, 391.0, 391.0, 391.0, 391.0, 392.0, 392.0, 392.0, 392.0, 392.0, 393.0, 393.0, 393.0, 393.0, 402.0, 402.0, 406.0, 406.0, 407.0, 422.0, 434.0, 440.0, 453.0, 453.0, 375.0, 375.0, 375.0, 375.0, 375.0, 376.0, 376.0, 376.0, 376.0, 376.0, 376.0, 377.0, 377.0, 378.0, 378.0, 379.0, 379.0, 380.0, 380.0 ] }, { "hovertext": [ "Energy 0.11 MeV", "Energy 0.16 MeV", "Energy 0.71 MeV", "Energy 0.44 MeV", "Energy 0.81 MeV", "Energy 0.21 MeV", "Energy 0.22 MeV", "Energy 0.49 MeV", "Energy 0.58 MeV", "Energy 0.21 MeV", "Energy 0.81 MeV", "Energy 0.19 MeV", "Energy 0.22 MeV", "Energy 0.84 MeV", "Energy 0.38 MeV", "Energy 0.13 MeV", "Energy 0.70 MeV", "Energy 0.16 MeV", "Energy 0.86 MeV", "Energy 0.53 MeV", "Energy 0.19 MeV", "Energy 0.51 MeV", "Energy 0.44 MeV", "Energy 0.20 MeV", "Energy 0.06 MeV", "Energy 0.53 MeV", "Energy 1.02 MeV", "Energy 0.06 MeV", "Energy 0.18 MeV", "Energy 0.54 MeV", "Energy 0.31 MeV", "Energy 0.24 MeV", "Energy 0.35 MeV", "Energy 0.43 MeV", "Energy 0.12 MeV", "Energy 0.05 MeV", "Energy 0.19 MeV", "Energy 0.61 MeV", "Energy 0.14 MeV", "Energy 0.19 MeV", "Energy 0.69 MeV", "Energy 0.33 MeV", "Energy 0.17 MeV", "Energy 0.39 MeV", "Energy 0.50 MeV", "Energy 0.11 MeV", "Energy 0.26 MeV", "Energy 1.13 MeV", "Energy 0.06 MeV", "Energy 0.12 MeV", "Energy 0.08 MeV", "Energy 0.62 MeV", "Energy 0.26 MeV", "Energy 0.18 MeV", "Energy 0.69 MeV", "Energy 0.60 MeV", "Energy 0.07 MeV", "Energy 0.30 MeV", "Energy 0.92 MeV", "Energy 0.14 MeV", "Energy 0.08 MeV", "Energy 0.12 MeV", "Energy 0.74 MeV", "Energy 0.27 MeV", "Energy 0.12 MeV", "Energy 0.65 MeV", "Energy 0.48 MeV", "Energy 0.06 MeV", "Energy 0.05 MeV", "Energy 0.67 MeV", "Energy 0.66 MeV", "Energy 0.13 MeV", "Energy 0.17 MeV", "Energy 0.56 MeV", "Energy 0.18 MeV", "Energy 0.11 MeV", "Energy 0.84 MeV", "Energy 0.26 MeV", "Energy 0.17 MeV", "Energy 0.42 MeV", "Energy 0.50 MeV", "Energy 0.19 MeV", "Energy 0.27 MeV", "Energy 0.60 MeV", "Energy 0.28 MeV", "Energy 0.11 MeV", "Energy 0.68 MeV", "Energy 0.11 MeV", "Energy 0.24 MeV", "Energy 0.59 MeV", "Energy 0.80 MeV", "Energy 0.30 MeV", "Energy 0.11 MeV", "Energy 0.15 MeV", "Energy 0.65 MeV", "Energy 0.44 MeV", "Energy 0.63 MeV", "Energy 0.28 MeV", "Energy 0.31 MeV", "Energy 0.56 MeV", "Energy 0.58 MeV", "Energy 0.13 MeV", "Energy 0.87 MeV", "Energy 0.33 MeV", "Energy 0.89 MeV", "Energy 0.12 MeV", "Energy 0.61 MeV", "Energy 0.17 MeV", "Energy 0.51 MeV", "Energy 0.23 MeV", "Energy 0.15 MeV", "Energy 0.40 MeV", "Energy 0.30 MeV", "Energy 0.45 MeV", "Energy 1.03 MeV", "Energy 0.14 MeV", "Energy 0.52 MeV", "Energy 0.55 MeV", "Energy 0.07 MeV", "Energy 0.50 MeV", "Energy 0.23 MeV", "Energy 0.22 MeV", "Energy 0.48 MeV", "Energy 0.23 MeV", "Energy 0.89 MeV", "Energy 0.17 MeV", "Energy 0.42 MeV", "Energy 0.68 MeV", "Energy 0.51 MeV", "Energy 0.34 MeV", "Energy 0.24 MeV", "Energy 0.85 MeV", "Energy 0.32 MeV", "Energy 0.71 MeV", "Energy 1.21 MeV", "Energy 0.16 MeV", "Energy 0.36 MeV", "Energy 0.68 MeV", "Energy 2.04 MeV", "Energy 0.21 MeV", "Energy 0.40 MeV", "Energy 0.37 MeV", "Energy 0.16 MeV", "Energy 0.63 MeV", "Energy 0.47 MeV", "Energy 0.41 MeV", "Energy 0.26 MeV", "Energy 0.45 MeV", "Energy 0.15 MeV", "Energy 1.04 MeV", "Energy 0.63 MeV", "Energy 0.64 MeV", "Energy 0.22 MeV", "Energy 0.25 MeV", "Energy 0.37 MeV", "Energy 0.56 MeV", "Energy 0.09 MeV", "Energy 0.12 MeV", "Energy 0.72 MeV", "Energy 0.10 MeV", "Energy 0.14 MeV", "Energy 0.52 MeV", "Energy 0.43 MeV", "Energy 0.05 MeV", "Energy 0.27 MeV", "Energy 0.63 MeV", "Energy 0.08 MeV", "Energy 0.05 MeV", "Energy 0.67 MeV", "Energy 0.38 MeV", "Energy 0.43 MeV", "Energy 0.61 MeV", "Energy 0.09 MeV", "Energy 0.72 MeV", "Energy 0.23 MeV", "Energy 0.07 MeV", "Energy 0.42 MeV", "Energy 0.53 MeV", "Energy 0.18 MeV", "Energy 0.92 MeV", "Energy 0.15 MeV", "Energy 0.56 MeV", "Energy 0.49 MeV", "Energy 0.14 MeV", "Energy 0.69 MeV", "Energy 0.15 MeV", "Energy 0.74 MeV", "Energy 0.58 MeV", "Energy 0.09 MeV", "Energy 0.15 MeV", "Energy 0.71 MeV", "Energy 0.10 MeV", "Energy 0.11 MeV", "Energy 0.56 MeV", "Energy 0.58 MeV", "Energy 0.06 MeV", "Energy 1.12 MeV", "Energy 0.23 MeV", "Energy 0.30 MeV", "Energy 0.43 MeV", "Energy 1.50 MeV", "Energy 0.28 MeV", "Energy 0.34 MeV", "Energy 0.27 MeV", "Energy 0.40 MeV", "Energy 0.57 MeV", "Energy 0.14 MeV", "Energy 0.54 MeV", "Energy 0.32 MeV", "Energy 0.10 MeV", "Energy 0.54 MeV", "Energy 0.35 MeV", "Energy 0.26 MeV", "Energy 0.34 MeV", "Energy 0.05 MeV", "Energy 0.08 MeV", "Energy 0.25 MeV", "Energy 0.73 MeV", "Energy 0.10 MeV", "Energy 0.14 MeV", "Energy 0.41 MeV", "Energy 0.68 MeV", "Energy 0.09 MeV", "Energy 1.11 MeV", "Energy 0.21 MeV", "Energy 0.14 MeV", "Energy 0.27 MeV", "Energy 0.71 MeV", "Energy 0.76 MeV", "Energy 0.29 MeV", "Energy 0.53 MeV", "Energy 0.12 MeV", "Energy 0.26 MeV", "Energy 0.77 MeV", "Energy 1.09 MeV", "Energy 0.05 MeV", "Energy 0.46 MeV", "Energy 1.38 MeV", "Energy 0.46 MeV", "Energy 0.10 MeV", "Energy 0.70 MeV", "Energy 0.67 MeV", "Energy 0.09 MeV", "Energy 0.27 MeV", "Energy 0.92 MeV", "Energy 1.19 MeV", "Energy 0.63 MeV", "Energy 0.33 MeV", "Energy 0.06 MeV", "Energy 0.70 MeV", "Energy 0.06 MeV", "Energy 0.08 MeV", "Energy 0.66 MeV", "Energy 0.45 MeV", "Energy 0.13 MeV", "Energy 0.53 MeV", "Energy 0.22 MeV", "Energy 0.13 MeV", "Energy 0.94 MeV", "Energy 0.68 MeV", "Energy 0.16 MeV", "Energy 0.42 MeV", "Energy 0.14 MeV", "Energy 0.74 MeV", "Energy 1.03 MeV", "Energy 0.07 MeV", "Energy 0.67 MeV", "Energy 0.16 MeV", "Energy 0.27 MeV", "Energy 0.18 MeV", "Energy 0.57 MeV", "Energy 0.19 MeV", "Energy 0.08 MeV", "Energy 1.20 MeV", "Energy 0.34 MeV", "Energy 0.20 MeV", "Energy 0.68 MeV", "Energy 0.27 MeV", "Energy 0.28 MeV", "Energy 0.41 MeV", "Energy 0.32 MeV", "Energy 0.52 MeV", "Energy 0.14 MeV", "Energy 1.02 MeV", "Energy 0.06 MeV", "Energy 0.89 MeV", "Energy 0.13 MeV", "Energy 0.17 MeV", "Energy 0.37 MeV", "Energy 0.37 MeV", "Energy 0.47 MeV", "Energy 0.51 MeV", "Energy 0.13 MeV", "Energy 0.44 MeV", "Energy 0.19 MeV", "Energy 0.35 MeV", "Energy 0.35 MeV", "Energy 0.06 MeV", "Energy 0.48 MeV", "Energy 0.53 MeV", "Energy 0.33 MeV", "Energy 0.36 MeV", "Energy 0.34 MeV", "Energy 0.27 MeV", "Energy 0.65 MeV", "Energy 0.34 MeV", "Energy 0.30 MeV", "Energy 0.60 MeV", "Energy 0.12 MeV", "Energy 1.42 MeV", "Energy 0.14 MeV", "Energy 0.38 MeV", "Energy 0.65 MeV", "Energy 0.61 MeV", "Energy 0.27 MeV", "Energy 0.38 MeV", "Energy 0.68 MeV", "Energy 0.60 MeV", "Energy 0.22 MeV", "Energy 0.26 MeV", "Energy 0.13 MeV", "Energy 0.57 MeV", "Energy 0.17 MeV", "Energy 0.14 MeV", "Energy 0.51 MeV", "Energy 0.08 MeV", "Energy 0.47 MeV", "Energy 0.43 MeV", "Energy 0.41 MeV", "Energy 0.32 MeV", "Energy 0.34 MeV", "Energy 0.08 MeV", "Energy 0.59 MeV", "Energy 0.07 MeV", "Energy 0.16 MeV", "Energy 0.59 MeV", "Energy 0.29 MeV", "Energy 0.11 MeV", "Energy 0.45 MeV", "Energy 1.29 MeV", "Energy 0.60 MeV", "Energy 0.30 MeV", "Energy 0.32 MeV", "Energy 0.63 MeV", "Energy 0.65 MeV", "Energy 0.14 MeV", "Energy 0.15 MeV", "Energy 0.26 MeV", "Energy 0.38 MeV", "Energy 0.51 MeV", "Energy 0.06 MeV", "Energy 0.41 MeV", "Energy 0.12 MeV", "Energy 0.49 MeV", "Energy 0.22 MeV", "Energy 0.09 MeV", "Energy 0.76 MeV", "Energy 0.05 MeV", "Energy 0.27 MeV", "Energy 0.36 MeV", "Energy 0.40 MeV", "Energy 0.15 MeV", "Energy 0.23 MeV", "Energy 0.80 MeV", "Energy 0.59 MeV", "Energy 0.34 MeV", "Energy 0.34 MeV", "Energy 0.77 MeV", "Energy 0.65 MeV", "Energy 0.11 MeV", "Energy 0.21 MeV", "Energy 0.39 MeV", "Energy 0.46 MeV", "Energy 0.28 MeV", "Energy 0.64 MeV", "Energy 0.34 MeV", "Energy 0.34 MeV", "Energy 0.08 MeV", "Energy 0.50 MeV", "Energy 0.06 MeV", "Energy 0.26 MeV", "Energy 0.30 MeV", "Energy 0.70 MeV", "Energy 0.26 MeV", "Energy 0.39 MeV", "Energy 0.62 MeV", "Energy 0.07 MeV", "Energy 0.09 MeV", "Energy 0.68 MeV", "Energy 1.41 MeV", "Energy 0.64 MeV", "Energy 0.51 MeV", "Energy 0.06 MeV", "Energy 0.58 MeV", "Energy 0.13 MeV", "Energy 0.15 MeV", "Energy 0.33 MeV", "Energy 0.27 MeV", "Energy 0.71 MeV", "Energy 0.53 MeV", "Energy 0.20 MeV", "Energy 0.28 MeV", "Energy 0.46 MeV", "Energy 0.64 MeV", "Energy 0.12 MeV", "Energy 0.56 MeV", "Energy 0.70 MeV", "Energy 0.31 MeV", "Energy 0.74 MeV", "Energy 0.63 MeV", "Energy 0.59 MeV", "Energy 0.12 MeV", "Energy 0.18 MeV", "Energy 0.61 MeV", "Energy 0.09 MeV", "Energy 0.15 MeV", "Energy 0.48 MeV", "Energy 0.46 MeV", "Energy 0.11 MeV", "Energy 0.30 MeV", "Energy 0.74 MeV", "Energy 0.14 MeV", "Energy 0.25 MeV", "Energy 0.29 MeV", "Energy 1.27 MeV", "Energy 0.11 MeV", "Energy 0.10 MeV", "Energy 1.33 MeV", "Energy 0.25 MeV", "Energy 0.40 MeV", "Energy 0.45 MeV", "Energy 0.09 MeV", "Energy 0.13 MeV", "Energy 0.52 MeV", "Energy 0.15 MeV", "Energy 0.31 MeV", "Energy 0.46 MeV", "Energy 0.46 MeV", "Energy 0.05 MeV", "Energy 0.30 MeV", "Energy 0.70 MeV", "Energy 0.18 MeV", "Energy 0.08 MeV", "Energy 0.55 MeV", "Energy 0.41 MeV", "Energy 0.35 MeV", "Energy 0.59 MeV", "Energy 0.60 MeV", "Energy 0.41 MeV", "Energy 0.13 MeV", "Energy 0.40 MeV", "Energy 0.36 MeV", "Energy 0.27 MeV", "Energy 0.10 MeV", "Energy 0.48 MeV", "Energy 1.89 MeV", "Energy 0.29 MeV", "Energy 0.52 MeV", "Energy 0.28 MeV", "Energy 0.12 MeV", "Energy 0.56 MeV", "Energy 0.76 MeV", "Energy 0.69 MeV", "Energy 0.45 MeV", "Energy 0.56 MeV", "Energy 0.85 MeV", "Energy 0.95 MeV", "Energy 0.12 MeV", "Energy 0.11 MeV", "Energy 0.41 MeV", "Energy 0.25 MeV", "Energy 0.49 MeV", "Energy 0.18 MeV", "Energy 0.40 MeV", "Energy 0.26 MeV", "Energy 0.21 MeV", "Energy 0.38 MeV", "Energy 0.21 MeV", "Energy 0.58 MeV", "Energy 0.20 MeV", "Energy 0.74 MeV", "Energy 0.12 MeV", "Energy 0.06 MeV", "Energy 0.55 MeV", "Energy 0.48 MeV", "Energy 0.21 MeV", "Energy 0.90 MeV", "Energy 0.09 MeV", "Energy 0.63 MeV", "Energy 0.25 MeV", "Energy 0.16 MeV", "Energy 0.31 MeV", "Energy 0.58 MeV", "Energy 0.23 MeV", "Energy 0.08 MeV", "Energy 1.06 MeV", "Energy 0.24 MeV", "Energy 0.40 MeV", "Energy 0.30 MeV", "Energy 0.89 MeV", "Energy 0.14 MeV", "Energy 0.06 MeV", "Energy 0.79 MeV", "Energy 0.30 MeV", "Energy 0.60 MeV", "Energy 0.43 MeV", "Energy 0.30 MeV", "Energy 0.82 MeV", "Energy 0.06 MeV", "Energy 0.05 MeV", "Energy 0.79 MeV", "Energy 0.34 MeV", "Energy 0.70 MeV", "Energy 0.06 MeV", "Energy 0.58 MeV", "Energy 0.12 MeV", "Energy 0.13 MeV", "Energy 0.47 MeV", "Energy 0.39 MeV", "Energy 0.06 MeV", "Energy 0.49 MeV", "Energy 0.82 MeV", "Energy 0.21 MeV", "Energy 0.85 MeV", "Energy 0.14 MeV", "Energy 0.68 MeV", "Energy 0.24 MeV", "Energy 0.10 MeV", "Energy 0.24 MeV", "Energy 0.61 MeV", "Energy 0.28 MeV", "Energy 0.05 MeV", "Energy 0.53 MeV", "Energy 0.19 MeV", "Energy 0.37 MeV", "Energy 0.31 MeV", "Energy 0.09 MeV", "Energy 0.70 MeV", "Energy 0.67 MeV", "Energy 0.27 MeV", "Energy 0.45 MeV", "Energy 0.50 MeV", "Energy 0.97 MeV", "Energy 0.10 MeV", "Energy 0.15 MeV", "Energy 0.28 MeV", "Energy 0.35 MeV", "Energy 0.35 MeV", "Energy 0.50 MeV", "Energy 0.17 MeV", "Energy 0.30 MeV", "Energy 0.13 MeV", "Energy 0.84 MeV", "Energy 0.11 MeV", "Energy 0.72 MeV", "Energy 0.80 MeV", "Energy 0.05 MeV", "Energy 0.58 MeV", "Energy 0.18 MeV", "Energy 0.08 MeV", "Energy 0.10 MeV", "Energy 0.75 MeV", "Energy 0.37 MeV", "Energy 0.25 MeV", "Energy 0.39 MeV", "Energy 0.26 MeV", "Energy 0.53 MeV", "Energy 0.80 MeV", "Energy 0.33 MeV", "Energy 0.88 MeV", "Energy 0.09 MeV", "Energy 0.33 MeV", "Energy 0.44 MeV", "Energy 1.04 MeV", "Energy 0.27 MeV", "Energy 0.17 MeV", "Energy 0.61 MeV", "Energy 0.59 MeV", "Energy 0.20 MeV", "Energy 0.07 MeV", "Energy 0.69 MeV", "Energy 0.08 MeV", "Energy 0.16 MeV", "Energy 0.20 MeV", "Energy 0.68 MeV", "Energy 0.39 MeV", "Energy 0.63 MeV", "Energy 0.59 MeV", "Energy 0.28 MeV", "Energy 0.56 MeV", "Energy 0.18 MeV", "Energy 0.81 MeV", "Energy 0.90 MeV", "Energy 0.12 MeV", "Energy 0.23 MeV", "Energy 0.69 MeV", "Energy 0.32 MeV", "Energy 0.07 MeV", "Energy 0.42 MeV", "Energy 0.05 MeV", "Energy 0.46 MeV", "Energy 0.55 MeV", "Energy 0.69 MeV", "Energy 0.23 MeV", "Energy 0.13 MeV", "Energy 0.41 MeV", "Energy 0.40 MeV", "Energy 0.13 MeV", "Energy 0.17 MeV", "Energy 0.69 MeV", "Energy 0.48 MeV", "Energy 0.37 MeV", "Energy 0.90 MeV", "Energy 0.19 MeV", "Energy 0.16 MeV", "Energy 0.09 MeV", "Energy 0.88 MeV", "Energy 0.50 MeV", "Energy 0.54 MeV", "Energy 0.42 MeV", "Energy 0.28 MeV", "Energy 0.59 MeV", "Energy 0.43 MeV", "Energy 0.18 MeV", "Energy 0.30 MeV", "Energy 0.10 MeV", "Energy 0.64 MeV", "Energy 0.10 MeV", "Energy 0.22 MeV", "Energy 0.58 MeV", "Energy 0.31 MeV", "Energy 0.10 MeV", "Energy 0.55 MeV", "Energy 0.06 MeV", "Energy 0.44 MeV", "Energy 0.35 MeV", "Energy 0.73 MeV", "Energy 0.34 MeV", "Energy 0.11 MeV", "Energy 0.39 MeV", "Energy 0.37 MeV", "Energy 0.45 MeV", "Energy 0.23 MeV", "Energy 0.59 MeV", "Energy 0.46 MeV", "Energy 0.34 MeV", "Energy 0.72 MeV", "Energy 0.06 MeV", "Energy 0.13 MeV", "Energy 0.07 MeV", "Energy 0.52 MeV", "Energy 0.39 MeV", "Energy 0.07 MeV", "Energy 0.26 MeV", "Energy 0.81 MeV", "Energy 0.05 MeV", "Energy 0.27 MeV", "Energy 0.72 MeV", "Energy 0.59 MeV", "Energy 0.45 MeV", "Energy 0.41 MeV", "Energy 0.11 MeV", "Energy 0.62 MeV", "Energy 0.35 MeV", "Energy 0.61 MeV", "Energy 0.19 MeV", "Energy 0.07 MeV", "Energy 0.39 MeV", "Energy 0.44 MeV", "Energy 0.31 MeV", "Energy 0.18 MeV", "Energy 0.72 MeV", "Energy 0.51 MeV", "Energy 0.68 MeV", "Energy 0.41 MeV", "Energy 0.15 MeV", "Energy 0.47 MeV", "Energy 0.45 MeV", "Energy 0.42 MeV", "Energy 0.46 MeV", "Energy 0.40 MeV", "Energy 0.52 MeV", "Energy 0.15 MeV", "Energy 0.22 MeV", "Energy 0.71 MeV", "Energy 0.27 MeV", "Energy 0.70 MeV", "Energy 0.09 MeV", "Energy 0.15 MeV", "Energy 0.77 MeV", "Energy 0.19 MeV", "Energy 0.61 MeV", "Energy 0.63 MeV", "Energy 0.30 MeV", "Energy 0.28 MeV", "Energy 0.48 MeV", "Energy 0.51 MeV", "Energy 0.42 MeV", "Energy 0.35 MeV", "Energy 0.32 MeV", "Energy 0.35 MeV", "Energy 0.34 MeV", "Energy 0.61 MeV", "Energy 0.17 MeV", "Energy 0.64 MeV", "Energy 0.15 MeV", "Energy 0.06 MeV", "Energy 0.05 MeV", "Energy 0.65 MeV", "Energy 0.16 MeV", "Energy 0.50 MeV", "Energy 0.22 MeV", "Energy 0.07 MeV", "Energy 0.71 MeV", "Energy 0.37 MeV", "Energy 0.41 MeV", "Energy 0.52 MeV", "Energy 0.16 MeV", "Energy 0.10 MeV", "Energy 0.47 MeV", "Energy 0.41 MeV", "Energy 0.14 MeV", "Energy 0.22 MeV", "Energy 0.68 MeV", "Energy 0.42 MeV", "Energy 0.59 MeV", "Energy 0.69 MeV", "Energy 0.35 MeV", "Energy 0.17 MeV", "Energy 0.52 MeV", "Energy 0.20 MeV", "Energy 0.05 MeV", "Energy 0.85 MeV", "Energy 0.10 MeV", "Energy 0.24 MeV", "Energy 0.50 MeV", "Energy 0.65 MeV", "Energy 0.32 MeV", "Energy 0.09 MeV", "Energy 0.48 MeV", "Energy 0.54 MeV", "Energy 0.59 MeV", "Energy 0.11 MeV", "Energy 0.61 MeV", "Energy 0.06 MeV", "Energy 0.33 MeV", "Energy 0.44 MeV", "Energy 0.61 MeV", "Energy 0.30 MeV", "Energy 0.29 MeV", "Energy 0.39 MeV", "Energy 0.27 MeV", "Energy 0.78 MeV", "Energy 0.17 MeV", "Energy 0.27 MeV", "Energy 0.56 MeV", "Energy 0.57 MeV", "Energy 0.56 MeV", "Energy 0.80 MeV", "Energy 0.15 MeV", "Energy 0.53 MeV", "Energy 0.35 MeV", "Energy 0.12 MeV", "Energy 0.79 MeV", "Energy 0.07 MeV", "Energy 0.23 MeV", "Energy 0.68 MeV", "Energy 0.38 MeV", "Energy 0.70 MeV", "Energy 0.06 MeV", "Energy 0.44 MeV", "Energy 0.63 MeV", "Energy 0.23 MeV", "Energy 0.73 MeV", "Energy 0.08 MeV", "Energy 0.19 MeV", "Energy 0.44 MeV", "Energy 0.32 MeV", "Energy 0.39 MeV", "Energy 0.06 MeV", "Energy 0.49 MeV", "Energy 0.56 MeV", "Energy 0.53 MeV", "Energy 0.83 MeV", "Energy 0.21 MeV", "Energy 0.07 MeV", "Energy 0.73 MeV", "Energy 0.27 MeV", "Energy 0.07 MeV", "Energy 0.22 MeV", "Energy 0.61 MeV", "Energy 0.30 MeV", "Energy 0.68 MeV", "Energy 0.47 MeV", "Energy 0.65 MeV", "Energy 0.07 MeV", "Energy 0.44 MeV", "Energy 0.05 MeV", "Energy 0.50 MeV", "Energy 0.11 MeV", "Energy 0.69 MeV", "Energy 0.21 MeV", "Energy 0.88 MeV", "Energy 0.12 MeV", "Energy 0.14 MeV", "Energy 0.49 MeV", "Energy 0.22 MeV", "Energy 0.27 MeV", "Energy 0.07 MeV", "Energy 0.57 MeV", "Energy 0.34 MeV", "Energy 0.84 MeV", "Energy 0.65 MeV", "Energy 0.29 MeV", "Energy 0.55 MeV", "Energy 0.15 MeV", "Energy 0.14 MeV", "Energy 0.19 MeV", "Energy 0.09 MeV", "Energy 0.53 MeV", "Energy 0.41 MeV", "Energy 0.69 MeV", "Energy 0.53 MeV", "Energy 0.28 MeV", "Energy 0.13 MeV", "Energy 0.79 MeV", "Energy 0.22 MeV", "Energy 0.18 MeV", "Energy 0.28 MeV", "Energy 0.12 MeV", "Energy 0.69 MeV", "Energy 0.87 MeV", "Energy 0.35 MeV", "Energy 0.14 MeV", "Energy 0.67 MeV", "Energy 0.22 MeV", "Energy 0.42 MeV", "Energy 0.07 MeV", "Energy 0.46 MeV", "Energy 0.48 MeV", "Energy 0.45 MeV", "Energy 0.63 MeV", "Energy 0.27 MeV", "Energy 0.62 MeV", "Energy 0.16 MeV", "Energy 0.16 MeV", "Energy 0.11 MeV", "Energy 0.66 MeV", "Energy 0.14 MeV", "Energy 0.24 MeV", "Energy 0.72 MeV", "Energy 0.18 MeV", "Energy 0.46 MeV", "Energy 0.19 MeV", "Energy 0.27 MeV", "Energy 0.55 MeV", "Energy 0.37 MeV", "Energy 0.48 MeV", "Energy 0.73 MeV", "Energy 0.33 MeV", "Energy 0.07 MeV", "Energy 0.53 MeV", "Energy 0.12 MeV", "Energy 0.26 MeV", "Energy 0.13 MeV", "Energy 0.82 MeV", "Energy 0.16 MeV", "Energy 0.11 MeV", "Energy 0.86 MeV", "Energy 0.50 MeV", "Energy 0.94 MeV", "Energy 0.72 MeV", "Energy 0.40 MeV", "Energy 0.35 MeV", "Energy 0.07 MeV", "Energy 0.43 MeV", "Energy 0.59 MeV", "Energy 0.26 MeV", "Energy 1.16 MeV", "Energy 0.10 MeV", "Energy 0.11 MeV", "Energy 0.22 MeV", "Energy 0.44 MeV", "Energy 0.39 MeV", "Energy 0.71 MeV", "Energy 0.38 MeV", "Energy 0.44 MeV", "Energy 0.08 MeV", "Energy 0.35 MeV", "Energy 0.20 MeV", "Energy 0.44 MeV", "Energy 0.54 MeV", "Energy 0.21 MeV", "Energy 0.74 MeV", "Energy 0.09 MeV", "Energy 0.17 MeV", "Energy 0.13 MeV", "Energy 0.68 MeV", "Energy 0.30 MeV", "Energy 0.59 MeV", "Energy 0.44 MeV", "Energy 0.28 MeV", "Energy 0.19 MeV", "Energy 0.29 MeV", "Energy 0.28 MeV", "Energy 0.28 MeV", "Energy 0.76 MeV", "Energy 0.13 MeV", "Energy 0.13 MeV", "Energy 0.70 MeV", "Energy 0.09 MeV", "Energy 0.29 MeV", "Energy 0.06 MeV", "Energy 0.64 MeV", "Energy 0.18 MeV", "Energy 1.13 MeV", "Energy 0.50 MeV", "Energy 0.34 MeV", "Energy 1.21 MeV", "Energy 0.77 MeV", "Energy 0.28 MeV", "Energy 0.19 MeV", "Energy 0.45 MeV", "Energy 0.78 MeV", "Energy 0.47 MeV", "Energy 0.10 MeV", "Energy 0.72 MeV", "Energy 0.41 MeV", "Energy 0.25 MeV", "Energy 0.36 MeV", "Energy 0.34 MeV", "Energy 0.50 MeV", "Energy 0.44 MeV", "Energy 1.41 MeV", "Energy 0.13 MeV", "Energy 1.05 MeV", "Energy 0.07 MeV", "Energy 0.25 MeV", "Energy 0.96 MeV", "Energy 0.28 MeV", "Energy 0.68 MeV", "Energy 0.35 MeV", "Energy 0.07 MeV", "Energy 0.34 MeV", "Energy 0.50 MeV", "Energy 0.07 MeV", "Energy 0.11 MeV", "Energy 0.74 MeV", "Energy 0.20 MeV", "Energy 0.55 MeV", "Energy 0.15 MeV", "Energy 0.15 MeV", "Energy 0.16 MeV", "Energy 0.65 MeV", "Energy 0.33 MeV", "Energy 0.59 MeV", "Energy 0.29 MeV", "Energy 0.11 MeV", "Energy 0.61 MeV", "Energy 0.29 MeV", "Energy 0.60 MeV" ], "marker": { "color": [ 0.11458876729011536, 0.16056856513023376, 0.7114182710647583, 0.44144174456596375, 0.8111237287521362, 0.20623011887073517, 0.2167436182498932, 0.4949330985546112, 0.5761945843696594, 0.20551949739456177, 0.8136782050132751, 0.18850399553775787, 0.2181042581796646, 0.8418595790863037, 0.3771279454231262, 0.13137954473495483, 0.6961735486984253, 0.1633092164993286, 0.8575127720832825, 0.5305267572402954, 0.19090110063552856, 0.5105143189430237, 0.4449659585952759, 0.2009189873933792, 0.06357181817293167, 0.5316689014434814, 1.0174914598464966, 0.05515926331281662, 0.18327610194683075, 0.5439374446868896, 0.31273430585861206, 0.24213829636573792, 0.351855993270874, 0.43433907628059387, 0.11588302254676819, 0.05346713215112686, 0.19436295330524445, 0.6137482523918152, 0.14336399734020233, 0.1904810667037964, 0.6938363313674927, 0.3323151767253876, 0.17202486097812653, 0.3932291567325592, 0.5027159452438354, 0.11147648096084595, 0.26108118891716003, 1.1333674192428589, 0.05663374811410904, 0.12147459387779236, 0.07519442588090897, 0.6156764626502991, 0.25677406787872314, 0.1817517727613449, 0.691921591758728, 0.5981698632240295, 0.07031886279582977, 0.29814064502716064, 0.9151312112808228, 0.13777385652065277, 0.07548356056213379, 0.12075798213481903, 0.7424179315567017, 0.2693377435207367, 0.12108847498893738, 0.6461519002914429, 0.4833066761493683, 0.06379257887601852, 0.054765891283750534, 0.669363260269165, 0.6636204719543457, 0.12734082341194153, 0.16952425241470337, 0.5584995746612549, 0.17508012056350708, 0.1096542701125145, 0.8356533646583557, 0.25939303636550903, 0.1652849018573761, 0.4187609553337097, 0.49671226739883423, 0.18768665194511414, 0.2665758728981018, 0.6020251512527466, 0.28314274549484253, 0.11407633125782013, 0.6751245260238647, 0.11410756409168243, 0.24267295002937317, 0.5855752825737, 0.7987339496612549, 0.2950124442577362, 0.11169815063476562, 0.14900216460227966, 0.6459999680519104, 0.44440820813179016, 0.6276016235351562, 0.2821367681026459, 0.31242114305496216, 0.5577477812767029, 0.5810297727584839, 0.1294029802083969, 0.8682552576065063, 0.3296767473220825, 0.8902602195739746, 0.11888883262872696, 0.6089573502540588, 0.17018911242485046, 0.5101282000541687, 0.23126240074634552, 0.15353968739509583, 0.3953166604042053, 0.29833507537841797, 0.44941720366477966, 1.033111572265625, 0.13827796280384064, 0.5236396193504333, 0.5463302135467529, 0.06791295856237411, 0.5015880465507507, 0.22749769687652588, 0.22051742672920227, 0.48202279210090637, 0.2348228096961975, 0.8944698572158813, 0.16991254687309265, 0.41897639632225037, 0.6820477247238159, 0.5104131102561951, 0.34206870198249817, 0.24496828019618988, 0.8525557518005371, 0.3191768527030945, 0.7093946933746338, 1.2107141017913818, 0.163066565990448, 0.36306512355804443, 0.677386462688446, 2.0427916049957275, 0.21191182732582092, 0.3950823247432709, 0.36773166060447693, 0.16330470144748688, 0.6348248720169067, 0.468585342168808, 0.4079190492630005, 0.2558700144290924, 0.44926735758781433, 0.1475314497947693, 1.035173773765564, 0.6275256872177124, 0.6377551555633545, 0.21816037595272064, 0.25362908840179443, 0.37322095036506653, 0.5578548312187195, 0.09396382421255112, 0.12440426647663116, 0.7168899178504944, 0.10498534142971039, 0.14132219552993774, 0.5234320759773254, 0.42997896671295166, 0.05478521063923836, 0.2677527964115143, 0.6285027861595154, 0.08248529583215714, 0.05498122423887253, 0.6731757521629333, 0.38324111700057983, 0.43464991450309753, 0.6146582961082458, 0.09486991912126541, 0.7172950506210327, 0.23264102637767792, 0.06513194739818573, 0.42445266246795654, 0.5308965444564819, 0.17914587259292603, 0.9247267842292786, 0.14671838283538818, 0.5645205974578857, 0.4856170117855072, 0.13759265840053558, 0.6862834692001343, 0.1460699886083603, 0.7363266348838806, 0.5768172144889832, 0.0865890234708786, 0.14676396548748016, 0.7076213955879211, 0.09587416052818298, 0.10974504798650742, 0.5572826266288757, 0.5820410251617432, 0.06283412873744965, 1.1197140216827393, 0.2261696308851242, 0.2950443625450134, 0.4309999346733093, 1.4980583190917969, 0.28254103660583496, 0.33664315938949585, 0.26693469285964966, 0.4022888243198395, 0.5653945803642273, 0.13903872668743134, 0.5371641516685486, 0.3207119107246399, 0.10242617875337601, 0.5411955118179321, 0.35251468420028687, 0.256399929523468, 0.3409601151943207, 0.053793810307979584, 0.07645421475172043, 0.24510201811790466, 0.732262909412384, 0.10090850293636322, 0.1427147090435028, 0.4120084345340729, 0.6824548840522766, 0.08547374606132507, 1.1110281944274902, 0.20719072222709656, 0.14128969609737396, 0.2673780024051666, 0.710094690322876, 0.7629284858703613, 0.29426145553588867, 0.5348793268203735, 0.11756826937198639, 0.2571712136268616, 0.7730411291122437, 1.0857477188110352, 0.05136176571249962, 0.4564018249511719, 1.384831428527832, 0.4561857283115387, 0.09854718297719955, 0.7001465559005737, 0.6737402081489563, 0.0936744213104248, 0.26673102378845215, 0.9222602844238281, 1.1866209506988525, 0.6250491142272949, 0.32636702060699463, 0.060265641659498215, 0.7009000182151794, 0.05926790088415146, 0.0809408500790596, 0.657073974609375, 0.4546731412410736, 0.13466276228427887, 0.5338366031646729, 0.21805895864963531, 0.12804415822029114, 0.9402902126312256, 0.675604522228241, 0.16268925368785858, 0.42079517245292664, 0.1395028829574585, 0.7437579035758972, 1.0332262516021729, 0.06835723668336868, 0.6655284762382507, 0.1574590653181076, 0.2705875039100647, 0.1829395741224289, 0.5695467591285706, 0.1939939558506012, 0.07867226004600525, 1.1984306573867798, 0.33917880058288574, 0.19653254747390747, 0.675406277179718, 0.26862508058547974, 0.2835093140602112, 0.4108581244945526, 0.316745787858963, 0.5211677551269531, 0.14191807806491852, 1.0180282592773438, 0.06308296322822571, 0.8933184742927551, 0.13074496388435364, 0.1728401482105255, 0.3695371747016907, 0.37387406826019287, 0.4689579904079437, 0.5080256462097168, 0.12945568561553955, 0.4388173520565033, 0.19049155712127686, 0.3496936559677124, 0.35463717579841614, 0.06426331400871277, 0.47603991627693176, 0.5275452136993408, 0.33042049407958984, 0.3607015311717987, 0.3414982259273529, 0.26630428433418274, 0.6546074748039246, 0.34088560938835144, 0.30055657029151917, 0.6038282513618469, 0.11632952094078064, 1.4153963327407837, 0.1433211863040924, 0.3768564760684967, 0.6473852396011353, 0.6067523956298828, 0.26656708121299744, 0.38222065567970276, 0.680545449256897, 0.6044321060180664, 0.21795566380023956, 0.2640218734741211, 0.13047610223293304, 0.5653640031814575, 0.16882039606571198, 0.1414772868156433, 0.5124396085739136, 0.07879425585269928, 0.4661724865436554, 0.4250316619873047, 0.4118344485759735, 0.31781554222106934, 0.3390328884124756, 0.07982432097196579, 0.5911136865615845, 0.07079321146011353, 0.1624210923910141, 0.5908263325691223, 0.2902650237083435, 0.11193008720874786, 0.44899916648864746, 1.2917524576187134, 0.5985564589500427, 0.29720965027809143, 0.31997233629226685, 0.6255532503128052, 0.6536967754364014, 0.1407177746295929, 0.15037095546722412, 0.2567300498485565, 0.3794381618499756, 0.5121652483940125, 0.06242614984512329, 0.41424137353897095, 0.12351754307746887, 0.49284327030181885, 0.22223177552223206, 0.09169863164424896, 0.7580132484436035, 0.052693407982587814, 0.27315184473991394, 0.36211472749710083, 0.3980132043361664, 0.14524075388908386, 0.22561363875865936, 0.8034825325012207, 0.5874699950218201, 0.34416016936302185, 0.3444172143936157, 0.7734927535057068, 0.6523234248161316, 0.10552815347909927, 0.21356186270713806, 0.3880203664302826, 0.46441128849983215, 0.2758910059928894, 0.6395012736320496, 0.33864256739616394, 0.33507871627807617, 0.0821964293718338, 0.4984826445579529, 0.06151455640792847, 0.25738978385925293, 0.3005404770374298, 0.6973972320556641, 0.26295965909957886, 0.391377329826355, 0.6244736909866333, 0.07477036118507385, 0.09070142358541489, 0.6771870851516724, 1.4063336849212646, 0.6422445178031921, 0.5148904919624329, 0.060974568128585815, 0.5802108645439148, 0.13482026755809784, 0.14966310560703278, 0.3259589672088623, 0.26540929079055786, 0.7076971530914307, 0.5257675647735596, 0.19818013906478882, 0.27877989411354065, 0.46122124791145325, 0.6423164010047913, 0.12130792438983917, 0.5587445497512817, 0.7016392946243286, 0.3059104382991791, 0.7365322113037109, 0.6296966671943665, 0.5876625180244446, 0.11813592165708542, 0.18467795848846436, 0.6083551645278931, 0.09172041714191437, 0.1505543440580368, 0.48137709498405457, 0.45865318179130554, 0.11249261349439621, 0.2985038459300995, 0.7388331890106201, 0.1440909206867218, 0.24532604217529297, 0.29262956976890564, 1.271698236465454, 0.1079564020037651, 0.10332538932561874, 1.3273506164550781, 0.2468937784433365, 0.40219956636428833, 0.44983118772506714, 0.09471456706523895, 0.13085730373859406, 0.5208396315574646, 0.1490190625190735, 0.3051663041114807, 0.45533034205436707, 0.46225443482398987, 0.053888048976659775, 0.3003250062465668, 0.6991250514984131, 0.18405269086360931, 0.07628987729549408, 0.5524830222129822, 0.41217678785324097, 0.3459797203540802, 0.5855768322944641, 0.6041111946105957, 0.4132324755191803, 0.13427630066871643, 0.3966197669506073, 0.3551100492477417, 0.27117326855659485, 0.10371582210063934, 0.48186638951301575, 1.8884520530700684, 0.28955185413360596, 0.5214015245437622, 0.2803572118282318, 0.1188502162694931, 0.5644603967666626, 0.7588707208633423, 0.6921123266220093, 0.4480654001235962, 0.5573531985282898, 0.8462099432945251, 0.9545325040817261, 0.12330550700426102, 0.11185359954833984, 0.40583083033561707, 0.2539372444152832, 0.4890750050544739, 0.18304656445980072, 0.3981054425239563, 0.25993436574935913, 0.20721954107284546, 0.3770916759967804, 0.21348808705806732, 0.5793746113777161, 0.19554947316646576, 0.7400367856025696, 0.123028464615345, 0.055012594908475876, 0.5489674210548401, 0.4831347167491913, 0.21379859745502472, 0.9020202159881592, 0.08783985674381256, 0.6293630003929138, 0.25114572048187256, 0.16442526876926422, 0.31331875920295715, 0.5759744048118591, 0.2337368130683899, 0.07677999883890152, 1.0584945678710938, 0.23546259105205536, 0.3982134461402893, 0.3026842772960663, 0.8923338055610657, 0.13963982462882996, 0.06340237706899643, 0.7863008379936218, 0.2991204261779785, 0.5992401838302612, 0.42590028047561646, 0.3008430004119873, 0.8222873210906982, 0.06030575931072235, 0.054247137159109116, 0.7899135947227478, 0.3384380638599396, 0.696661114692688, 0.05674704164266586, 0.5771342515945435, 0.11925133317708969, 0.13341200351715088, 0.4709937274456024, 0.38570940494537354, 0.06259125471115112, 0.49101611971855164, 0.8244141340255737, 0.20636636018753052, 0.8538742661476135, 0.13506409525871277, 0.6809396147727966, 0.23663033545017242, 0.09627856314182281, 0.2401868849992752, 0.6103505492210388, 0.2806216776371002, 0.0531717985868454, 0.5341320037841797, 0.1890781819820404, 0.37439537048339844, 0.30929839611053467, 0.09145048260688782, 0.7034105658531189, 0.66706782579422, 0.2748169004917145, 0.45337381958961487, 0.5033010244369507, 0.9696162343025208, 0.10304678976535797, 0.14831918478012085, 0.28313112258911133, 0.34509170055389404, 0.34512290358543396, 0.502223014831543, 0.17158818244934082, 0.2980014681816101, 0.12861137092113495, 0.8438944816589355, 0.11354249715805054, 0.7164186239242554, 0.7981328368186951, 0.05376357212662697, 0.5808680057525635, 0.1776224821805954, 0.07584284991025925, 0.0981726124882698, 0.7547110319137573, 0.3688890337944031, 0.2464313805103302, 0.3903762698173523, 0.25821229815483093, 0.5282791256904602, 0.800808310508728, 0.3310960531234741, 0.8839917182922363, 0.09254509210586548, 0.32584628462791443, 0.43793466687202454, 1.0362738370895386, 0.2715938985347748, 0.16742771863937378, 0.6088417768478394, 0.5878573060035706, 0.20450545847415924, 0.06976417452096939, 0.6899945735931396, 0.0769323855638504, 0.16448719799518585, 0.20102651417255402, 0.6845576763153076, 0.3930162489414215, 0.6336480975151062, 0.5860018730163574, 0.2841253876686096, 0.5636730790138245, 0.18119725584983826, 0.8060896396636963, 0.8990037441253662, 0.11549229919910431, 0.23442435264587402, 0.6900734305381775, 0.3246742784976959, 0.06921803951263428, 0.42037433385849, 0.050735585391521454, 0.4553525149822235, 0.5548129081726074, 0.6903313398361206, 0.2294991910457611, 0.13184373080730438, 0.41312265396118164, 0.39589986205101013, 0.13473056256771088, 0.1711803674697876, 0.6916535496711731, 0.48497551679611206, 0.3701339364051819, 0.9003379940986633, 0.19098907709121704, 0.1624932885169983, 0.0901549682021141, 0.88393634557724, 0.4959268569946289, 0.5403378009796143, 0.4206398129463196, 0.277044415473938, 0.5929486751556396, 0.42577528953552246, 0.18315881490707397, 0.2983761727809906, 0.10075470060110092, 0.6377686858177185, 0.10001658648252487, 0.2241957187652588, 0.5806930661201477, 0.3070235550403595, 0.0959971696138382, 0.5500802397727966, 0.06029319018125534, 0.4397009015083313, 0.34858858585357666, 0.7335946559906006, 0.342478483915329, 0.11494812369346619, 0.39228877425193787, 0.37003713846206665, 0.44858428835868835, 0.22678382694721222, 0.5930489897727966, 0.4566355347633362, 0.3354586660861969, 0.7230063676834106, 0.05756780505180359, 0.13439783453941345, 0.07349491864442825, 0.5159852504730225, 0.39388307929039, 0.0655066967010498, 0.2627801299095154, 0.805700421333313, 0.053133223205804825, 0.2688209116458893, 0.7171791791915894, 0.5861063003540039, 0.4536838233470917, 0.41143953800201416, 0.1057375967502594, 0.6165739893913269, 0.3473220765590668, 0.6125903129577637, 0.18663844466209412, 0.06836345791816711, 0.38929036259651184, 0.43993741273880005, 0.31453707814216614, 0.18303081393241882, 0.7226812243461609, 0.5094794034957886, 0.6828092932701111, 0.41192978620529175, 0.15298707783222198, 0.4687483608722687, 0.44948136806488037, 0.4188348352909088, 0.4554756283760071, 0.3967383801937103, 0.5215274095535278, 0.14985211193561554, 0.218590646982193, 0.7062420845031738, 0.2689812183380127, 0.7012378573417664, 0.09380081295967102, 0.1534312665462494, 0.7668266296386719, 0.19352556765079498, 0.6070394515991211, 0.6312201023101807, 0.3046860694885254, 0.2785155177116394, 0.4760146141052246, 0.5117174386978149, 0.4237542748451233, 0.35437193512916565, 0.3205311894416809, 0.34831860661506653, 0.3396509289741516, 0.6050849556922913, 0.17149579524993896, 0.6360278725624084, 0.14992253482341766, 0.06322171539068222, 0.05225894972681999, 0.6458556056022644, 0.16170336306095123, 0.5042663216590881, 0.22374537587165833, 0.07048923522233963, 0.7128786444664001, 0.36977311968803406, 0.4116738438606262, 0.5187377333641052, 0.15514150261878967, 0.0989515632390976, 0.47155827283859253, 0.4143632650375366, 0.13578973710536957, 0.21909378468990326, 0.6773592829704285, 0.42400121688842773, 0.5856847763061523, 0.692603588104248, 0.3478085994720459, 0.1724548488855362, 0.5197537541389465, 0.2021111249923706, 0.0543641522526741, 0.8511568307876587, 0.09924791753292084, 0.23855026066303253, 0.5006471872329712, 0.6464019417762756, 0.3175545036792755, 0.0851544663310051, 0.48283061385154724, 0.539318859577179, 0.5923758745193481, 0.11428117007017136, 0.6147714853286743, 0.06012125313282013, 0.32778462767601013, 0.44497087597846985, 0.6054216027259827, 0.29976287484169006, 0.29056060314178467, 0.38971245288848877, 0.27131199836730957, 0.7766638994216919, 0.17394647002220154, 0.2681252062320709, 0.5594070553779602, 0.566415548324585, 0.5575571060180664, 0.8047333359718323, 0.15239350497722626, 0.5347652435302734, 0.3508656322956085, 0.11857354640960693, 0.7914131283760071, 0.06825333833694458, 0.23002997040748596, 0.6848880052566528, 0.3765707314014435, 0.6957696080207825, 0.06039375066757202, 0.44430622458457947, 0.6286412477493286, 0.22689740359783173, 0.7345312237739563, 0.07903842628002167, 0.18975085020065308, 0.4356672465801239, 0.3227129578590393, 0.38757914304733276, 0.05918025225400925, 0.4905567765235901, 0.5634738206863403, 0.5330629348754883, 0.8257344961166382, 0.2099713534116745, 0.07096780836582184, 0.7317931056022644, 0.27172988653182983, 0.06648019701242447, 0.22144146263599396, 0.6081053018569946, 0.2961786091327667, 0.6783549785614014, 0.46702879667282104, 0.6464226245880127, 0.06961554288864136, 0.4392812252044678, 0.05425748974084854, 0.5014691352844238, 0.11463193595409393, 0.6883021593093872, 0.21424353122711182, 0.8833760619163513, 0.11872082948684692, 0.13604070246219635, 0.48826125264167786, 0.22059571743011475, 0.27466583251953125, 0.07153649628162384, 0.5718103051185608, 0.336751252412796, 0.8389574885368347, 0.650627613067627, 0.28656235337257385, 0.5485262870788574, 0.14758148789405823, 0.14298824965953827, 0.19120962917804718, 0.09317941218614578, 0.5284401774406433, 0.40804317593574524, 0.6872724890708923, 0.5259255766868591, 0.2806180417537689, 0.12611910700798035, 0.7860729694366455, 0.22209523618221283, 0.17970865964889526, 0.27650904655456543, 0.11870677769184113, 0.6909481883049011, 0.865239679813385, 0.3512183725833893, 0.13782300055027008, 0.6686030030250549, 0.2193378061056137, 0.4198145866394043, 0.07382708787918091, 0.4624115824699402, 0.482852965593338, 0.4547182023525238, 0.6292659044265747, 0.2717568278312683, 0.621863603591919, 0.1582891196012497, 0.15989011526107788, 0.10760515928268433, 0.6583227515220642, 0.1369745135307312, 0.24123257398605347, 0.7172589898109436, 0.18450087308883667, 0.4614570736885071, 0.19281986355781555, 0.26867762207984924, 0.5531325340270996, 0.36578282713890076, 0.4822927713394165, 0.7263464331626892, 0.33306336402893066, 0.07281249761581421, 0.5274450778961182, 0.12434853613376617, 0.2614930272102356, 0.12854166328907013, 0.8171613216400146, 0.1608869731426239, 0.10829021781682968, 0.8563818335533142, 0.4999372065067291, 0.9393858909606934, 0.718994140625, 0.40173423290252686, 0.3501228988170624, 0.07380776852369308, 0.43200722336769104, 0.5911726951599121, 0.263118714094162, 1.162169098854065, 0.09531646221876144, 0.1140143871307373, 0.2173408716917038, 0.44250723719596863, 0.3924141526222229, 0.7068093419075012, 0.3838730454444885, 0.4366832375526428, 0.08006072044372559, 0.34545543789863586, 0.2044917792081833, 0.4389670491218567, 0.5425231456756592, 0.20890526473522186, 0.7376915216445923, 0.08915713429450989, 0.172024667263031, 0.12941062450408936, 0.6840395927429199, 0.29951247572898865, 0.5868508219718933, 0.43651700019836426, 0.27751538157463074, 0.18608255684375763, 0.2919332981109619, 0.284832626581192, 0.2777773141860962, 0.7564510107040405, 0.13290590047836304, 0.13347141444683075, 0.6970489621162415, 0.08749011158943176, 0.2851589024066925, 0.06052684038877487, 0.639655351638794, 0.17875893414020538, 1.1254830360412598, 0.4968799650669098, 0.34267938137054443, 1.2060538530349731, 0.7733627557754517, 0.27767786383628845, 0.18785259127616882, 0.45301252603530884, 0.7800287008285522, 0.4676523208618164, 0.10025127977132797, 0.7228806018829346, 0.40593573451042175, 0.24682289361953735, 0.3586038649082184, 0.3382751941680908, 0.5020476579666138, 0.4440074563026428, 1.4142332077026367, 0.12684862315654755, 1.0520787239074707, 0.06921331584453583, 0.24838757514953613, 0.9617184400558472, 0.2756766080856323, 0.6829053163528442, 0.35125112533569336, 0.06753041595220566, 0.3402020037174225, 0.4975098669528961, 0.0700557753443718, 0.11077222228050232, 0.7375430464744568, 0.2007533311843872, 0.5507990717887878, 0.1452094316482544, 0.1506386548280716, 0.16202712059020996, 0.6518592238426208, 0.3269183039665222, 0.5928590297698975, 0.28545984625816345, 0.10676069557666779, 0.6091511845588684, 0.2852802574634552, 0.6032394170761108 ], "colorscale": [ [ 0.0, "#000004" ], [ 0.1111111111111111, "#1b0c41" ], [ 0.2222222222222222, "#4a0c6b" ], [ 0.3333333333333333, "#781c6d" ], [ 0.4444444444444444, "#a52c60" ], [ 0.5555555555555556, "#cf4446" ], [ 0.6666666666666666, "#ed6925" ], [ 0.7777777777777778, "#fb9b06" ], [ 0.8888888888888888, "#f7d13d" ], [ 1.0, "#fcffa4" ] ], "size": 1.5 }, "mode": "markers", "name": "Trajectory 3", "type": "scatter3d", "x": [ 628.0, 627.0, 627.0, 628.0, 626.0, 626.0, 627.0, 625.0, 625.0, 626.0, 625.0, 626.0, 624.0, 624.0, 625.0, 625.0, 625.0, 619.0, 623.0, 623.0, 624.0, 622.0, 622.0, 623.0, 623.0, 621.0, 621.0, 621.0, 622.0, 620.0, 620.0, 621.0, 619.0, 619.0, 620.0, 620.0, 618.0, 618.0, 618.0, 619.0, 617.0, 617.0, 618.0, 616.0, 616.0, 617.0, 615.0, 615.0, 615.0, 616.0, 614.0, 614.0, 614.0, 615.0, 613.0, 613.0, 614.0, 612.0, 612.0, 612.0, 613.0, 611.0, 611.0, 611.0, 612.0, 610.0, 610.0, 611.0, 608.0, 609.0, 609.0, 607.0, 608.0, 608.0, 608.0, 606.0, 607.0, 607.0, 605.0, 606.0, 606.0, 604.0, 605.0, 605.0, 603.0, 604.0, 604.0, 604.0, 602.0, 603.0, 603.0, 603.0, 601.0, 601.0, 602.0, 602.0, 603.0, 600.0, 601.0, 601.0, 599.0, 600.0, 600.0, 598.0, 599.0, 599.0, 597.0, 597.0, 598.0, 598.0, 596.0, 596.0, 597.0, 597.0, 595.0, 596.0, 596.0, 594.0, 594.0, 595.0, 593.0, 593.0, 594.0, 594.0, 592.0, 593.0, 593.0, 591.0, 592.0, 590.0, 590.0, 591.0, 590.0, 591.0, 589.0, 590.0, 590.0, 588.0, 589.0, 587.0, 587.0, 588.0, 588.0, 586.0, 587.0, 585.0, 585.0, 586.0, 584.0, 584.0, 585.0, 583.0, 583.0, 584.0, 582.0, 582.0, 583.0, 581.0, 581.0, 581.0, 582.0, 580.0, 580.0, 581.0, 579.0, 579.0, 579.0, 580.0, 578.0, 578.0, 577.0, 577.0, 576.0, 576.0, 576.0, 574.0, 575.0, 575.0, 574.0, 574.0, 574.0, 573.0, 573.0, 572.0, 572.0, 572.0, 571.0, 571.0, 572.0, 570.0, 570.0, 571.0, 568.0, 568.0, 569.0, 568.0, 569.0, 570.0, 567.0, 568.0, 568.0, 569.0, 567.0, 567.0, 568.0, 566.0, 567.0, 567.0, 565.0, 565.0, 566.0, 564.0, 565.0, 565.0, 530.0, 530.0, 563.0, 564.0, 564.0, 562.0, 563.0, 563.0, 561.0, 562.0, 562.0, 560.0, 561.0, 561.0, 560.0, 560.0, 558.0, 558.0, 558.0, 559.0, 559.0, 559.0, 558.0, 558.0, 558.0, 557.0, 557.0, 557.0, 558.0, 555.0, 556.0, 556.0, 555.0, 555.0, 556.0, 554.0, 554.0, 555.0, 553.0, 553.0, 554.0, 552.0, 552.0, 553.0, 551.0, 551.0, 552.0, 550.0, 551.0, 550.0, 551.0, 525.0, 549.0, 549.0, 550.0, 548.0, 548.0, 549.0, 549.0, 547.0, 547.0, 548.0, 546.0, 547.0, 545.0, 545.0, 546.0, 544.0, 544.0, 545.0, 543.0, 543.0, 544.0, 544.0, 542.0, 542.0, 543.0, 541.0, 542.0, 542.0, 540.0, 540.0, 541.0, 541.0, 539.0, 540.0, 538.0, 539.0, 539.0, 537.0, 538.0, 536.0, 537.0, 537.0, 535.0, 536.0, 536.0, 535.0, 535.0, 534.0, 534.0, 533.0, 533.0, 532.0, 532.0, 533.0, 531.0, 531.0, 532.0, 532.0, 530.0, 530.0, 531.0, 529.0, 530.0, 530.0, 528.0, 529.0, 529.0, 527.0, 527.0, 528.0, 528.0, 526.0, 527.0, 527.0, 526.0, 526.0, 525.0, 525.0, 524.0, 524.0, 525.0, 523.0, 523.0, 524.0, 524.0, 522.0, 523.0, 523.0, 521.0, 521.0, 522.0, 522.0, 520.0, 521.0, 521.0, 519.0, 520.0, 520.0, 519.0, 519.0, 518.0, 518.0, 517.0, 517.0, 518.0, 516.0, 516.0, 517.0, 515.0, 516.0, 514.0, 514.0, 515.0, 513.0, 513.0, 514.0, 514.0, 512.0, 513.0, 513.0, 523.0, 512.0, 512.0, 512.0, 511.0, 511.0, 510.0, 510.0, 510.0, 511.0, 509.0, 509.0, 510.0, 508.0, 509.0, 509.0, 507.0, 508.0, 506.0, 507.0, 507.0, 506.0, 506.0, 505.0, 505.0, 506.0, 504.0, 504.0, 505.0, 505.0, 503.0, 504.0, 502.0, 502.0, 503.0, 503.0, 501.0, 502.0, 502.0, 475.0, 501.0, 501.0, 501.0, 500.0, 500.0, 501.0, 499.0, 499.0, 500.0, 500.0, 498.0, 499.0, 477.0, 497.0, 498.0, 498.0, 492.0, 497.0, 497.0, 496.0, 496.0, 495.0, 495.0, 496.0, 494.0, 494.0, 495.0, 493.0, 493.0, 494.0, 495.0, 494.0, 492.0, 493.0, 493.0, 492.0, 492.0, 491.0, 491.0, 486.0, 490.0, 490.0, 491.0, 489.0, 489.0, 490.0, 488.0, 488.0, 489.0, 489.0, 487.0, 488.0, 488.0, 486.0, 487.0, 487.0, 485.0, 486.0, 486.0, 485.0, 485.0, 485.0, 484.0, 484.0, 485.0, 483.0, 483.0, 484.0, 484.0, 482.0, 483.0, 483.0, 481.0, 482.0, 480.0, 481.0, 481.0, 481.0, 480.0, 480.0, 479.0, 479.0, 480.0, 478.0, 478.0, 479.0, 477.0, 477.0, 478.0, 476.0, 476.0, 477.0, 477.0, 475.0, 476.0, 476.0, 475.0, 475.0, 475.0, 474.0, 474.0, 475.0, 473.0, 473.0, 474.0, 474.0, 472.0, 473.0, 473.0, 471.0, 472.0, 472.0, 471.0, 471.0, 470.0, 470.0, 469.0, 469.0, 470.0, 468.0, 468.0, 469.0, 467.0, 468.0, 468.0, 466.0, 467.0, 467.0, 466.0, 466.0, 465.0, 465.0, 465.0, 466.0, 464.0, 465.0, 464.0, 464.0, 465.0, 463.0, 464.0, 464.0, 463.0, 463.0, 463.0, 462.0, 462.0, 463.0, 461.0, 462.0, 462.0, 461.0, 461.0, 460.0, 460.0, 461.0, 459.0, 459.0, 460.0, 459.0, 459.0, 458.0, 458.0, 457.0, 458.0, 458.0, 457.0, 457.0, 456.0, 456.0, 455.0, 455.0, 456.0, 454.0, 455.0, 455.0, 454.0, 454.0, 453.0, 453.0, 454.0, 452.0, 453.0, 453.0, 452.0, 452.0, 451.0, 452.0, 450.0, 450.0, 451.0, 450.0, 450.0, 449.0, 449.0, 450.0, 448.0, 449.0, 449.0, 448.0, 448.0, 448.0, 447.0, 447.0, 446.0, 446.0, 447.0, 445.0, 446.0, 446.0, 445.0, 445.0, 444.0, 444.0, 445.0, 443.0, 444.0, 444.0, 443.0, 443.0, 442.0, 442.0, 443.0, 441.0, 441.0, 442.0, 442.0, 441.0, 441.0, 441.0, 440.0, 440.0, 439.0, 440.0, 440.0, 438.0, 439.0, 439.0, 438.0, 438.0, 437.0, 437.0, 438.0, 438.0, 437.0, 437.0, 436.0, 436.0, 435.0, 435.0, 436.0, 435.0, 435.0, 434.0, 434.0, 433.0, 434.0, 434.0, 433.0, 433.0, 432.0, 433.0, 431.0, 432.0, 431.0, 431.0, 430.0, 430.0, 431.0, 430.0, 430.0, 429.0, 429.0, 428.0, 429.0, 429.0, 428.0, 428.0, 427.0, 428.0, 426.0, 427.0, 427.0, 426.0, 426.0, 425.0, 425.0, 426.0, 425.0, 425.0, 424.0, 424.0, 425.0, 423.0, 424.0, 424.0, 423.0, 423.0, 422.0, 422.0, 421.0, 422.0, 420.0, 421.0, 421.0, 420.0, 420.0, 420.0, 419.0, 419.0, 420.0, 418.0, 419.0, 419.0, 418.0, 418.0, 417.0, 417.0, 417.0, 416.0, 416.0, 417.0, 415.0, 416.0, 416.0, 415.0, 415.0, 415.0, 414.0, 414.0, 415.0, 413.0, 414.0, 412.0, 413.0, 413.0, 412.0, 412.0, 458.0, 411.0, 411.0, 412.0, 410.0, 411.0, 411.0, 410.0, 410.0, 409.0, 409.0, 408.0, 408.0, 409.0, 407.0, 408.0, 408.0, 407.0, 407.0, 406.0, 406.0, 405.0, 405.0, 406.0, 406.0, 404.0, 405.0, 404.0, 404.0, 403.0, 403.0, 404.0, 402.0, 403.0, 403.0, 401.0, 402.0, 402.0, 401.0, 401.0, 400.0, 400.0, 401.0, 399.0, 399.0, 400.0, 399.0, 399.0, 398.0, 398.0, 397.0, 398.0, 398.0, 396.0, 396.0, 397.0, 396.0, 396.0, 395.0, 395.0, 394.0, 394.0, 395.0, 395.0, 393.0, 394.0, 394.0, 393.0, 393.0, 392.0, 392.0, 393.0, 391.0, 391.0, 392.0, 391.0, 391.0, 390.0, 390.0, 389.0, 390.0, 390.0, 388.0, 389.0, 389.0, 388.0, 388.0, 387.0, 387.0, 388.0, 386.0, 387.0, 386.0, 386.0, 385.0, 385.0, 386.0, 384.0, 385.0, 385.0, 383.0, 384.0, 384.0, 383.0, 383.0, 382.0, 383.0, 382.0, 383.0, 381.0, 382.0, 382.0, 381.0, 381.0, 380.0, 380.0, 379.0, 379.0, 380.0, 379.0, 379.0, 378.0, 378.0, 379.0, 377.0, 378.0, 378.0, 377.0, 377.0, 376.0, 377.0, 377.0, 375.0, 376.0, 375.0, 375.0, 374.0, 374.0, 375.0, 373.0, 374.0, 374.0, 373.0, 373.0, 372.0, 372.0, 373.0, 371.0, 371.0, 372.0, 370.0, 371.0, 371.0, 370.0, 370.0, 370.0, 371.0, 369.0, 370.0, 370.0, 370.0, 369.0, 369.0, 368.0, 368.0, 369.0, 366.0, 368.0, 368.0, 367.0, 366.0, 367.0, 368.0, 366.0, 367.0, 367.0, 366.0, 366.0, 365.0, 365.0, 366.0, 366.0, 365.0, 365.0, 364.0, 364.0, 365.0, 363.0, 364.0, 364.0, 363.0, 363.0, 362.0, 362.0, 363.0, 362.0, 362.0 ], "y": [ 682.0, 680.0, 681.0, 682.0, 679.0, 680.0, 680.0, 677.0, 678.0, 678.0, 679.0, 679.0, 675.0, 676.0, 677.0, 678.0, 679.0, 730.0, 674.0, 675.0, 675.0, 672.0, 673.0, 673.0, 674.0, 670.0, 671.0, 672.0, 672.0, 669.0, 670.0, 670.0, 667.0, 668.0, 668.0, 669.0, 665.0, 666.0, 667.0, 667.0, 664.0, 665.0, 665.0, 662.0, 663.0, 663.0, 660.0, 661.0, 662.0, 662.0, 658.0, 659.0, 660.0, 660.0, 657.0, 658.0, 658.0, 655.0, 656.0, 657.0, 657.0, 653.0, 654.0, 655.0, 655.0, 652.0, 653.0, 653.0, 650.0, 650.0, 651.0, 648.0, 648.0, 649.0, 650.0, 646.0, 647.0, 648.0, 645.0, 645.0, 646.0, 643.0, 643.0, 644.0, 641.0, 641.0, 642.0, 643.0, 639.0, 639.0, 640.0, 641.0, 637.0, 638.0, 638.0, 639.0, 639.0, 636.0, 636.0, 637.0, 634.0, 634.0, 635.0, 632.0, 633.0, 634.0, 630.0, 631.0, 631.0, 632.0, 628.0, 629.0, 629.0, 630.0, 627.0, 627.0, 628.0, 625.0, 626.0, 626.0, 623.0, 624.0, 624.0, 625.0, 622.0, 622.0, 623.0, 620.0, 621.0, 618.0, 619.0, 619.0, 620.0, 620.0, 617.0, 617.0, 618.0, 615.0, 616.0, 613.0, 614.0, 614.0, 615.0, 612.0, 613.0, 610.0, 611.0, 611.0, 608.0, 609.0, 610.0, 607.0, 608.0, 608.0, 605.0, 606.0, 606.0, 603.0, 604.0, 605.0, 605.0, 602.0, 603.0, 603.0, 600.0, 601.0, 602.0, 602.0, 599.0, 600.0, 597.0, 598.0, 595.0, 596.0, 597.0, 594.0, 594.0, 595.0, 592.0, 593.0, 594.0, 591.0, 592.0, 589.0, 590.0, 591.0, 588.0, 589.0, 589.0, 586.0, 587.0, 588.0, 584.0, 585.0, 585.0, 586.0, 586.0, 586.0, 583.0, 583.0, 584.0, 585.0, 582.0, 583.0, 583.0, 581.0, 581.0, 582.0, 579.0, 580.0, 580.0, 578.0, 578.0, 579.0, 589.0, 590.0, 576.0, 577.0, 578.0, 575.0, 575.0, 576.0, 573.0, 574.0, 575.0, 572.0, 572.0, 573.0, 571.0, 572.0, 567.0, 568.0, 569.0, 569.0, 570.0, 571.0, 567.0, 568.0, 569.0, 561.0, 567.0, 568.0, 568.0, 565.0, 565.0, 566.0, 564.0, 565.0, 565.0, 563.0, 564.0, 564.0, 561.0, 562.0, 562.0, 560.0, 561.0, 561.0, 558.0, 559.0, 560.0, 557.0, 557.0, 558.0, 558.0, 547.0, 556.0, 557.0, 557.0, 554.0, 555.0, 555.0, 556.0, 553.0, 554.0, 554.0, 552.0, 553.0, 550.0, 551.0, 551.0, 549.0, 550.0, 550.0, 547.0, 548.0, 548.0, 549.0, 546.0, 547.0, 547.0, 545.0, 545.0, 546.0, 543.0, 544.0, 544.0, 545.0, 542.0, 543.0, 541.0, 541.0, 542.0, 539.0, 540.0, 538.0, 538.0, 539.0, 536.0, 537.0, 538.0, 535.0, 536.0, 534.0, 535.0, 532.0, 533.0, 531.0, 532.0, 532.0, 529.0, 530.0, 530.0, 531.0, 528.0, 529.0, 529.0, 527.0, 527.0, 528.0, 525.0, 525.0, 526.0, 523.0, 524.0, 524.0, 525.0, 522.0, 522.0, 523.0, 521.0, 522.0, 519.0, 520.0, 518.0, 519.0, 519.0, 516.0, 517.0, 517.0, 518.0, 515.0, 515.0, 516.0, 513.0, 514.0, 514.0, 515.0, 512.0, 512.0, 513.0, 510.0, 510.0, 511.0, 509.0, 510.0, 507.0, 508.0, 506.0, 507.0, 507.0, 504.0, 505.0, 505.0, 503.0, 504.0, 501.0, 502.0, 502.0, 499.0, 500.0, 500.0, 501.0, 498.0, 498.0, 499.0, 478.0, 496.0, 497.0, 498.0, 495.0, 496.0, 493.0, 494.0, 495.0, 495.0, 492.0, 493.0, 493.0, 491.0, 491.0, 492.0, 489.0, 490.0, 488.0, 488.0, 489.0, 486.0, 487.0, 485.0, 486.0, 486.0, 483.0, 484.0, 484.0, 485.0, 482.0, 483.0, 480.0, 481.0, 481.0, 482.0, 479.0, 479.0, 480.0, 467.0, 477.0, 478.0, 479.0, 476.0, 477.0, 477.0, 474.0, 475.0, 475.0, 476.0, 473.0, 474.0, 475.0, 471.0, 472.0, 473.0, 456.0, 470.0, 471.0, 468.0, 469.0, 467.0, 468.0, 468.0, 465.0, 466.0, 466.0, 463.0, 464.0, 464.0, 464.0, 465.0, 462.0, 462.0, 463.0, 461.0, 462.0, 459.0, 460.0, 457.0, 458.0, 459.0, 459.0, 456.0, 457.0, 457.0, 454.0, 455.0, 455.0, 456.0, 453.0, 453.0, 454.0, 451.0, 452.0, 453.0, 450.0, 450.0, 451.0, 448.0, 449.0, 450.0, 447.0, 448.0, 448.0, 445.0, 446.0, 446.0, 447.0, 444.0, 444.0, 445.0, 442.0, 443.0, 440.0, 440.0, 441.0, 442.0, 439.0, 440.0, 437.0, 438.0, 439.0, 435.0, 436.0, 437.0, 434.0, 435.0, 435.0, 432.0, 433.0, 433.0, 434.0, 431.0, 431.0, 432.0, 429.0, 430.0, 431.0, 428.0, 429.0, 429.0, 426.0, 427.0, 427.0, 428.0, 425.0, 425.0, 426.0, 423.0, 423.0, 424.0, 422.0, 423.0, 420.0, 421.0, 419.0, 420.0, 420.0, 417.0, 418.0, 418.0, 416.0, 416.0, 417.0, 414.0, 415.0, 416.0, 413.0, 414.0, 411.0, 412.0, 413.0, 413.0, 409.0, 409.0, 410.0, 411.0, 411.0, 409.0, 409.0, 410.0, 407.0, 408.0, 409.0, 406.0, 407.0, 407.0, 405.0, 405.0, 406.0, 404.0, 405.0, 402.0, 403.0, 404.0, 401.0, 402.0, 402.0, 400.0, 401.0, 399.0, 400.0, 398.0, 398.0, 399.0, 397.0, 398.0, 395.0, 396.0, 394.0, 395.0, 395.0, 393.0, 393.0, 394.0, 392.0, 393.0, 390.0, 391.0, 391.0, 389.0, 389.0, 390.0, 388.0, 389.0, 387.0, 388.0, 385.0, 386.0, 386.0, 384.0, 385.0, 383.0, 384.0, 384.0, 382.0, 382.0, 383.0, 380.0, 381.0, 382.0, 379.0, 380.0, 378.0, 379.0, 379.0, 377.0, 377.0, 378.0, 376.0, 377.0, 374.0, 375.0, 375.0, 373.0, 373.0, 374.0, 372.0, 373.0, 371.0, 372.0, 372.0, 369.0, 370.0, 370.0, 371.0, 368.0, 369.0, 370.0, 367.0, 368.0, 366.0, 366.0, 367.0, 365.0, 365.0, 366.0, 364.0, 365.0, 362.0, 363.0, 363.0, 364.0, 361.0, 362.0, 360.0, 361.0, 359.0, 360.0, 360.0, 358.0, 359.0, 357.0, 358.0, 356.0, 356.0, 357.0, 355.0, 356.0, 354.0, 355.0, 353.0, 353.0, 351.0, 352.0, 350.0, 351.0, 351.0, 349.0, 350.0, 348.0, 349.0, 347.0, 347.0, 348.0, 346.0, 347.0, 345.0, 345.0, 343.0, 343.0, 344.0, 342.0, 343.0, 341.0, 342.0, 342.0, 340.0, 341.0, 339.0, 340.0, 340.0, 338.0, 338.0, 339.0, 336.0, 337.0, 335.0, 336.0, 334.0, 335.0, 333.0, 333.0, 334.0, 331.0, 332.0, 333.0, 330.0, 331.0, 331.0, 329.0, 329.0, 330.0, 328.0, 329.0, 326.0, 327.0, 328.0, 325.0, 326.0, 326.0, 324.0, 324.0, 325.0, 322.0, 323.0, 324.0, 321.0, 322.0, 322.0, 320.0, 321.0, 319.0, 319.0, 320.0, 317.0, 318.0, 330.0, 316.0, 317.0, 317.0, 315.0, 315.0, 316.0, 314.0, 315.0, 313.0, 314.0, 311.0, 312.0, 312.0, 310.0, 310.0, 311.0, 309.0, 310.0, 308.0, 309.0, 306.0, 307.0, 307.0, 308.0, 305.0, 306.0, 304.0, 305.0, 303.0, 304.0, 304.0, 302.0, 302.0, 303.0, 301.0, 301.0, 302.0, 300.0, 301.0, 298.0, 299.0, 299.0, 297.0, 298.0, 298.0, 296.0, 297.0, 295.0, 296.0, 294.0, 294.0, 295.0, 292.0, 293.0, 293.0, 291.0, 292.0, 290.0, 291.0, 288.0, 289.0, 289.0, 290.0, 287.0, 287.0, 288.0, 286.0, 287.0, 284.0, 285.0, 286.0, 283.0, 284.0, 284.0, 282.0, 283.0, 281.0, 282.0, 280.0, 280.0, 281.0, 279.0, 279.0, 280.0, 277.0, 278.0, 276.0, 277.0, 277.0, 275.0, 276.0, 274.0, 275.0, 273.0, 274.0, 274.0, 272.0, 272.0, 273.0, 271.0, 271.0, 272.0, 269.0, 270.0, 268.0, 268.0, 269.0, 269.0, 267.0, 267.0, 268.0, 266.0, 267.0, 265.0, 266.0, 263.0, 264.0, 264.0, 262.0, 263.0, 261.0, 262.0, 262.0, 260.0, 260.0, 261.0, 259.0, 260.0, 258.0, 258.0, 259.0, 256.0, 257.0, 255.0, 256.0, 254.0, 255.0, 255.0, 253.0, 253.0, 254.0, 252.0, 253.0, 250.0, 251.0, 251.0, 249.0, 250.0, 250.0, 247.0, 248.0, 249.0, 246.0, 247.0, 248.0, 248.0, 246.0, 246.0, 247.0, 248.0, 244.0, 245.0, 243.0, 244.0, 244.0, 242.0, 242.0, 243.0, 241.0, 242.0, 242.0, 242.0, 240.0, 240.0, 241.0, 239.0, 240.0, 237.0, 238.0, 238.0, 239.0, 236.0, 237.0, 235.0, 236.0, 236.0, 234.0, 234.0, 235.0, 233.0, 234.0, 232.0, 233.0, 233.0, 231.0, 232.0 ], "z": [ 440.0, 441.0, 441.0, 441.0, 442.0, 442.0, 442.0, 443.0, 443.0, 443.0, 443.0, 443.0, 444.0, 444.0, 444.0, 444.0, 444.0, 444.0, 445.0, 445.0, 445.0, 446.0, 446.0, 446.0, 446.0, 447.0, 447.0, 447.0, 447.0, 448.0, 448.0, 448.0, 449.0, 449.0, 449.0, 449.0, 450.0, 450.0, 450.0, 450.0, 451.0, 451.0, 451.0, 452.0, 452.0, 452.0, 453.0, 453.0, 453.0, 453.0, 454.0, 454.0, 454.0, 454.0, 455.0, 455.0, 455.0, 456.0, 456.0, 456.0, 456.0, 457.0, 457.0, 457.0, 457.0, 458.0, 458.0, 458.0, 459.0, 459.0, 459.0, 460.0, 460.0, 460.0, 460.0, 461.0, 461.0, 461.0, 462.0, 462.0, 462.0, 463.0, 463.0, 463.0, 464.0, 464.0, 464.0, 464.0, 465.0, 465.0, 465.0, 465.0, 466.0, 466.0, 466.0, 466.0, 466.0, 467.0, 467.0, 467.0, 468.0, 468.0, 468.0, 469.0, 469.0, 469.0, 470.0, 470.0, 470.0, 470.0, 471.0, 471.0, 471.0, 471.0, 472.0, 472.0, 472.0, 473.0, 473.0, 473.0, 474.0, 474.0, 474.0, 474.0, 475.0, 475.0, 475.0, 476.0, 476.0, 477.0, 477.0, 477.0, 477.0, 477.0, 478.0, 478.0, 478.0, 479.0, 479.0, 480.0, 480.0, 480.0, 480.0, 481.0, 481.0, 482.0, 482.0, 482.0, 483.0, 483.0, 483.0, 484.0, 484.0, 484.0, 485.0, 485.0, 485.0, 486.0, 486.0, 486.0, 486.0, 487.0, 487.0, 487.0, 488.0, 488.0, 488.0, 488.0, 489.0, 489.0, 490.0, 490.0, 491.0, 491.0, 491.0, 492.0, 492.0, 492.0, 493.0, 493.0, 493.0, 494.0, 494.0, 495.0, 495.0, 495.0, 496.0, 496.0, 496.0, 497.0, 497.0, 497.0, 498.0, 498.0, 498.0, 498.0, 498.0, 498.0, 499.0, 499.0, 499.0, 499.0, 500.0, 500.0, 500.0, 501.0, 501.0, 501.0, 502.0, 502.0, 502.0, 503.0, 503.0, 503.0, 503.0, 503.0, 504.0, 504.0, 504.0, 505.0, 505.0, 505.0, 506.0, 506.0, 506.0, 507.0, 507.0, 507.0, 508.0, 508.0, 509.0, 509.0, 509.0, 509.0, 509.0, 509.0, 510.0, 510.0, 510.0, 511.0, 511.0, 511.0, 511.0, 512.0, 512.0, 512.0, 513.0, 513.0, 513.0, 514.0, 514.0, 514.0, 515.0, 515.0, 515.0, 516.0, 516.0, 516.0, 517.0, 517.0, 517.0, 518.0, 518.0, 518.0, 518.0, 519.0, 519.0, 519.0, 519.0, 520.0, 520.0, 520.0, 520.0, 521.0, 521.0, 521.0, 522.0, 522.0, 523.0, 523.0, 523.0, 524.0, 524.0, 524.0, 525.0, 525.0, 525.0, 525.0, 526.0, 526.0, 526.0, 527.0, 527.0, 527.0, 528.0, 528.0, 528.0, 528.0, 529.0, 529.0, 530.0, 530.0, 530.0, 531.0, 531.0, 532.0, 532.0, 532.0, 533.0, 533.0, 533.0, 534.0, 534.0, 535.0, 535.0, 536.0, 536.0, 537.0, 537.0, 537.0, 538.0, 538.0, 538.0, 538.0, 539.0, 539.0, 539.0, 540.0, 540.0, 540.0, 541.0, 541.0, 541.0, 542.0, 542.0, 542.0, 542.0, 543.0, 543.0, 543.0, 544.0, 544.0, 545.0, 545.0, 546.0, 546.0, 546.0, 547.0, 547.0, 547.0, 547.0, 548.0, 548.0, 548.0, 549.0, 549.0, 549.0, 549.0, 550.0, 550.0, 550.0, 551.0, 551.0, 551.0, 552.0, 552.0, 553.0, 553.0, 554.0, 554.0, 554.0, 555.0, 555.0, 555.0, 556.0, 556.0, 557.0, 557.0, 557.0, 558.0, 558.0, 558.0, 558.0, 559.0, 559.0, 559.0, 560.0, 560.0, 560.0, 560.0, 561.0, 561.0, 562.0, 562.0, 562.0, 562.0, 563.0, 563.0, 563.0, 564.0, 564.0, 564.0, 565.0, 565.0, 566.0, 566.0, 566.0, 567.0, 567.0, 568.0, 568.0, 568.0, 569.0, 569.0, 569.0, 569.0, 570.0, 570.0, 571.0, 571.0, 571.0, 571.0, 572.0, 572.0, 572.0, 573.0, 573.0, 573.0, 573.0, 574.0, 574.0, 574.0, 575.0, 575.0, 575.0, 575.0, 576.0, 576.0, 576.0, 577.0, 577.0, 577.0, 578.0, 578.0, 578.0, 579.0, 579.0, 580.0, 580.0, 580.0, 581.0, 581.0, 581.0, 582.0, 582.0, 582.0, 582.0, 582.0, 583.0, 583.0, 583.0, 584.0, 584.0, 585.0, 585.0, 586.0, 586.0, 586.0, 586.0, 587.0, 587.0, 587.0, 588.0, 588.0, 588.0, 588.0, 589.0, 589.0, 589.0, 590.0, 590.0, 590.0, 591.0, 591.0, 591.0, 592.0, 592.0, 592.0, 593.0, 593.0, 593.0, 594.0, 594.0, 594.0, 594.0, 595.0, 595.0, 595.0, 596.0, 596.0, 597.0, 597.0, 597.0, 597.0, 598.0, 598.0, 599.0, 599.0, 599.0, 600.0, 600.0, 600.0, 601.0, 601.0, 601.0, 602.0, 602.0, 602.0, 602.0, 603.0, 603.0, 603.0, 604.0, 604.0, 604.0, 605.0, 605.0, 605.0, 606.0, 606.0, 606.0, 606.0, 607.0, 607.0, 607.0, 608.0, 608.0, 608.0, 609.0, 609.0, 610.0, 610.0, 611.0, 611.0, 611.0, 612.0, 612.0, 612.0, 613.0, 613.0, 613.0, 614.0, 614.0, 614.0, 615.0, 615.0, 616.0, 616.0, 616.0, 616.0, 617.0, 617.0, 617.0, 617.0, 617.0, 618.0, 618.0, 618.0, 619.0, 619.0, 619.0, 620.0, 620.0, 620.0, 621.0, 621.0, 621.0, 622.0, 622.0, 623.0, 623.0, 623.0, 624.0, 624.0, 624.0, 625.0, 625.0, 626.0, 626.0, 627.0, 627.0, 627.0, 628.0, 628.0, 629.0, 629.0, 630.0, 630.0, 630.0, 631.0, 631.0, 631.0, 632.0, 632.0, 633.0, 633.0, 633.0, 634.0, 634.0, 634.0, 635.0, 635.0, 636.0, 636.0, 637.0, 637.0, 637.0, 638.0, 638.0, 639.0, 639.0, 639.0, 640.0, 640.0, 640.0, 641.0, 641.0, 641.0, 642.0, 642.0, 643.0, 643.0, 643.0, 644.0, 644.0, 644.0, 645.0, 645.0, 646.0, 646.0, 646.0, 647.0, 647.0, 647.0, 648.0, 648.0, 649.0, 649.0, 649.0, 650.0, 650.0, 650.0, 650.0, 651.0, 651.0, 651.0, 652.0, 652.0, 653.0, 653.0, 653.0, 654.0, 654.0, 654.0, 655.0, 655.0, 656.0, 656.0, 656.0, 656.0, 657.0, 657.0, 658.0, 658.0, 659.0, 659.0, 659.0, 660.0, 660.0, 661.0, 661.0, 662.0, 662.0, 662.0, 663.0, 663.0, 664.0, 664.0, 665.0, 665.0, 666.0, 666.0, 667.0, 667.0, 667.0, 668.0, 668.0, 669.0, 669.0, 670.0, 670.0, 670.0, 671.0, 671.0, 672.0, 672.0, 673.0, 673.0, 673.0, 674.0, 674.0, 675.0, 675.0, 675.0, 676.0, 676.0, 677.0, 677.0, 677.0, 678.0, 678.0, 678.0, 679.0, 679.0, 680.0, 680.0, 681.0, 681.0, 682.0, 682.0, 682.0, 683.0, 683.0, 683.0, 684.0, 684.0, 684.0, 685.0, 685.0, 685.0, 686.0, 686.0, 687.0, 687.0, 687.0, 688.0, 688.0, 688.0, 689.0, 689.0, 689.0, 690.0, 690.0, 690.0, 691.0, 691.0, 691.0, 692.0, 692.0, 693.0, 693.0, 693.0, 694.0, 694.0, 694.0, 695.0, 695.0, 695.0, 696.0, 696.0, 696.0, 697.0, 697.0, 698.0, 698.0, 699.0, 699.0, 699.0, 700.0, 700.0, 700.0, 701.0, 701.0, 702.0, 702.0, 703.0, 703.0, 703.0, 703.0, 704.0, 704.0, 705.0, 705.0, 706.0, 706.0, 706.0, 707.0, 707.0, 707.0, 708.0, 708.0, 708.0, 709.0, 709.0, 710.0, 710.0, 710.0, 711.0, 711.0, 711.0, 712.0, 712.0, 713.0, 713.0, 714.0, 714.0, 714.0, 715.0, 715.0, 715.0, 716.0, 716.0, 717.0, 717.0, 718.0, 718.0, 718.0, 718.0, 719.0, 719.0, 719.0, 720.0, 720.0, 721.0, 721.0, 721.0, 722.0, 722.0, 722.0, 723.0, 723.0, 724.0, 724.0, 725.0, 725.0, 725.0, 726.0, 726.0, 726.0, 727.0, 727.0, 728.0, 728.0, 728.0, 729.0, 729.0, 730.0, 730.0, 731.0, 731.0, 731.0, 732.0, 732.0, 732.0, 733.0, 733.0, 733.0, 734.0, 734.0, 735.0, 735.0, 735.0, 735.0, 736.0, 736.0, 736.0, 737.0, 737.0, 738.0, 738.0, 739.0, 739.0, 739.0, 740.0, 740.0, 741.0, 741.0, 741.0, 742.0, 742.0, 742.0, 743.0, 743.0, 744.0, 744.0, 744.0, 745.0, 745.0, 746.0, 746.0, 747.0, 747.0, 747.0, 748.0, 748.0, 748.0, 749.0, 749.0, 750.0, 750.0, 750.0, 751.0, 751.0, 751.0, 752.0, 752.0, 752.0, 753.0, 753.0, 753.0, 753.0, 754.0, 754.0, 754.0, 754.0, 755.0, 755.0, 756.0, 756.0, 756.0, 757.0, 757.0, 757.0, 758.0, 758.0, 758.0, 758.0, 759.0, 759.0, 759.0, 760.0, 760.0, 761.0, 761.0, 761.0, 761.0, 762.0, 762.0, 763.0, 763.0, 763.0, 764.0, 764.0, 764.0, 765.0, 765.0, 766.0, 766.0, 766.0, 767.0, 767.0 ] }, { "hovertext": [ "Energy 0.79 MeV", "Energy 0.60 MeV", "Energy 0.21 MeV", "Energy 0.31 MeV", "Energy 0.62 MeV", "Energy 0.59 MeV", "Energy 0.18 MeV", "Energy 0.57 MeV", "Energy 0.74 MeV", "Energy 0.44 MeV", "Energy 0.76 MeV", "Energy 0.29 MeV", "Energy 0.27 MeV", "Energy 0.59 MeV", "Energy 0.45 MeV", "Energy 0.08 MeV", "Energy 0.09 MeV", "Energy 0.72 MeV", "Energy 0.64 MeV", "Energy 0.05 MeV", "Energy 0.45 MeV", "Energy 0.66 MeV", "Energy 0.69 MeV", "Energy 0.32 MeV", "Energy 0.50 MeV", "Energy 0.81 MeV", "Energy 0.27 MeV", "Energy 0.58 MeV", "Energy 0.50 MeV", "Energy 0.08 MeV", "Energy 0.40 MeV", "Energy 0.51 MeV", "Energy 0.66 MeV", "Energy 0.46 MeV", "Energy 0.42 MeV", "Energy 0.54 MeV", "Energy 0.56 MeV", "Energy 0.58 MeV", "Energy 0.11 MeV", "Energy 0.33 MeV", "Energy 0.09 MeV", "Energy 0.58 MeV", "Energy 0.18 MeV", "Energy 0.59 MeV", "Energy 0.71 MeV", "Energy 0.41 MeV", "Energy 0.30 MeV", "Energy 0.67 MeV", "Energy 0.58 MeV", "Energy 0.42 MeV", "Energy 0.13 MeV", "Energy 0.60 MeV", "Energy 0.57 MeV", "Energy 0.57 MeV", "Energy 0.55 MeV", "Energy 0.69 MeV", "Energy 0.70 MeV", "Energy 0.16 MeV", "Energy 1.59 MeV", "Energy 0.82 MeV", "Energy 0.54 MeV", "Energy 0.60 MeV", "Energy 0.09 MeV", "Energy 1.06 MeV", "Energy 1.09 MeV", "Energy 0.87 MeV", "Energy 0.34 MeV", "Energy 0.23 MeV", "Energy 0.53 MeV", "Energy 0.93 MeV", "Energy 0.68 MeV", "Energy 0.13 MeV", "Energy 0.41 MeV", "Energy 0.57 MeV", "Energy 0.66 MeV", "Energy 1.30 MeV", "Energy 0.09 MeV", "Energy 0.57 MeV", "Energy 0.54 MeV", "Energy 0.58 MeV", "Energy 0.13 MeV", "Energy 0.19 MeV", "Energy 0.73 MeV", "Energy 1.61 MeV", "Energy 0.57 MeV", "Energy 0.33 MeV", "Energy 0.22 MeV", "Energy 0.60 MeV", "Energy 0.57 MeV", "Energy 1.32 MeV", "Energy 0.12 MeV", "Energy 0.54 MeV", "Energy 0.72 MeV", "Energy 0.52 MeV", "Energy 0.48 MeV", "Energy 0.38 MeV", "Energy 0.63 MeV", "Energy 0.62 MeV", "Energy 0.52 MeV", "Energy 0.16 MeV", "Energy 0.69 MeV", "Energy 0.70 MeV", "Energy 0.69 MeV", "Energy 0.05 MeV", "Energy 0.53 MeV", "Energy 0.73 MeV", "Energy 0.77 MeV", "Energy 0.12 MeV", "Energy 0.23 MeV", "Energy 0.16 MeV", "Energy 0.83 MeV", "Energy 0.18 MeV", "Energy 0.29 MeV", "Energy 0.61 MeV", "Energy 0.46 MeV", "Energy 0.15 MeV", "Energy 0.59 MeV", "Energy 0.70 MeV", "Energy 0.48 MeV", "Energy 0.61 MeV", "Energy 0.33 MeV", "Energy 0.22 MeV", "Energy 0.55 MeV", "Energy 0.47 MeV", "Energy 0.55 MeV", "Energy 0.51 MeV", "Energy 0.30 MeV", "Energy 0.35 MeV", "Energy 0.53 MeV", "Energy 0.51 MeV", "Energy 0.11 MeV", "Energy 0.28 MeV", "Energy 0.17 MeV", "Energy 0.48 MeV", "Energy 0.54 MeV", "Energy 0.97 MeV", "Energy 0.12 MeV", "Energy 0.51 MeV", "Energy 0.54 MeV", "Energy 0.53 MeV", "Energy 0.19 MeV", "Energy 0.43 MeV", "Energy 1.18 MeV", "Energy 0.50 MeV", "Energy 0.20 MeV", "Energy 0.36 MeV", "Energy 0.65 MeV", "Energy 0.96 MeV", "Energy 0.37 MeV", "Energy 0.35 MeV", "Energy 0.52 MeV", "Energy 0.54 MeV", "Energy 0.14 MeV", "Energy 0.19 MeV", "Energy 0.85 MeV", "Energy 0.74 MeV", "Energy 0.22 MeV", "Energy 0.54 MeV", "Energy 0.93 MeV", "Energy 0.24 MeV", "Energy 0.24 MeV", "Energy 0.64 MeV", "Energy 0.66 MeV", "Energy 0.60 MeV", "Energy 0.98 MeV", "Energy 0.62 MeV", "Energy 0.54 MeV", "Energy 0.35 MeV", "Energy 0.23 MeV", "Energy 0.74 MeV", "Energy 0.64 MeV", "Energy 0.58 MeV", "Energy 0.12 MeV", "Energy 0.13 MeV", "Energy 0.13 MeV", "Energy 0.52 MeV", "Energy 0.51 MeV", "Energy 0.11 MeV", "Energy 0.77 MeV", "Energy 0.97 MeV", "Energy 0.42 MeV", "Energy 0.35 MeV", "Energy 0.72 MeV", "Energy 0.65 MeV", "Energy 0.06 MeV", "Energy 0.56 MeV", "Energy 0.64 MeV", "Energy 1.27 MeV", "Energy 0.20 MeV", "Energy 0.52 MeV", "Energy 0.57 MeV", "Energy 0.60 MeV", "Energy 0.52 MeV", "Energy 0.59 MeV", "Energy 0.22 MeV", "Energy 0.51 MeV", "Energy 0.63 MeV", "Energy 0.33 MeV", "Energy 0.20 MeV", "Energy 0.64 MeV", "Energy 0.52 MeV", "Energy 0.29 MeV", "Energy 0.24 MeV", "Energy 0.49 MeV", "Energy 0.66 MeV", "Energy 0.43 MeV", "Energy 0.45 MeV", "Energy 0.57 MeV", "Energy 1.07 MeV", "Energy 0.28 MeV", "Energy 0.34 MeV", "Energy 0.66 MeV", "Energy 0.77 MeV", "Energy 0.27 MeV", "Energy 0.38 MeV", "Energy 0.75 MeV", "Energy 1.01 MeV", "Energy 0.27 MeV", "Energy 0.77 MeV", "Energy 0.76 MeV", "Energy 0.65 MeV", "Energy 0.64 MeV", "Energy 0.74 MeV", "Energy 0.31 MeV", "Energy 0.36 MeV", "Energy 1.00 MeV", "Energy 0.53 MeV", "Energy 0.18 MeV", "Energy 0.59 MeV", "Energy 0.64 MeV", "Energy 0.17 MeV", "Energy 0.44 MeV", "Energy 0.68 MeV", "Energy 0.40 MeV", "Energy 0.30 MeV", "Energy 0.68 MeV", "Energy 0.31 MeV", "Energy 0.17 MeV", "Energy 0.51 MeV", "Energy 0.30 MeV", "Energy 0.27 MeV", "Energy 0.70 MeV", "Energy 0.48 MeV", "Energy 0.59 MeV", "Energy 0.55 MeV", "Energy 0.29 MeV", "Energy 0.26 MeV", "Energy 0.69 MeV", "Energy 0.50 MeV", "Energy 0.08 MeV", "Energy 0.40 MeV", "Energy 0.51 MeV", "Energy 0.58 MeV", "Energy 0.10 MeV", "Energy 0.57 MeV", "Energy 0.48 MeV", "Energy 0.44 MeV", "Energy 0.32 MeV", "Energy 0.61 MeV", "Energy 1.13 MeV", "Energy 0.49 MeV", "Energy 0.06 MeV", "Energy 0.67 MeV", "Energy 0.64 MeV", "Energy 0.51 MeV", "Energy 0.23 MeV", "Energy 0.30 MeV", "Energy 0.58 MeV", "Energy 0.07 MeV", "Energy 0.25 MeV", "Energy 0.34 MeV", "Energy 0.84 MeV", "Energy 0.60 MeV", "Energy 0.06 MeV", "Energy 0.69 MeV", "Energy 0.67 MeV", "Energy 0.56 MeV", "Energy 0.51 MeV", "Energy 0.64 MeV", "Energy 0.78 MeV", "Energy 0.06 MeV", "Energy 0.81 MeV", "Energy 0.83 MeV", "Energy 0.52 MeV", "Energy 0.23 MeV", "Energy 0.69 MeV", "Energy 0.70 MeV", "Energy 0.19 MeV", "Energy 0.44 MeV", "Energy 0.20 MeV", "Energy 0.61 MeV", "Energy 0.51 MeV", "Energy 0.36 MeV", "Energy 0.23 MeV", "Energy 0.56 MeV", "Energy 0.48 MeV", "Energy 0.21 MeV", "Energy 0.35 MeV", "Energy 0.50 MeV", "Energy 0.56 MeV", "Energy 0.48 MeV", "Energy 0.57 MeV", "Energy 0.36 MeV", "Energy 0.19 MeV", "Energy 0.50 MeV", "Energy 0.49 MeV", "Energy 0.18 MeV", "Energy 0.35 MeV", "Energy 0.26 MeV", "Energy 0.40 MeV", "Energy 0.27 MeV", "Energy 0.26 MeV", "Energy 1.07 MeV", "Energy 0.65 MeV", "Energy 0.37 MeV", "Energy 0.19 MeV", "Energy 0.57 MeV", "Energy 0.79 MeV", "Energy 0.28 MeV", "Energy 0.21 MeV", "Energy 0.49 MeV", "Energy 0.52 MeV", "Energy 0.31 MeV", "Energy 0.23 MeV", "Energy 0.61 MeV", "Energy 0.52 MeV", "Energy 0.28 MeV", "Energy 0.16 MeV", "Energy 0.38 MeV", "Energy 0.29 MeV", "Energy 0.46 MeV", "Energy 0.84 MeV", "Energy 0.30 MeV", "Energy 0.73 MeV", "Energy 0.45 MeV", "Energy 0.63 MeV", "Energy 0.48 MeV", "Energy 0.21 MeV", "Energy 0.35 MeV", "Energy 0.91 MeV", "Energy 0.50 MeV", "Energy 0.20 MeV", "Energy 0.74 MeV", "Energy 0.48 MeV", "Energy 0.06 MeV", "Energy 0.94 MeV", "Energy 0.97 MeV", "Energy 0.76 MeV", "Energy 0.65 MeV", "Energy 0.96 MeV", "Energy 0.67 MeV", "Energy 0.43 MeV", "Energy 0.36 MeV", "Energy 0.71 MeV", "Energy 0.82 MeV", "Energy 0.25 MeV", "Energy 0.06 MeV", "Energy 0.56 MeV", "Energy 0.39 MeV", "Energy 0.10 MeV", "Energy 0.50 MeV", "Energy 1.12 MeV", "Energy 0.46 MeV", "Energy 0.56 MeV", "Energy 0.09 MeV", "Energy 0.41 MeV", "Energy 0.62 MeV", "Energy 0.57 MeV", "Energy 0.57 MeV", "Energy 0.34 MeV", "Energy 0.31 MeV", "Energy 0.49 MeV", "Energy 0.54 MeV", "Energy 0.81 MeV", "Energy 0.25 MeV", "Energy 0.24 MeV", "Energy 0.48 MeV", "Energy 0.76 MeV", "Energy 0.64 MeV", "Energy 0.15 MeV", "Energy 0.98 MeV", "Energy 0.33 MeV", "Energy 0.97 MeV", "Energy 0.46 MeV", "Energy 0.50 MeV", "Energy 0.08 MeV", "Energy 0.58 MeV", "Energy 0.20 MeV", "Energy 0.50 MeV", "Energy 0.49 MeV", "Energy 0.66 MeV", "Energy 0.98 MeV", "Energy 0.68 MeV", "Energy 0.31 MeV", "Energy 0.15 MeV", "Energy 0.51 MeV", "Energy 0.48 MeV", "Energy 0.30 MeV", "Energy 0.29 MeV", "Energy 0.52 MeV", "Energy 1.12 MeV", "Energy 0.29 MeV", "Energy 0.25 MeV", "Energy 1.06 MeV", "Energy 0.56 MeV", "Energy 0.16 MeV", "Energy 0.44 MeV", "Energy 0.65 MeV", "Energy 0.96 MeV", "Energy 0.08 MeV", "Energy 0.21 MeV", "Energy 0.35 MeV", "Energy 0.48 MeV", "Energy 0.50 MeV", "Energy 0.11 MeV", "Energy 0.36 MeV", "Energy 0.54 MeV", "Energy 1.08 MeV", "Energy 0.58 MeV", "Energy 0.16 MeV", "Energy 0.45 MeV", "Energy 0.51 MeV", "Energy 0.64 MeV", "Energy 0.54 MeV", "Energy 0.24 MeV", "Energy 0.37 MeV", "Energy 0.53 MeV", "Energy 0.51 MeV", "Energy 0.72 MeV", "Energy 0.57 MeV", "Energy 0.09 MeV", "Energy 0.74 MeV", "Energy 0.77 MeV", "Energy 0.56 MeV", "Energy 0.65 MeV", "Energy 1.18 MeV", "Energy 0.49 MeV", "Energy 0.09 MeV" ], "marker": { "color": [ 0.789440393447876, 0.5966454148292542, 0.21115125715732574, 0.3091276288032532, 0.6187890768051147, 0.5909750461578369, 0.18408402800559998, 0.574165403842926, 0.7386389374732971, 0.4354228973388672, 0.764289379119873, 0.2885691523551941, 0.2721116542816162, 0.5898596048355103, 0.45242035388946533, 0.0821545273065567, 0.09222233295440674, 0.7159081101417542, 0.6445362567901611, 0.05221874266862869, 0.44936782121658325, 0.6629199981689453, 0.6906905174255371, 0.3160306215286255, 0.5022366046905518, 0.810912549495697, 0.26603010296821594, 0.5769853591918945, 0.49569496512413025, 0.08408055454492569, 0.39996543526649475, 0.5100932717323303, 0.6554862260818481, 0.46484458446502686, 0.42468979954719543, 0.535897433757782, 0.5565037727355957, 0.5771668553352356, 0.11411584913730621, 0.32802966237068176, 0.09070643037557602, 0.5786579847335815, 0.18322940170764923, 0.5938208103179932, 0.7073713541030884, 0.4106999635696411, 0.29813215136528015, 0.6735057234764099, 0.5816922783851624, 0.42140254378318787, 0.1290050595998764, 0.6029866337776184, 0.5740193128585815, 0.5656542778015137, 0.5473663806915283, 0.6909936666488647, 0.6979735493659973, 0.16482147574424744, 1.5864571332931519, 0.8184664845466614, 0.5354050397872925, 0.5978161096572876, 0.09056738018989563, 1.0579519271850586, 1.0850281715393066, 0.8721582293510437, 0.335398405790329, 0.22651880979537964, 0.5251131057739258, 0.9329940676689148, 0.6807041168212891, 0.1310058832168579, 0.41200071573257446, 0.5694999694824219, 0.6614142656326294, 1.2966246604919434, 0.09361155331134796, 0.5651443600654602, 0.5407680869102478, 0.580997884273529, 0.13409799337387085, 0.1944228559732437, 0.725698709487915, 1.6089386940002441, 0.5699119567871094, 0.3324023485183716, 0.22474919259548187, 0.595894455909729, 0.5708560943603516, 1.315032720565796, 0.1245383769273758, 0.5366190671920776, 0.7204708456993103, 0.5221428275108337, 0.47631219029426575, 0.381608247756958, 0.6292741894721985, 0.615159273147583, 0.5233948826789856, 0.15884119272232056, 0.6869887113571167, 0.6967844367027283, 0.6931018829345703, 0.053980425000190735, 0.5255548357963562, 0.7298504710197449, 0.7749112844467163, 0.12453301250934601, 0.22651906311511993, 0.1590571105480194, 0.8316650986671448, 0.1797877550125122, 0.28992629051208496, 0.6127946972846985, 0.4589284360408783, 0.15093150734901428, 0.5860468149185181, 0.69791179895401, 0.47836023569107056, 0.6145693063735962, 0.3255380392074585, 0.22326302528381348, 0.5462904572486877, 0.4725283086299896, 0.5541700720787048, 0.5110270380973816, 0.29582342505455017, 0.34736764430999756, 0.5317643284797668, 0.5075615048408508, 0.1144419014453888, 0.2796432673931122, 0.17392045259475708, 0.48223042488098145, 0.5357011556625366, 0.9698785543441772, 0.12346038222312927, 0.5146992206573486, 0.5394586324691772, 0.5314984917640686, 0.19061517715454102, 0.42842352390289307, 1.176698923110962, 0.5028777122497559, 0.20377710461616516, 0.3622995913028717, 0.6524584889411926, 0.9606486558914185, 0.36707547307014465, 0.3476492464542389, 0.5179787874221802, 0.5416894555091858, 0.13523893058300018, 0.18779356777668, 0.847974419593811, 0.7401130199432373, 0.21759654581546783, 0.5431094765663147, 0.9282552599906921, 0.24196958541870117, 0.24245388805866241, 0.6354641318321228, 0.6565349698066711, 0.5973912477493286, 0.9770735502243042, 0.624563992023468, 0.5411317348480225, 0.34570935368537903, 0.23177599906921387, 0.7382572293281555, 0.639172375202179, 0.577439546585083, 0.11691325902938843, 0.12870261073112488, 0.13322925567626953, 0.5207149386405945, 0.5085009336471558, 0.11264730989933014, 0.765081524848938, 0.9675865173339844, 0.41804251074790955, 0.3524915874004364, 0.7221909761428833, 0.6490848064422607, 0.05973442643880844, 0.5584074258804321, 0.6405658721923828, 1.2676703929901123, 0.2043956071138382, 0.517296314239502, 0.5734966397285461, 0.5991326570510864, 0.5168188810348511, 0.5921599268913269, 0.22452712059020996, 0.5082581043243408, 0.6345713138580322, 0.32956328988075256, 0.2012028992176056, 0.6433882117271423, 0.5174081921577454, 0.29025372862815857, 0.23953135311603546, 0.4931529760360718, 0.656502366065979, 0.4289737343788147, 0.4456017315387726, 0.5723229646682739, 1.072278618812561, 0.2771903872489929, 0.341229110956192, 0.6586616635322571, 0.7671146988868713, 0.26658758521080017, 0.3830062448978424, 0.7507475018501282, 1.0076810121536255, 0.2650490999221802, 0.7722020745277405, 0.7554517984390259, 0.6484650373458862, 0.6437593102455139, 0.737321138381958, 0.3146332800388336, 0.36032429337501526, 0.9990082383155823, 0.5343726873397827, 0.1796502321958542, 0.5864483118057251, 0.6408722400665283, 0.1730261892080307, 0.4449178874492645, 0.6790710091590881, 0.39888113737106323, 0.301653116941452, 0.6829605102539062, 0.30534258484840393, 0.16810527443885803, 0.5109854936599731, 0.29997920989990234, 0.2713073790073395, 0.7011597156524658, 0.4825201630592346, 0.5878978967666626, 0.5454292297363281, 0.28639018535614014, 0.25646084547042847, 0.6858901977539062, 0.49819499254226685, 0.08303475379943848, 0.4045419692993164, 0.5077204704284668, 0.584786057472229, 0.09621930122375488, 0.571509838104248, 0.48130202293395996, 0.4365537464618683, 0.31541708111763, 0.6124725341796875, 1.132022738456726, 0.48717400431632996, 0.0649520754814148, 0.6672317385673523, 0.6372124552726746, 0.514435887336731, 0.23044541478157043, 0.29801928997039795, 0.579187273979187, 0.06783173233270645, 0.2534460723400116, 0.3449915647506714, 0.8446990847587585, 0.5997726917266846, 0.05981455743312836, 0.6909947991371155, 0.6706497073173523, 0.5634194612503052, 0.511080801486969, 0.64206862449646, 0.7816661596298218, 0.057281430810689926, 0.8119791746139526, 0.8343693614006042, 0.5230989456176758, 0.22687214612960815, 0.6852522492408752, 0.6964699029922485, 0.1866525113582611, 0.4427396059036255, 0.20489822328090668, 0.6111167073249817, 0.5080863833427429, 0.3552119731903076, 0.225550577044487, 0.559806227684021, 0.478975772857666, 0.20817583799362183, 0.3488742709159851, 0.5028401017189026, 0.5550371408462524, 0.4772495925426483, 0.5711342096328735, 0.363873153924942, 0.19085635244846344, 0.5014209151268005, 0.4936794340610504, 0.17563696205615997, 0.34671786427497864, 0.2570195198059082, 0.40112996101379395, 0.2729465961456299, 0.26039788126945496, 1.0664407014846802, 0.6537111401557922, 0.3746202886104584, 0.19373954832553864, 0.574107825756073, 0.7886304259300232, 0.2839924097061157, 0.2108602672815323, 0.48624205589294434, 0.5150502920150757, 0.30600327253341675, 0.227682963013649, 0.6099286079406738, 0.5217859148979187, 0.2840164303779602, 0.15779322385787964, 0.3839107155799866, 0.28859686851501465, 0.4561072587966919, 0.8382189273834229, 0.30400654673576355, 0.7324093580245972, 0.4475197494029999, 0.6260738968849182, 0.4814634621143341, 0.20545415580272675, 0.35135123133659363, 0.9060623049736023, 0.49745041131973267, 0.19731153547763824, 0.7438353896141052, 0.4763532280921936, 0.05578704923391342, 0.9402937889099121, 0.9738783240318298, 0.756830096244812, 0.647059977054596, 0.9615801572799683, 0.6671966314315796, 0.4252672493457794, 0.3648509681224823, 0.7116565704345703, 0.8201193809509277, 0.2528887987136841, 0.05835629999637604, 0.5645091533660889, 0.3902210295200348, 0.09553273022174835, 0.5011534690856934, 1.120629072189331, 0.4610063135623932, 0.5552104711532593, 0.09191618859767914, 0.4053965210914612, 0.6213238835334778, 0.5695043206214905, 0.5735177397727966, 0.3422413170337677, 0.30542948842048645, 0.4876110255718231, 0.5441648960113525, 0.8115527629852295, 0.25437939167022705, 0.24208921194076538, 0.47646141052246094, 0.7622451186180115, 0.6360470056533813, 0.15485724806785583, 0.9754751324653625, 0.3331230580806732, 0.9688823223114014, 0.45800191164016724, 0.49932920932769775, 0.083889439702034, 0.5767369866371155, 0.19897104799747467, 0.5042209625244141, 0.48963576555252075, 0.6552925705909729, 0.9824516773223877, 0.6781638860702515, 0.31463244557380676, 0.15353086590766907, 0.5135633945465088, 0.4847242832183838, 0.3026432991027832, 0.28575682640075684, 0.5164690613746643, 1.1248316764831543, 0.2873905599117279, 0.25305214524269104, 1.057316541671753, 0.5551652312278748, 0.16195453703403473, 0.4414968192577362, 0.6510778665542603, 0.9583346247673035, 0.07734766602516174, 0.21149274706840515, 0.351102739572525, 0.47551777958869934, 0.49632880091667175, 0.11293832212686539, 0.36207476258277893, 0.5444952845573425, 1.0829282999038696, 0.5809605121612549, 0.1591256856918335, 0.447678804397583, 0.5073320269584656, 0.6404690146446228, 0.5388050079345703, 0.23811069130897522, 0.3707571029663086, 0.5297558903694153, 0.5082656145095825, 0.723476231098175, 0.5707824230194092, 0.09200812876224518, 0.7367936372756958, 0.765124499797821, 0.5566709637641907, 0.6492060422897339, 1.1819963455200195, 0.49071717262268066, 0.09162118285894394 ], "colorscale": [ [ 0.0, "#000004" ], [ 0.1111111111111111, "#1b0c41" ], [ 0.2222222222222222, "#4a0c6b" ], [ 0.3333333333333333, "#781c6d" ], [ 0.4444444444444444, "#a52c60" ], [ 0.5555555555555556, "#cf4446" ], [ 0.6666666666666666, "#ed6925" ], [ 0.7777777777777778, "#fb9b06" ], [ 0.8888888888888888, "#f7d13d" ], [ 1.0, "#fcffa4" ] ], "size": 1.5 }, "mode": "markers", "name": "Trajectory 4", "type": "scatter3d", "x": [ 309.0, 310.0, 311.0, 311.0, 312.0, 313.0, 313.0, 314.0, 315.0, 316.0, 317.0, 318.0, 318.0, 319.0, 320.0, 320.0, 321.0, 321.0, 322.0, 323.0, 323.0, 324.0, 325.0, 325.0, 326.0, 327.0, 328.0, 328.0, 329.0, 330.0, 330.0, 331.0, 332.0, 332.0, 333.0, 334.0, 335.0, 336.0, 337.0, 337.0, 528.0, 529.0, 529.0, 530.0, 531.0, 532.0, 532.0, 533.0, 534.0, 535.0, 535.0, 536.0, 537.0, 538.0, 539.0, 540.0, 541.0, 542.0, 542.0, 543.0, 544.0, 545.0, 545.0, 546.0, 547.0, 548.0, 549.0, 549.0, 550.0, 551.0, 552.0, 553.0, 553.0, 554.0, 555.0, 556.0, 556.0, 557.0, 558.0, 559.0, 560.0, 561.0, 560.0, 561.0, 562.0, 563.0, 563.0, 564.0, 565.0, 566.0, 567.0, 567.0, 568.0, 569.0, 570.0, 570.0, 571.0, 572.0, 573.0, 573.0, 574.0, 575.0, 576.0, 577.0, 577.0, 578.0, 579.0, 580.0, 580.0, 337.0, 338.0, 339.0, 339.0, 340.0, 341.0, 341.0, 342.0, 343.0, 344.0, 345.0, 346.0, 346.0, 347.0, 348.0, 349.0, 350.0, 351.0, 351.0, 352.0, 353.0, 353.0, 354.0, 511.0, 514.0, 515.0, 516.0, 517.0, 517.0, 518.0, 519.0, 520.0, 520.0, 521.0, 522.0, 523.0, 523.0, 524.0, 525.0, 526.0, 526.0, 527.0, 528.0, 548.0, 560.0, 561.0, 561.0, 580.0, 581.0, 582.0, 583.0, 583.0, 584.0, 585.0, 586.0, 587.0, 588.0, 589.0, 590.0, 590.0, 591.0, 592.0, 593.0, 594.0, 594.0, 600.0, 354.0, 355.0, 356.0, 356.0, 357.0, 358.0, 358.0, 359.0, 360.0, 361.0, 361.0, 362.0, 363.0, 363.0, 364.0, 365.0, 366.0, 501.0, 502.0, 502.0, 503.0, 504.0, 505.0, 505.0, 506.0, 507.0, 508.0, 508.0, 509.0, 510.0, 511.0, 511.0, 512.0, 513.0, 514.0, 594.0, 595.0, 596.0, 597.0, 597.0, 598.0, 599.0, 600.0, 600.0, 601.0, 602.0, 603.0, 604.0, 605.0, 605.0, 606.0, 607.0, 607.0, 608.0, 609.0, 610.0, 610.0, 611.0, 612.0, 612.0, 613.0, 614.0, 366.0, 367.0, 368.0, 368.0, 369.0, 370.0, 371.0, 372.0, 373.0, 373.0, 374.0, 375.0, 376.0, 376.0, 377.0, 378.0, 379.0, 490.0, 491.0, 492.0, 492.0, 493.0, 494.0, 495.0, 495.0, 496.0, 497.0, 498.0, 499.0, 499.0, 500.0, 501.0, 614.0, 614.0, 615.0, 616.0, 616.0, 617.0, 618.0, 619.0, 619.0, 620.0, 621.0, 622.0, 622.0, 623.0, 624.0, 624.0, 625.0, 626.0, 627.0, 627.0, 628.0, 379.0, 380.0, 381.0, 381.0, 382.0, 383.0, 384.0, 384.0, 385.0, 386.0, 387.0, 388.0, 389.0, 389.0, 390.0, 391.0, 392.0, 392.0, 393.0, 476.0, 477.0, 477.0, 478.0, 479.0, 480.0, 480.0, 481.0, 482.0, 483.0, 483.0, 484.0, 485.0, 486.0, 486.0, 487.0, 488.0, 489.0, 489.0, 490.0, 393.0, 394.0, 395.0, 395.0, 396.0, 397.0, 398.0, 399.0, 400.0, 400.0, 401.0, 402.0, 465.0, 466.0, 467.0, 468.0, 468.0, 469.0, 470.0, 471.0, 472.0, 473.0, 474.0, 474.0, 475.0, 476.0, 477.0, 402.0, 403.0, 404.0, 404.0, 405.0, 406.0, 407.0, 408.0, 409.0, 409.0, 410.0, 411.0, 412.0, 413.0, 413.0, 414.0, 415.0, 416.0, 417.0, 417.0, 418.0, 419.0, 420.0, 421.0, 422.0, 421.0, 422.0, 423.0, 424.0, 425.0, 425.0, 426.0, 448.0, 449.0, 450.0, 451.0, 452.0, 453.0, 453.0, 454.0, 455.0, 456.0, 456.0, 457.0, 458.0, 459.0, 459.0, 460.0, 461.0, 462.0, 462.0, 463.0, 464.0, 465.0, 465.0, 426.0, 427.0, 428.0, 429.0, 429.0, 430.0, 431.0, 432.0, 433.0, 433.0, 434.0, 435.0, 436.0, 437.0, 437.0, 438.0, 439.0, 440.0, 441.0, 441.0, 442.0, 443.0, 444.0, 445.0, 446.0, 447.0, 515.0 ], "y": [ 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0, 4.0, 4.0, 4.0, 5.0, 5.0, 5.0, 5.0, 5.0, 6.0, 6.0, 6.0, 7.0, 7.0, 7.0, 7.0, 8.0, 8.0, 8.0, 9.0, 9.0, 9.0, 10.0, 10.0, 10.0, 11.0, 11.0, 11.0, 12.0, 73.0, 73.0, 74.0, 74.0, 74.0, 74.0, 75.0, 75.0, 75.0, 75.0, 76.0, 76.0, 76.0, 76.0, 77.0, 77.0, 77.0, 77.0, 78.0, 78.0, 78.0, 78.0, 79.0, 79.0, 79.0, 79.0, 79.0, 80.0, 80.0, 80.0, 80.0, 80.0, 81.0, 81.0, 81.0, 81.0, 82.0, 82.0, 82.0, 82.0, 82.0, 82.0, 83.0, 83.0, 83.0, 83.0, 84.0, 84.0, 84.0, 84.0, 84.0, 85.0, 85.0, 85.0, 85.0, 86.0, 86.0, 86.0, 86.0, 87.0, 87.0, 87.0, 87.0, 87.0, 88.0, 88.0, 88.0, 88.0, 89.0, 12.0, 12.0, 12.0, 13.0, 13.0, 13.0, 14.0, 14.0, 14.0, 15.0, 15.0, 15.0, 16.0, 16.0, 16.0, 17.0, 17.0, 17.0, 18.0, 18.0, 18.0, 19.0, 19.0, 68.0, 69.0, 69.0, 69.0, 69.0, 70.0, 70.0, 70.0, 70.0, 71.0, 71.0, 71.0, 71.0, 72.0, 72.0, 72.0, 72.0, 73.0, 73.0, 73.0, 79.0, 82.0, 82.0, 83.0, 89.0, 89.0, 89.0, 89.0, 90.0, 90.0, 90.0, 90.0, 91.0, 91.0, 91.0, 91.0, 92.0, 92.0, 92.0, 92.0, 92.0, 93.0, 95.0, 19.0, 19.0, 19.0, 20.0, 20.0, 20.0, 21.0, 21.0, 21.0, 21.0, 22.0, 22.0, 22.0, 23.0, 23.0, 23.0, 24.0, 64.0, 64.0, 65.0, 65.0, 65.0, 65.0, 66.0, 66.0, 66.0, 66.0, 67.0, 67.0, 67.0, 67.0, 68.0, 68.0, 68.0, 68.0, 93.0, 93.0, 93.0, 93.0, 94.0, 94.0, 94.0, 94.0, 95.0, 95.0, 95.0, 96.0, 96.0, 96.0, 97.0, 97.0, 97.0, 98.0, 98.0, 98.0, 98.0, 99.0, 99.0, 99.0, 100.0, 100.0, 100.0, 24.0, 24.0, 24.0, 25.0, 25.0, 25.0, 26.0, 26.0, 26.0, 27.0, 27.0, 27.0, 27.0, 28.0, 28.0, 28.0, 29.0, 61.0, 61.0, 61.0, 62.0, 62.0, 62.0, 62.0, 63.0, 63.0, 63.0, 63.0, 63.0, 64.0, 64.0, 64.0, 100.0, 101.0, 101.0, 101.0, 102.0, 102.0, 102.0, 102.0, 103.0, 103.0, 103.0, 103.0, 104.0, 104.0, 104.0, 105.0, 105.0, 105.0, 105.0, 106.0, 106.0, 29.0, 29.0, 29.0, 30.0, 30.0, 30.0, 30.0, 31.0, 31.0, 31.0, 32.0, 32.0, 32.0, 33.0, 33.0, 33.0, 33.0, 34.0, 34.0, 56.0, 56.0, 57.0, 57.0, 57.0, 57.0, 58.0, 58.0, 58.0, 58.0, 59.0, 59.0, 59.0, 59.0, 60.0, 60.0, 60.0, 60.0, 61.0, 61.0, 34.0, 34.0, 34.0, 35.0, 35.0, 35.0, 35.0, 35.0, 35.0, 36.0, 36.0, 36.0, 53.0, 53.0, 53.0, 53.0, 54.0, 54.0, 54.0, 55.0, 55.0, 55.0, 55.0, 56.0, 56.0, 56.0, 56.0, 36.0, 36.0, 36.0, 37.0, 37.0, 37.0, 37.0, 37.0, 37.0, 38.0, 38.0, 38.0, 38.0, 38.0, 39.0, 39.0, 39.0, 39.0, 39.0, 40.0, 40.0, 40.0, 40.0, 40.0, 40.0, 41.0, 41.0, 41.0, 41.0, 41.0, 42.0, 42.0, 47.0, 47.0, 48.0, 48.0, 48.0, 48.0, 49.0, 49.0, 49.0, 49.0, 50.0, 50.0, 50.0, 50.0, 51.0, 51.0, 51.0, 51.0, 52.0, 52.0, 52.0, 52.0, 53.0, 42.0, 42.0, 42.0, 42.0, 43.0, 43.0, 43.0, 43.0, 43.0, 44.0, 44.0, 44.0, 44.0, 44.0, 45.0, 45.0, 45.0, 45.0, 45.0, 46.0, 46.0, 46.0, 46.0, 46.0, 47.0, 47.0, 56.0 ], "z": [ 98.0, 98.0, 98.0, 98.0, 98.0, 98.0, 98.0, 98.0, 98.0, 98.0, 98.0, 98.0, 98.0, 98.0, 98.0, 98.0, 98.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 99.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 101.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 102.0, 103.0, 103.0, 103.0, 103.0, 103.0, 103.0, 103.0, 103.0, 103.0, 103.0, 103.0, 103.0, 103.0, 103.0, 103.0, 103.0, 103.0, 103.0, 103.0, 103.0, 103.0, 103.0, 103.0, 103.0, 103.0, 103.0, 103.0, 103.0, 103.0, 103.0, 103.0, 103.0, 103.0, 103.0, 103.0, 103.0, 103.0, 103.0, 103.0, 104.0, 104.0, 104.0, 104.0, 104.0, 104.0, 104.0, 104.0, 104.0, 104.0, 104.0, 104.0, 104.0, 104.0, 104.0, 104.0, 104.0, 104.0, 104.0, 104.0, 104.0, 104.0, 104.0, 104.0, 104.0, 104.0, 104.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 105.0, 106.0, 106.0, 106.0, 106.0, 106.0, 106.0, 106.0, 106.0, 106.0, 106.0, 106.0, 106.0, 106.0, 106.0, 106.0, 106.0, 106.0, 106.0, 106.0, 106.0, 106.0, 106.0, 106.0, 106.0, 106.0, 106.0, 111.0 ] }, { "hovertext": [ "Energy 3.41 MeV", "Energy 0.58 MeV", "Energy 2.75 MeV", "Energy 2.45 MeV", "Energy 0.60 MeV", "Energy 3.05 MeV", "Energy 0.10 MeV", "Energy 1.62 MeV", "Energy 1.03 MeV", "Energy 0.37 MeV", "Energy 0.14 MeV", "Energy 1.97 MeV", "Energy 0.40 MeV", "Energy 1.99 MeV", "Energy 0.41 MeV", "Energy 1.31 MeV", "Energy 0.72 MeV", "Energy 1.20 MeV", "Energy 0.37 MeV", "Energy 1.07 MeV", "Energy 0.48 MeV", "Energy 0.58 MeV", "Energy 0.62 MeV", "Energy 1.63 MeV", "Energy 0.09 MeV", "Energy 2.14 MeV", "Energy 0.26 MeV", "Energy 0.69 MeV", "Energy 0.40 MeV", "Energy 0.69 MeV", "Energy 1.20 MeV", "Energy 0.70 MeV", "Energy 0.17 MeV", "Energy 0.34 MeV", "Energy 1.14 MeV", "Energy 0.16 MeV", "Energy 1.26 MeV", "Energy 0.48 MeV", "Energy 0.29 MeV", "Energy 1.01 MeV", "Energy 0.79 MeV", "Energy 0.47 MeV", "Energy 0.79 MeV", "Energy 0.42 MeV", "Energy 0.53 MeV", "Energy 1.01 MeV", "Energy 0.36 MeV", "Energy 0.26 MeV", "Energy 0.33 MeV", "Energy 0.86 MeV", "Energy 0.35 MeV", "Energy 0.77 MeV", "Energy 0.33 MeV", "Energy 0.26 MeV", "Energy 0.23 MeV", "Energy 0.36 MeV", "Energy 0.98 MeV", "Energy 0.56 MeV", "Energy 0.92 MeV", "Energy 0.05 MeV", "Energy 1.52 MeV", "Energy 0.18 MeV", "Energy 0.33 MeV", "Energy 0.32 MeV", "Energy 1.41 MeV", "Energy 0.50 MeV", "Energy 0.15 MeV", "Energy 0.09 MeV", "Energy 0.97 MeV", "Energy 0.69 MeV", "Energy 0.85 MeV", "Energy 0.84 MeV", "Energy 0.27 MeV", "Energy 0.06 MeV", "Energy 0.73 MeV", "Energy 0.93 MeV", "Energy 0.27 MeV", "Energy 0.41 MeV", "Energy 0.96 MeV", "Energy 0.05 MeV", "Energy 0.42 MeV", "Energy 0.22 MeV", "Energy 1.33 MeV", "Energy 0.23 MeV", "Energy 0.61 MeV", "Energy 0.28 MeV", "Energy 0.63 MeV", "Energy 0.41 MeV", "Energy 0.56 MeV", "Energy 0.19 MeV", "Energy 0.52 MeV", "Energy 0.39 MeV", "Energy 0.70 MeV", "Energy 0.59 MeV", "Energy 0.52 MeV", "Energy 0.79 MeV", "Energy 0.27 MeV", "Energy 1.01 MeV", "Energy 0.97 MeV", "Energy 0.07 MeV", "Energy 0.52 MeV", "Energy 0.67 MeV", "Energy 0.84 MeV", "Energy 0.13 MeV", "Energy 0.32 MeV", "Energy 1.00 MeV", "Energy 0.41 MeV", "Energy 0.37 MeV", "Energy 0.59 MeV", "Energy 0.83 MeV", "Energy 0.07 MeV", "Energy 0.22 MeV", "Energy 0.24 MeV", "Energy 0.50 MeV", "Energy 0.78 MeV", "Energy 0.41 MeV", "Energy 0.16 MeV", "Energy 0.64 MeV", "Energy 0.61 MeV", "Energy 0.59 MeV", "Energy 0.93 MeV", "Energy 0.12 MeV", "Energy 0.29 MeV", "Energy 0.08 MeV", "Energy 0.73 MeV", "Energy 0.57 MeV", "Energy 0.57 MeV", "Energy 0.74 MeV", "Energy 0.29 MeV", "Energy 0.94 MeV", "Energy 0.76 MeV", "Energy 0.68 MeV", "Energy 0.70 MeV", "Energy 0.20 MeV", "Energy 0.64 MeV", "Energy 0.41 MeV", "Energy 0.55 MeV", "Energy 0.77 MeV", "Energy 0.05 MeV", "Energy 1.07 MeV", "Energy 0.90 MeV", "Energy 0.36 MeV", "Energy 0.55 MeV", "Energy 0.74 MeV", "Energy 0.19 MeV", "Energy 0.05 MeV", "Energy 0.11 MeV", "Energy 0.52 MeV", "Energy 0.58 MeV", "Energy 0.64 MeV", "Energy 0.69 MeV", "Energy 0.09 MeV", "Energy 0.60 MeV", "Energy 0.94 MeV", "Energy 0.06 MeV", "Energy 0.14 MeV", "Energy 0.09 MeV", "Energy 0.64 MeV", "Energy 0.08 MeV", "Energy 0.86 MeV", "Energy 1.74 MeV", "Energy 0.33 MeV", "Energy 0.84 MeV", "Energy 1.11 MeV", "Energy 0.10 MeV", "Energy 0.68 MeV", "Energy 0.48 MeV", "Energy 0.17 MeV", "Energy 0.35 MeV", "Energy 0.62 MeV", "Energy 0.33 MeV", "Energy 0.48 MeV", "Energy 0.68 MeV", "Energy 0.20 MeV", "Energy 0.08 MeV", "Energy 0.59 MeV", "Energy 0.95 MeV", "Energy 0.16 MeV", "Energy 0.26 MeV", "Energy 0.28 MeV", "Energy 0.58 MeV", "Energy 0.24 MeV", "Energy 0.39 MeV", "Energy 0.77 MeV", "Energy 0.54 MeV", "Energy 0.12 MeV", "Energy 0.75 MeV", "Energy 0.75 MeV", "Energy 0.42 MeV", "Energy 0.45 MeV", "Energy 0.79 MeV", "Energy 0.73 MeV", "Energy 0.38 MeV", "Energy 0.22 MeV", "Energy 0.12 MeV", "Energy 0.71 MeV", "Energy 0.50 MeV", "Energy 0.47 MeV", "Energy 0.89 MeV", "Energy 0.50 MeV", "Energy 0.25 MeV", "Energy 0.52 MeV", "Energy 0.77 MeV", "Energy 0.20 MeV", "Energy 0.07 MeV", "Energy 0.48 MeV", "Energy 0.56 MeV", "Energy 0.28 MeV", "Energy 0.28 MeV", "Energy 0.77 MeV", "Energy 0.59 MeV", "Energy 0.31 MeV", "Energy 0.50 MeV", "Energy 0.66 MeV", "Energy 0.60 MeV", "Energy 0.09 MeV", "Energy 0.20 MeV", "Energy 0.53 MeV", "Energy 0.86 MeV", "Energy 0.20 MeV", "Energy 0.06 MeV", "Energy 0.10 MeV", "Energy 0.45 MeV", "Energy 0.13 MeV", "Energy 0.74 MeV", "Energy 0.77 MeV", "Energy 0.49 MeV", "Energy 0.57 MeV", "Energy 0.50 MeV", "Energy 0.33 MeV", "Energy 0.59 MeV", "Energy 0.08 MeV", "Energy 0.42 MeV", "Energy 0.20 MeV", "Energy 0.28 MeV", "Energy 0.62 MeV", "Energy 0.63 MeV", "Energy 0.20 MeV", "Energy 0.74 MeV", "Energy 2.31 MeV", "Energy 0.22 MeV", "Energy 0.31 MeV", "Energy 0.41 MeV", "Energy 0.79 MeV", "Energy 0.60 MeV", "Energy 0.27 MeV", "Energy 0.30 MeV", "Energy 0.63 MeV", "Energy 0.57 MeV", "Energy 0.16 MeV", "Energy 0.22 MeV", "Energy 0.19 MeV", "Energy 0.55 MeV", "Energy 0.57 MeV", "Energy 0.89 MeV", "Energy 0.13 MeV", "Energy 0.31 MeV", "Energy 0.73 MeV", "Energy 0.49 MeV", "Energy 0.68 MeV", "Energy 0.26 MeV", "Energy 0.59 MeV", "Energy 0.82 MeV", "Energy 0.61 MeV", "Energy 0.20 MeV", "Energy 0.09 MeV", "Energy 0.67 MeV", "Energy 0.52 MeV", "Energy 0.59 MeV", "Energy 0.05 MeV", "Energy 0.36 MeV", "Energy 0.29 MeV", "Energy 1.08 MeV", "Energy 1.01 MeV", "Energy 0.05 MeV", "Energy 0.25 MeV", "Energy 0.26 MeV", "Energy 0.54 MeV", "Energy 0.73 MeV", "Energy 0.63 MeV", "Energy 0.29 MeV", "Energy 0.07 MeV", "Energy 0.21 MeV", "Energy 0.12 MeV", "Energy 0.65 MeV", "Energy 0.50 MeV", "Energy 0.57 MeV", "Energy 0.14 MeV", "Energy 0.56 MeV", "Energy 0.62 MeV", "Energy 0.55 MeV", "Energy 0.14 MeV", "Energy 0.60 MeV", "Energy 0.54 MeV", "Energy 0.74 MeV", "Energy 0.50 MeV", "Energy 0.45 MeV", "Energy 1.03 MeV", "Energy 0.47 MeV", "Energy 0.26 MeV", "Energy 0.59 MeV", "Energy 0.07 MeV", "Energy 0.24 MeV", "Energy 0.59 MeV", "Energy 0.43 MeV", "Energy 0.72 MeV", "Energy 0.33 MeV", "Energy 0.11 MeV", "Energy 0.50 MeV", "Energy 0.69 MeV", "Energy 0.59 MeV", "Energy 0.49 MeV", "Energy 0.16 MeV", "Energy 0.22 MeV", "Energy 0.55 MeV", "Energy 0.54 MeV", "Energy 0.07 MeV", "Energy 0.24 MeV", "Energy 0.51 MeV", "Energy 0.31 MeV", "Energy 0.38 MeV", "Energy 0.53 MeV", "Energy 0.70 MeV", "Energy 0.62 MeV", "Energy 0.35 MeV", "Energy 0.20 MeV", "Energy 0.10 MeV", "Energy 0.36 MeV", "Energy 1.06 MeV", "Energy 0.53 MeV", "Energy 0.51 MeV", "Energy 0.58 MeV", "Energy 0.39 MeV", "Energy 0.34 MeV", "Energy 0.55 MeV", "Energy 0.56 MeV", "Energy 0.61 MeV", "Energy 1.29 MeV", "Energy 0.51 MeV", "Energy 0.43 MeV", "Energy 0.69 MeV", "Energy 0.07 MeV", "Energy 0.89 MeV", "Energy 0.60 MeV", "Energy 0.81 MeV", "Energy 1.25 MeV", "Energy 0.10 MeV", "Energy 0.29 MeV", "Energy 0.20 MeV", "Energy 0.45 MeV", "Energy 0.10 MeV", "Energy 0.41 MeV", "Energy 0.55 MeV", "Energy 0.58 MeV", "Energy 0.62 MeV", "Energy 1.04 MeV", "Energy 0.21 MeV", "Energy 0.40 MeV", "Energy 0.49 MeV", "Energy 1.10 MeV", "Energy 0.62 MeV", "Energy 0.53 MeV", "Energy 0.17 MeV", "Energy 0.84 MeV", "Energy 0.14 MeV", "Energy 0.46 MeV", "Energy 0.65 MeV", "Energy 0.75 MeV", "Energy 0.51 MeV", "Energy 0.58 MeV", "Energy 0.55 MeV", "Energy 0.07 MeV", "Energy 0.63 MeV", "Energy 1.12 MeV", "Energy 0.50 MeV", "Energy 0.55 MeV", "Energy 0.63 MeV", "Energy 0.45 MeV", "Energy 0.11 MeV", "Energy 0.45 MeV", "Energy 1.04 MeV", "Energy 0.56 MeV", "Energy 0.09 MeV", "Energy 0.06 MeV", "Energy 1.18 MeV", "Energy 0.54 MeV", "Energy 0.55 MeV", "Energy 0.38 MeV", "Energy 0.61 MeV", "Energy 0.07 MeV", "Energy 0.78 MeV", "Energy 0.58 MeV", "Energy 0.46 MeV", "Energy 0.57 MeV", "Energy 0.19 MeV", "Energy 0.90 MeV", "Energy 0.41 MeV", "Energy 0.54 MeV", "Energy 0.28 MeV", "Energy 0.74 MeV", "Energy 0.55 MeV", "Energy 0.63 MeV", "Energy 0.23 MeV", "Energy 0.78 MeV", "Energy 0.45 MeV", "Energy 1.39 MeV", "Energy 0.61 MeV", "Energy 0.45 MeV", "Energy 0.50 MeV", "Energy 0.52 MeV", "Energy 0.06 MeV", "Energy 0.40 MeV", "Energy 0.60 MeV", "Energy 0.42 MeV", "Energy 0.19 MeV", "Energy 0.62 MeV", "Energy 0.59 MeV", "Energy 0.68 MeV", "Energy 0.05 MeV", "Energy 0.10 MeV", "Energy 0.58 MeV", "Energy 0.36 MeV", "Energy 0.57 MeV", "Energy 0.45 MeV", "Energy 0.39 MeV", "Energy 0.59 MeV", "Energy 0.48 MeV", "Energy 0.76 MeV", "Energy 0.50 MeV", "Energy 0.60 MeV", "Energy 0.52 MeV", "Energy 0.52 MeV", "Energy 0.56 MeV", "Energy 0.52 MeV", "Energy 0.55 MeV", "Energy 0.50 MeV", "Energy 0.53 MeV", "Energy 0.15 MeV", "Energy 0.05 MeV", "Energy 0.52 MeV", "Energy 0.63 MeV", "Energy 0.51 MeV", "Energy 0.50 MeV", "Energy 0.11 MeV", "Energy 0.17 MeV", "Energy 0.51 MeV", "Energy 0.80 MeV", "Energy 0.24 MeV", "Energy 0.56 MeV", "Energy 0.41 MeV", "Energy 0.47 MeV", "Energy 0.81 MeV", "Energy 0.48 MeV", "Energy 0.51 MeV", "Energy 0.23 MeV", "Energy 0.61 MeV", "Energy 0.61 MeV", "Energy 0.65 MeV", "Energy 0.67 MeV", "Energy 0.05 MeV", "Energy 0.26 MeV", "Energy 0.82 MeV", "Energy 0.89 MeV", "Energy 0.52 MeV", "Energy 0.54 MeV", "Energy 0.20 MeV", "Energy 0.28 MeV", "Energy 0.45 MeV", "Energy 0.50 MeV", "Energy 0.59 MeV", "Energy 0.58 MeV", "Energy 0.43 MeV", "Energy 0.69 MeV", "Energy 0.93 MeV", "Energy 0.54 MeV", "Energy 0.25 MeV", "Energy 0.16 MeV", "Energy 0.67 MeV", "Energy 0.46 MeV", "Energy 0.50 MeV", "Energy 0.60 MeV", "Energy 0.09 MeV", "Energy 0.11 MeV", "Energy 0.59 MeV", "Energy 0.47 MeV", "Energy 0.53 MeV", "Energy 0.40 MeV", "Energy 0.28 MeV", "Energy 0.11 MeV", "Energy 0.74 MeV", "Energy 0.59 MeV", "Energy 0.56 MeV", "Energy 0.15 MeV", "Energy 0.38 MeV", "Energy 0.38 MeV", "Energy 0.58 MeV", "Energy 0.45 MeV", "Energy 0.49 MeV", "Energy 0.58 MeV", "Energy 0.54 MeV", "Energy 0.09 MeV", "Energy 0.12 MeV", "Energy 0.46 MeV", "Energy 0.47 MeV", "Energy 0.51 MeV", "Energy 0.46 MeV", "Energy 0.62 MeV", "Energy 0.35 MeV", "Energy 0.49 MeV", "Energy 0.56 MeV", "Energy 0.48 MeV", "Energy 0.55 MeV", "Energy 0.13 MeV", "Energy 0.44 MeV", "Energy 0.84 MeV", "Energy 0.87 MeV", "Energy 0.60 MeV", "Energy 0.51 MeV", "Energy 0.07 MeV", "Energy 0.18 MeV", "Energy 0.10 MeV", "Energy 0.47 MeV", "Energy 0.47 MeV", "Energy 0.59 MeV", "Energy 0.71 MeV", "Energy 0.32 MeV", "Energy 0.19 MeV", "Energy 0.49 MeV", "Energy 0.28 MeV", "Energy 0.30 MeV", "Energy 0.49 MeV", "Energy 0.63 MeV", "Energy 0.44 MeV", "Energy 0.47 MeV", "Energy 0.51 MeV", "Energy 0.62 MeV", "Energy 0.22 MeV", "Energy 0.22 MeV", "Energy 0.60 MeV", "Energy 0.10 MeV", "Energy 0.31 MeV", "Energy 0.66 MeV", "Energy 0.52 MeV", "Energy 0.46 MeV", "Energy 0.58 MeV", "Energy 0.45 MeV", "Energy 0.71 MeV", "Energy 0.27 MeV", "Energy 0.27 MeV", "Energy 0.72 MeV", "Energy 1.51 MeV", "Energy 1.45 MeV", "Energy 0.36 MeV", "Energy 0.15 MeV", "Energy 0.49 MeV", "Energy 0.71 MeV", "Energy 0.41 MeV", "Energy 0.49 MeV", "Energy 0.49 MeV", "Energy 0.32 MeV", "Energy 0.12 MeV", "Energy 0.42 MeV", "Energy 0.52 MeV", "Energy 0.53 MeV", "Energy 0.10 MeV", "Energy 0.47 MeV", "Energy 0.46 MeV", "Energy 0.46 MeV", "Energy 0.59 MeV", "Energy 0.62 MeV", "Energy 0.56 MeV", "Energy 0.38 MeV", "Energy 1.28 MeV", "Energy 0.50 MeV", "Energy 0.27 MeV", "Energy 0.65 MeV", "Energy 0.46 MeV", "Energy 0.08 MeV", "Energy 0.18 MeV", "Energy 0.25 MeV", "Energy 0.39 MeV", "Energy 0.62 MeV", "Energy 0.51 MeV", "Energy 0.39 MeV", "Energy 0.49 MeV", "Energy 0.10 MeV", "Energy 0.15 MeV", "Energy 0.53 MeV", "Energy 0.47 MeV", "Energy 0.15 MeV", "Energy 0.58 MeV", "Energy 0.61 MeV", "Energy 0.35 MeV", "Energy 0.54 MeV", "Energy 0.12 MeV", "Energy 0.49 MeV", "Energy 0.62 MeV", "Energy 0.55 MeV", "Energy 0.14 MeV", "Energy 0.08 MeV", "Energy 0.59 MeV", "Energy 0.34 MeV", "Energy 0.53 MeV", "Energy 0.39 MeV", "Energy 0.53 MeV", "Energy 0.48 MeV", "Energy 0.47 MeV", "Energy 0.13 MeV", "Energy 0.13 MeV", "Energy 0.06 MeV", "Energy 0.45 MeV", "Energy 0.62 MeV", "Energy 0.69 MeV", "Energy 0.32 MeV", "Energy 0.30 MeV", "Energy 0.67 MeV", "Energy 0.11 MeV", "Energy 0.28 MeV", "Energy 0.65 MeV", "Energy 0.40 MeV", "Energy 0.53 MeV", "Energy 0.62 MeV", "Energy 0.54 MeV", "Energy 0.34 MeV", "Energy 0.13 MeV", "Energy 0.58 MeV", "Energy 0.50 MeV", "Energy 0.49 MeV", "Energy 0.41 MeV", "Energy 0.45 MeV", "Energy 0.07 MeV", "Energy 0.32 MeV", "Energy 0.76 MeV" ], "marker": { "color": [ 3.407561779022217, 0.5817327499389648, 2.7526769638061523, 2.445033550262451, 0.5959318280220032, 3.0525574684143066, 0.09733948856592178, 1.621118426322937, 1.0308600664138794, 0.36959463357925415, 0.1384539157152176, 1.9682416915893555, 0.4002189040184021, 1.9875773191452026, 0.4119810461997986, 1.3104444742202759, 0.7173058986663818, 1.198456883430481, 0.37124812602996826, 1.0675194263458252, 0.4757593274116516, 0.580298900604248, 0.6151526570320129, 1.6304173469543457, 0.0885343849658966, 2.138688087463379, 0.2565104365348816, 0.6937857866287231, 0.4049404561519623, 0.6876143217086792, 1.2001944780349731, 0.6996409296989441, 0.1693291962146759, 0.3427557349205017, 1.1406348943710327, 0.15847112238407135, 1.262652039527893, 0.4790884852409363, 0.2861776351928711, 1.0061252117156982, 0.7851276397705078, 0.46872594952583313, 0.7926397323608398, 0.4214017689228058, 0.5250473022460938, 1.0144273042678833, 0.36195093393325806, 0.2597488760948181, 0.33105406165122986, 0.8607292175292969, 0.3482402563095093, 0.7713349461555481, 0.329579621553421, 0.25683027505874634, 0.23108479380607605, 0.3632378578186035, 0.983040988445282, 0.5550143718719482, 0.9235295653343201, 0.050745896995067596, 1.5206611156463623, 0.1810210943222046, 0.3329031467437744, 0.3192453384399414, 1.4098964929580688, 0.5021201372146606, 0.15414077043533325, 0.08981990069150925, 0.9681590795516968, 0.6921105980873108, 0.8542340397834778, 0.8355722427368164, 0.2723659873008728, 0.05568724125623703, 0.734039306640625, 0.9339705109596252, 0.2724549472332001, 0.4104580581188202, 0.958445131778717, 0.05480729416012764, 0.42402034997940063, 0.2154015600681305, 1.3348102569580078, 0.23133133351802826, 0.6098503470420837, 0.2831273078918457, 0.6303576827049255, 0.410480260848999, 0.5622293949127197, 0.1892620176076889, 0.5157846212387085, 0.39122700691223145, 0.6990865468978882, 0.5859768986701965, 0.5235278010368347, 0.7935653328895569, 0.274018257856369, 1.0143420696258545, 0.9748773574829102, 0.07070979475975037, 0.5179114937782288, 0.6740214824676514, 0.8352351784706116, 0.1280582696199417, 0.3152294158935547, 0.9988282918930054, 0.4066528081893921, 0.3674972951412201, 0.5899523496627808, 0.8333386182785034, 0.0725817009806633, 0.2239351123571396, 0.24363486468791962, 0.5028049349784851, 0.7791648507118225, 0.40538543462753296, 0.15938960015773773, 0.6437001824378967, 0.6065472364425659, 0.5907524228096008, 0.930158257484436, 0.11597299575805664, 0.2857251465320587, 0.07633327692747116, 0.726478636264801, 0.5689895153045654, 0.5713952779769897, 0.7370873689651489, 0.2892675995826721, 0.9394185543060303, 0.7622687220573425, 0.6844049096107483, 0.703602135181427, 0.20058155059814453, 0.6378324031829834, 0.4138108491897583, 0.5520289540290833, 0.7658299803733826, 0.05020715296268463, 1.0654816627502441, 0.9018772840499878, 0.3637058436870575, 0.5491662621498108, 0.7354182600975037, 0.18500760197639465, 0.05094947665929794, 0.1130368560552597, 0.5201059579849243, 0.5803249478340149, 0.6449397206306458, 0.6915294528007507, 0.09255211055278778, 0.5964009165763855, 0.9425556659698486, 0.05978428199887276, 0.13563762605190277, 0.0944129079580307, 0.6397361755371094, 0.08233136683702469, 0.857923686504364, 1.7414050102233887, 0.3292487561702728, 0.8431318402290344, 1.1079519987106323, 0.10263541340827942, 0.6778237223625183, 0.4815558195114136, 0.1669800579547882, 0.3539452850818634, 0.617603063583374, 0.33358508348464966, 0.48409923911094666, 0.6789465546607971, 0.20336422324180603, 0.07996738702058792, 0.5939128994941711, 0.9535465240478516, 0.16359642148017883, 0.25829362869262695, 0.2757740020751953, 0.5794100761413574, 0.2364012449979782, 0.3883868455886841, 0.7701250910758972, 0.5417609810829163, 0.1213848665356636, 0.7497958540916443, 0.754447340965271, 0.4223629832267761, 0.4517960846424103, 0.7872937321662903, 0.7318110466003418, 0.3782005310058594, 0.21803560853004456, 0.11918500810861588, 0.7075293660163879, 0.5010150074958801, 0.474752813577652, 0.888035774230957, 0.4992680251598358, 0.2490505576133728, 0.5198929905891418, 0.7681021690368652, 0.1978108286857605, 0.0738464742898941, 0.47870534658432007, 0.5571324229240417, 0.2829693853855133, 0.28316277265548706, 0.7721983194351196, 0.5930519700050354, 0.3101806044578552, 0.5027285814285278, 0.6633228063583374, 0.5954959392547607, 0.08667677640914917, 0.20489633083343506, 0.5323383808135986, 0.8606022000312805, 0.19570386409759521, 0.056564830243587494, 0.10010799765586853, 0.44513916969299316, 0.13097506761550903, 0.7373000979423523, 0.7678515911102295, 0.4901094436645508, 0.5742336511611938, 0.502315104007721, 0.3299013078212738, 0.5879281759262085, 0.07747163623571396, 0.421757310628891, 0.20292872190475464, 0.2836974561214447, 0.6228569149971008, 0.630986213684082, 0.19909068942070007, 0.73586505651474, 2.3050026893615723, 0.2192659080028534, 0.31319373846054077, 0.41058486700057983, 0.7900673151016235, 0.600468099117279, 0.2716749906539917, 0.29761162400245667, 0.6280184388160706, 0.5685606598854065, 0.1626666784286499, 0.21510207653045654, 0.1937466263771057, 0.552710771560669, 0.570931077003479, 0.8905168175697327, 0.1335950791835785, 0.307523638010025, 0.7262488007545471, 0.4920763373374939, 0.6833611130714417, 0.25566503405570984, 0.5903932452201843, 0.82208651304245, 0.6085195541381836, 0.2046961933374405, 0.08520196378231049, 0.6665440797805786, 0.5187329053878784, 0.5939329862594604, 0.052580516785383224, 0.3626139760017395, 0.28538230061531067, 1.0842416286468506, 1.0083452463150024, 0.051646582782268524, 0.25400951504707336, 0.2646401524543762, 0.5416171550750732, 0.7336927652359009, 0.6348288655281067, 0.29421496391296387, 0.06828911602497101, 0.2115960568189621, 0.1206008717417717, 0.6538384556770325, 0.5045041441917419, 0.5661416053771973, 0.1373411864042282, 0.5634497404098511, 0.6160035133361816, 0.5486660003662109, 0.1413341760635376, 0.5983518958091736, 0.5419312715530396, 0.7367290258407593, 0.5044500827789307, 0.4484194815158844, 1.0273804664611816, 0.47254863381385803, 0.25901877880096436, 0.5949590802192688, 0.06974495202302933, 0.24176710844039917, 0.5927157402038574, 0.4330294728279114, 0.715040385723114, 0.3277430534362793, 0.10967632383108139, 0.5034939646720886, 0.691350519657135, 0.5859537124633789, 0.48702481389045715, 0.15864300727844238, 0.22324416041374207, 0.5512596368789673, 0.542924165725708, 0.07015210390090942, 0.24207854270935059, 0.5143766403198242, 0.3121154010295868, 0.3753165602684021, 0.5260730385780334, 0.6972880959510803, 0.6182928085327148, 0.35476285219192505, 0.20102721452713013, 0.10102398693561554, 0.3617936670780182, 1.0619876384735107, 0.5274747610092163, 0.5120078325271606, 0.581108570098877, 0.38802528381347656, 0.3392397165298462, 0.5505368113517761, 0.556201696395874, 0.6083338260650635, 1.285360336303711, 0.5053790211677551, 0.43483924865722656, 0.6901654005050659, 0.07126009464263916, 0.8939876556396484, 0.5995074510574341, 0.8112390041351318, 1.2513704299926758, 0.09775298088788986, 0.286002516746521, 0.20282801985740662, 0.4541011154651642, 0.09716464579105377, 0.41168344020843506, 0.5493358373641968, 0.5820063948631287, 0.6203476786613464, 1.0443243980407715, 0.2095872461795807, 0.402528315782547, 0.49295341968536377, 1.0980114936828613, 0.6249671578407288, 0.5332122445106506, 0.17486858367919922, 0.8396551012992859, 0.14460599422454834, 0.45791494846343994, 0.6474429368972778, 0.7473877668380737, 0.5064114928245544, 0.5802406668663025, 0.5486100316047668, 0.06953473389148712, 0.6262258291244507, 1.121490716934204, 0.5026438236236572, 0.5485720038414001, 0.6332560777664185, 0.44634944200515747, 0.10736605525016785, 0.44993844628334045, 1.038201928138733, 0.5568792819976807, 0.09326756000518799, 0.05506319925189018, 1.1841909885406494, 0.5417343378067017, 0.549330472946167, 0.3837742209434509, 0.6068325638771057, 0.07012863457202911, 0.7777273654937744, 0.576080322265625, 0.4636167883872986, 0.5736756920814514, 0.18675903975963593, 0.9002425074577332, 0.40834614634513855, 0.5394794940948486, 0.28149887919425964, 0.7377552390098572, 0.5536708831787109, 0.6269121766090393, 0.22502504289150238, 0.7842199206352234, 0.45209988951683044, 1.3907355070114136, 0.614818811416626, 0.4528966248035431, 0.5016568899154663, 0.5216859579086304, 0.06001667678356171, 0.399382084608078, 0.6004745364189148, 0.42170703411102295, 0.19371190667152405, 0.6169048547744751, 0.589185893535614, 0.675464928150177, 0.054908815771341324, 0.10269639641046524, 0.5815882682800293, 0.35653674602508545, 0.5717662572860718, 0.4525645077228546, 0.3905552923679352, 0.5939363837242126, 0.4848327338695526, 0.7593539357185364, 0.49527424573898315, 0.6019843816757202, 0.5237085223197937, 0.5170645713806152, 0.5559399724006653, 0.5237947106361389, 0.5492488145828247, 0.49722909927368164, 0.5329307913780212, 0.14950650930404663, 0.05160060524940491, 0.524020791053772, 0.6324641108512878, 0.5053926110267639, 0.49884361028671265, 0.10859762877225876, 0.1715511679649353, 0.5116908550262451, 0.8039460182189941, 0.2399720549583435, 0.5618951320648193, 0.4054014980792999, 0.4698035418987274, 0.8061100840568542, 0.4799965023994446, 0.5118904113769531, 0.22764277458190918, 0.6069080829620361, 0.6091548800468445, 0.6541056036949158, 0.6660673022270203, 0.053107850253582, 0.2581344544887543, 0.8192448616027832, 0.8874106407165527, 0.5175353288650513, 0.536938488483429, 0.20353741943836212, 0.28305429220199585, 0.4470214545726776, 0.5044838190078735, 0.5946096181869507, 0.5800158381462097, 0.42726171016693115, 0.6901946663856506, 0.9277517199516296, 0.5404490232467651, 0.24667556583881378, 0.15903812646865845, 0.6721582412719727, 0.4613237977027893, 0.4976857602596283, 0.5999053716659546, 0.09200458228588104, 0.10941798239946365, 0.5866486430168152, 0.470896452665329, 0.5294076204299927, 0.3967089056968689, 0.28089794516563416, 0.10904140770435333, 0.7424448132514954, 0.590678870677948, 0.5623306632041931, 0.1526607871055603, 0.376954585313797, 0.3836321532726288, 0.580996572971344, 0.45261943340301514, 0.48737919330596924, 0.5775212645530701, 0.5380427837371826, 0.09273893386125565, 0.12307192385196686, 0.45650261640548706, 0.46683087944984436, 0.5097712874412537, 0.4593212306499481, 0.6160740852355957, 0.3520768880844116, 0.4882848262786865, 0.55702805519104, 0.4766133427619934, 0.5518356561660767, 0.13130047917366028, 0.44454824924468994, 0.8407454490661621, 0.8723882436752319, 0.6049198508262634, 0.5110554695129395, 0.07027643918991089, 0.18057043850421906, 0.09750185906887054, 0.4663311839103699, 0.47133952379226685, 0.5892151594161987, 0.7090110778808594, 0.31958189606666565, 0.18958018720149994, 0.48634713888168335, 0.2813069522380829, 0.30287954211235046, 0.4938936233520508, 0.6348961591720581, 0.43780332803726196, 0.4714517891407013, 0.5097834467887878, 0.6221240758895874, 0.2182081639766693, 0.21880395710468292, 0.5978200435638428, 0.10379255563020706, 0.31395581364631653, 0.6552757024765015, 0.518403172492981, 0.4583659768104553, 0.5752779841423035, 0.44739821553230286, 0.7114211916923523, 0.269205242395401, 0.26927056908607483, 0.7239606380462646, 1.5061752796173096, 1.452117681503296, 0.358696848154068, 0.14682507514953613, 0.4920218586921692, 0.705278754234314, 0.4137879014015198, 0.49453794956207275, 0.48887649178504944, 0.320426881313324, 0.12049151211977005, 0.4151066839694977, 0.5165174603462219, 0.5302479267120361, 0.10177990794181824, 0.46511465311050415, 0.45980843901634216, 0.4575313627719879, 0.5869737863540649, 0.6167916655540466, 0.5553634762763977, 0.38318464159965515, 1.2843573093414307, 0.5031136870384216, 0.26974889636039734, 0.6497533321380615, 0.4561106264591217, 0.08096295595169067, 0.17882855236530304, 0.25174301862716675, 0.39317354559898376, 0.6163738369941711, 0.5075590014457703, 0.39005643129348755, 0.4933745563030243, 0.10098989307880402, 0.1487809419631958, 0.5349292755126953, 0.4720638394355774, 0.15251946449279785, 0.5784914493560791, 0.6137444376945496, 0.354155570268631, 0.5393921136856079, 0.11620175838470459, 0.4880065619945526, 0.6180579662322998, 0.5482382774353027, 0.13793841004371643, 0.08420144766569138, 0.5887818932533264, 0.3436318039894104, 0.5261892676353455, 0.3871295154094696, 0.525668740272522, 0.47888728976249695, 0.4718005061149597, 0.13041043281555176, 0.13143353164196014, 0.06418857723474503, 0.45287057757377625, 0.6162818670272827, 0.688153862953186, 0.32303696870803833, 0.2953999936580658, 0.670316755771637, 0.1132078766822815, 0.2805476188659668, 0.6500644087791443, 0.39956584572792053, 0.5272143483161926, 0.6151731610298157, 0.5385751724243164, 0.3377048671245575, 0.12820807099342346, 0.5791131258010864, 0.5045351982116699, 0.48910263180732727, 0.41322848200798035, 0.45325836539268494, 0.07003647089004517, 0.32441747188568115, 0.763852596282959 ], "colorscale": [ [ 0.0, "#000004" ], [ 0.1111111111111111, "#1b0c41" ], [ 0.2222222222222222, "#4a0c6b" ], [ 0.3333333333333333, "#781c6d" ], [ 0.4444444444444444, "#a52c60" ], [ 0.5555555555555556, "#cf4446" ], [ 0.6666666666666666, "#ed6925" ], [ 0.7777777777777778, "#fb9b06" ], [ 0.8888888888888888, "#f7d13d" ], [ 1.0, "#fcffa4" ] ], "size": 1.5 }, "mode": "markers", "name": "Trajectory 5", "type": "scatter3d", "x": [ 550.0, 549.0, 550.0, 549.0, 549.0, 549.0, 549.0, 548.0, 549.0, 548.0, 547.0, 548.0, 547.0, 547.0, 547.0, 546.0, 546.0, 545.0, 546.0, 545.0, 544.0, 545.0, 544.0, 544.0, 543.0, 543.0, 543.0, 542.0, 543.0, 542.0, 542.0, 541.0, 542.0, 541.0, 541.0, 541.0, 540.0, 540.0, 539.0, 540.0, 539.0, 539.0, 538.0, 539.0, 538.0, 537.0, 536.0, 537.0, 535.0, 536.0, 535.0, 534.0, 535.0, 533.0, 534.0, 532.0, 533.0, 532.0, 531.0, 532.0, 530.0, 531.0, 529.0, 530.0, 528.0, 529.0, 527.0, 525.0, 526.0, 527.0, 524.0, 525.0, 523.0, 524.0, 522.0, 523.0, 522.0, 520.0, 521.0, 522.0, 520.0, 518.0, 519.0, 517.0, 518.0, 516.0, 517.0, 515.0, 516.0, 514.0, 515.0, 513.0, 514.0, 513.0, 511.0, 512.0, 511.0, 509.0, 510.0, 508.0, 506.0, 507.0, 508.0, 506.0, 504.0, 505.0, 506.0, 504.0, 502.0, 503.0, 504.0, 501.0, 502.0, 499.0, 500.0, 501.0, 499.0, 497.0, 498.0, 495.0, 496.0, 494.0, 495.0, 492.0, 493.0, 494.0, 491.0, 492.0, 491.0, 489.0, 490.0, 487.0, 488.0, 485.0, 486.0, 485.0, 483.0, 484.0, 485.0, 481.0, 482.0, 483.0, 479.0, 480.0, 481.0, 482.0, 479.0, 477.0, 478.0, 475.0, 476.0, 477.0, 473.0, 474.0, 475.0, 472.0, 473.0, 472.0, 470.0, 471.0, 472.0, 468.0, 469.0, 470.0, 466.0, 467.0, 468.0, 466.0, 464.0, 465.0, 466.0, 462.0, 463.0, 464.0, 459.0, 460.0, 461.0, 462.0, 459.0, 457.0, 458.0, 459.0, 455.0, 456.0, 457.0, 452.0, 453.0, 454.0, 455.0, 450.0, 451.0, 452.0, 449.0, 450.0, 447.0, 448.0, 449.0, 445.0, 446.0, 447.0, 442.0, 443.0, 444.0, 445.0, 439.0, 440.0, 441.0, 442.0, 439.0, 437.0, 438.0, 439.0, 434.0, 435.0, 436.0, 437.0, 431.0, 432.0, 433.0, 434.0, 595.0, 430.0, 431.0, 428.0, 429.0, 430.0, 426.0, 427.0, 428.0, 424.0, 425.0, 426.0, 423.0, 424.0, 420.0, 421.0, 422.0, 423.0, 418.0, 419.0, 420.0, 417.0, 414.0, 415.0, 416.0, 417.0, 411.0, 412.0, 413.0, 414.0, 411.0, 407.0, 408.0, 409.0, 410.0, 411.0, 404.0, 405.0, 406.0, 407.0, 404.0, 401.0, 402.0, 403.0, 404.0, 397.0, 398.0, 399.0, 400.0, 401.0, 397.0, 394.0, 395.0, 396.0, 596.0, 389.0, 390.0, 391.0, 392.0, 393.0, 394.0, 390.0, 390.0, 387.0, 388.0, 389.0, 390.0, 384.0, 385.0, 386.0, 387.0, 578.0, 381.0, 382.0, 383.0, 384.0, 379.0, 380.0, 381.0, 377.0, 378.0, 379.0, 373.0, 374.0, 375.0, 376.0, 377.0, 373.0, 369.0, 370.0, 371.0, 372.0, 373.0, 366.0, 367.0, 368.0, 369.0, 364.0, 365.0, 366.0, 360.0, 361.0, 362.0, 363.0, 364.0, 359.0, 360.0, 354.0, 355.0, 356.0, 357.0, 358.0, 359.0, 354.0, 349.0, 350.0, 351.0, 352.0, 353.0, 347.0, 348.0, 349.0, 344.0, 345.0, 346.0, 347.0, 348.0, 347.0, 348.0, 343.0, 344.0, 339.0, 340.0, 341.0, 342.0, 338.0, 339.0, 333.0, 334.0, 335.0, 336.0, 337.0, 587.0, 333.0, 334.0, 329.0, 330.0, 331.0, 332.0, 327.0, 328.0, 329.0, 324.0, 325.0, 326.0, 327.0, 322.0, 323.0, 324.0, 319.0, 320.0, 321.0, 322.0, 315.0, 316.0, 317.0, 318.0, 314.0, 315.0, 317.0, 310.0, 311.0, 312.0, 313.0, 314.0, 317.0, 308.0, 309.0, 310.0, 317.0, 306.0, 307.0, 308.0, 317.0, 302.0, 303.0, 304.0, 305.0, 300.0, 301.0, 302.0, 298.0, 299.0, 300.0, 294.0, 295.0, 296.0, 297.0, 298.0, 292.0, 293.0, 294.0, 291.0, 292.0, 287.0, 288.0, 289.0, 290.0, 283.0, 284.0, 285.0, 286.0, 287.0, 279.0, 280.0, 281.0, 282.0, 283.0, 274.0, 275.0, 276.0, 277.0, 278.0, 279.0, 272.0, 273.0, 274.0, 270.0, 271.0, 272.0, 266.0, 267.0, 268.0, 269.0, 270.0, 262.0, 263.0, 264.0, 265.0, 266.0, 261.0, 257.0, 258.0, 259.0, 260.0, 261.0, 252.0, 253.0, 254.0, 255.0, 256.0, 248.0, 249.0, 250.0, 251.0, 252.0, 243.0, 244.0, 245.0, 246.0, 247.0, 248.0, 243.0, 239.0, 240.0, 241.0, 242.0, 243.0, 235.0, 236.0, 237.0, 238.0, 239.0, 234.0, 235.0, 229.0, 230.0, 231.0, 232.0, 233.0, 234.0, 227.0, 228.0, 224.0, 225.0, 226.0, 227.0, 221.0, 222.0, 223.0, 219.0, 220.0, 221.0, 214.0, 215.0, 216.0, 217.0, 218.0, 219.0, 214.0, 215.0, 210.0, 211.0, 212.0, 213.0, 214.0, 208.0, 209.0, 210.0, 205.0, 206.0, 207.0, 208.0, 202.0, 203.0, 204.0, 205.0, 200.0, 201.0, 202.0, 195.0, 196.0, 197.0, 198.0, 199.0, 200.0, 193.0, 195.0, 191.0, 192.0, 193.0, 194.0, 195.0, 189.0, 190.0, 191.0, 194.0, 187.0, 188.0, 189.0, 183.0, 184.0, 185.0, 186.0, 187.0, 183.0, 179.0, 180.0, 181.0, 182.0, 178.0, 175.0, 176.0, 177.0, 172.0, 173.0, 174.0, 175.0, 171.0, 172.0, 168.0, 169.0, 170.0, 171.0, 167.0, 168.0, 164.0, 165.0, 166.0, 167.0, 162.0, 163.0, 164.0, 161.0, 157.0, 158.0, 159.0, 160.0, 161.0, 156.0, 157.0, 154.0, 155.0, 156.0, 151.0, 152.0, 153.0, 154.0, 150.0, 151.0, 147.0, 148.0, 149.0, 150.0, 145.0, 146.0, 147.0, 143.0, 144.0, 145.0, 140.0, 141.0, 142.0, 143.0, 139.0, 136.0, 137.0, 138.0, 139.0, 135.0, 136.0, 134.0, 135.0 ], "y": [ 501.0, 502.0, 502.0, 502.0, 503.0, 503.0, 503.0, 504.0, 504.0, 504.0, 505.0, 505.0, 505.0, 506.0, 506.0, 507.0, 507.0, 508.0, 508.0, 508.0, 509.0, 509.0, 509.0, 510.0, 510.0, 511.0, 512.0, 512.0, 512.0, 513.0, 513.0, 514.0, 514.0, 514.0, 515.0, 516.0, 516.0, 517.0, 517.0, 517.0, 518.0, 518.0, 519.0, 519.0, 519.0, 520.0, 520.0, 520.0, 521.0, 521.0, 521.0, 522.0, 522.0, 522.0, 522.0, 523.0, 523.0, 523.0, 524.0, 524.0, 524.0, 524.0, 525.0, 525.0, 525.0, 525.0, 526.0, 526.0, 526.0, 526.0, 527.0, 527.0, 527.0, 527.0, 528.0, 528.0, 528.0, 529.0, 529.0, 529.0, 529.0, 530.0, 530.0, 530.0, 530.0, 531.0, 531.0, 531.0, 531.0, 532.0, 532.0, 532.0, 532.0, 533.0, 533.0, 533.0, 534.0, 534.0, 534.0, 535.0, 535.0, 535.0, 535.0, 536.0, 536.0, 536.0, 536.0, 537.0, 537.0, 537.0, 537.0, 538.0, 538.0, 538.0, 538.0, 538.0, 538.0, 539.0, 539.0, 539.0, 539.0, 540.0, 540.0, 540.0, 540.0, 540.0, 540.0, 540.0, 541.0, 541.0, 541.0, 541.0, 541.0, 541.0, 541.0, 542.0, 542.0, 542.0, 542.0, 542.0, 542.0, 542.0, 542.0, 542.0, 542.0, 544.0, 542.0, 543.0, 543.0, 543.0, 543.0, 543.0, 543.0, 543.0, 543.0, 544.0, 544.0, 545.0, 544.0, 544.0, 544.0, 544.0, 544.0, 544.0, 544.0, 544.0, 544.0, 545.0, 545.0, 545.0, 545.0, 545.0, 545.0, 545.0, 545.0, 545.0, 545.0, 545.0, 545.0, 546.0, 546.0, 546.0, 546.0, 546.0, 546.0, 546.0, 546.0, 546.0, 546.0, 546.0, 546.0, 546.0, 546.0, 546.0, 547.0, 547.0, 547.0, 547.0, 547.0, 547.0, 547.0, 547.0, 547.0, 547.0, 547.0, 547.0, 547.0, 547.0, 547.0, 548.0, 548.0, 548.0, 548.0, 548.0, 548.0, 548.0, 548.0, 548.0, 548.0, 548.0, 448.0, 548.0, 548.0, 549.0, 549.0, 549.0, 549.0, 549.0, 549.0, 549.0, 549.0, 549.0, 550.0, 550.0, 550.0, 550.0, 550.0, 550.0, 550.0, 550.0, 550.0, 551.0, 551.0, 551.0, 551.0, 551.0, 551.0, 551.0, 551.0, 551.0, 552.0, 552.0, 552.0, 552.0, 552.0, 552.0, 552.0, 552.0, 552.0, 552.0, 553.0, 553.0, 553.0, 553.0, 553.0, 553.0, 553.0, 553.0, 553.0, 553.0, 553.0, 554.0, 554.0, 554.0, 403.0, 554.0, 554.0, 554.0, 554.0, 554.0, 554.0, 555.0, 554.0, 555.0, 555.0, 555.0, 555.0, 555.0, 555.0, 555.0, 555.0, 369.0, 556.0, 556.0, 556.0, 556.0, 556.0, 556.0, 556.0, 557.0, 557.0, 557.0, 557.0, 557.0, 557.0, 557.0, 557.0, 557.0, 558.0, 558.0, 558.0, 558.0, 558.0, 558.0, 558.0, 558.0, 558.0, 559.0, 559.0, 559.0, 559.0, 559.0, 559.0, 559.0, 559.0, 560.0, 560.0, 560.0, 560.0, 560.0, 560.0, 560.0, 560.0, 560.0, 561.0, 561.0, 561.0, 561.0, 561.0, 561.0, 561.0, 561.0, 562.0, 562.0, 562.0, 562.0, 562.0, 561.0, 561.0, 562.0, 562.0, 563.0, 563.0, 563.0, 563.0, 563.0, 563.0, 564.0, 564.0, 564.0, 564.0, 564.0, 369.0, 564.0, 564.0, 565.0, 565.0, 565.0, 565.0, 565.0, 565.0, 565.0, 566.0, 566.0, 566.0, 566.0, 566.0, 566.0, 566.0, 567.0, 567.0, 567.0, 567.0, 567.0, 567.0, 567.0, 567.0, 568.0, 568.0, 568.0, 568.0, 568.0, 568.0, 568.0, 568.0, 568.0, 568.0, 568.0, 568.0, 568.0, 569.0, 569.0, 569.0, 568.0, 569.0, 569.0, 569.0, 569.0, 569.0, 569.0, 569.0, 570.0, 570.0, 570.0, 570.0, 570.0, 570.0, 570.0, 570.0, 570.0, 570.0, 570.0, 571.0, 571.0, 571.0, 571.0, 571.0, 571.0, 571.0, 571.0, 571.0, 571.0, 571.0, 572.0, 572.0, 572.0, 572.0, 572.0, 572.0, 572.0, 572.0, 572.0, 572.0, 572.0, 572.0, 572.0, 572.0, 573.0, 573.0, 573.0, 573.0, 573.0, 573.0, 573.0, 573.0, 573.0, 573.0, 573.0, 573.0, 573.0, 574.0, 574.0, 574.0, 574.0, 574.0, 574.0, 574.0, 574.0, 574.0, 574.0, 574.0, 575.0, 575.0, 575.0, 575.0, 575.0, 575.0, 575.0, 575.0, 575.0, 575.0, 575.0, 575.0, 576.0, 576.0, 576.0, 576.0, 576.0, 576.0, 576.0, 576.0, 576.0, 576.0, 577.0, 577.0, 577.0, 577.0, 577.0, 577.0, 577.0, 577.0, 577.0, 577.0, 578.0, 578.0, 578.0, 578.0, 578.0, 578.0, 578.0, 579.0, 579.0, 579.0, 579.0, 579.0, 579.0, 579.0, 579.0, 579.0, 580.0, 580.0, 580.0, 580.0, 580.0, 580.0, 580.0, 580.0, 580.0, 580.0, 581.0, 581.0, 581.0, 581.0, 581.0, 581.0, 581.0, 581.0, 582.0, 582.0, 582.0, 582.0, 582.0, 582.0, 582.0, 582.0, 582.0, 582.0, 582.0, 583.0, 583.0, 583.0, 583.0, 583.0, 583.0, 583.0, 583.0, 583.0, 584.0, 584.0, 584.0, 584.0, 584.0, 584.0, 584.0, 584.0, 585.0, 585.0, 585.0, 585.0, 585.0, 585.0, 586.0, 586.0, 586.0, 586.0, 586.0, 586.0, 586.0, 587.0, 587.0, 587.0, 587.0, 587.0, 587.0, 587.0, 587.0, 588.0, 588.0, 588.0, 588.0, 588.0, 588.0, 588.0, 589.0, 589.0, 589.0, 589.0, 589.0, 589.0, 589.0, 589.0, 590.0, 590.0, 590.0, 590.0, 590.0, 590.0, 590.0, 591.0, 591.0, 591.0, 591.0, 591.0, 591.0, 591.0, 591.0, 591.0, 592.0, 592.0, 592.0, 592.0, 592.0, 592.0, 592.0, 593.0, 593.0, 593.0, 593.0, 593.0, 593.0, 593.0, 594.0, 594.0 ], "z": [ 595.0, 595.0, 595.0, 596.0, 596.0, 597.0, 598.0, 598.0, 598.0, 599.0, 599.0, 599.0, 600.0, 600.0, 601.0, 601.0, 602.0, 602.0, 602.0, 603.0, 603.0, 603.0, 604.0, 604.0, 605.0, 605.0, 605.0, 606.0, 606.0, 606.0, 607.0, 607.0, 607.0, 608.0, 608.0, 608.0, 609.0, 609.0, 610.0, 610.0, 610.0, 611.0, 611.0, 611.0, 612.0, 612.0, 613.0, 613.0, 613.0, 613.0, 614.0, 614.0, 614.0, 615.0, 615.0, 615.0, 615.0, 616.0, 616.0, 616.0, 617.0, 617.0, 617.0, 617.0, 618.0, 618.0, 618.0, 619.0, 619.0, 619.0, 620.0, 620.0, 621.0, 621.0, 621.0, 621.0, 622.0, 622.0, 622.0, 622.0, 623.0, 623.0, 623.0, 624.0, 624.0, 624.0, 624.0, 625.0, 625.0, 625.0, 625.0, 626.0, 626.0, 626.0, 627.0, 627.0, 627.0, 628.0, 628.0, 628.0, 629.0, 629.0, 629.0, 629.0, 630.0, 630.0, 630.0, 630.0, 631.0, 631.0, 631.0, 631.0, 631.0, 632.0, 632.0, 632.0, 633.0, 633.0, 633.0, 634.0, 634.0, 634.0, 634.0, 635.0, 635.0, 635.0, 636.0, 636.0, 636.0, 637.0, 637.0, 638.0, 638.0, 639.0, 639.0, 639.0, 640.0, 640.0, 640.0, 641.0, 641.0, 641.0, 642.0, 642.0, 642.0, 642.0, 643.0, 643.0, 643.0, 644.0, 644.0, 644.0, 645.0, 645.0, 645.0, 645.0, 645.0, 645.0, 646.0, 646.0, 646.0, 647.0, 647.0, 647.0, 648.0, 648.0, 648.0, 648.0, 649.0, 649.0, 649.0, 650.0, 650.0, 650.0, 651.0, 651.0, 651.0, 651.0, 652.0, 652.0, 652.0, 652.0, 653.0, 653.0, 653.0, 654.0, 654.0, 654.0, 654.0, 655.0, 655.0, 655.0, 656.0, 656.0, 656.0, 656.0, 656.0, 657.0, 657.0, 657.0, 658.0, 658.0, 658.0, 658.0, 659.0, 659.0, 659.0, 659.0, 660.0, 660.0, 660.0, 660.0, 661.0, 661.0, 661.0, 661.0, 662.0, 662.0, 662.0, 662.0, 663.0, 663.0, 663.0, 663.0, 663.0, 663.0, 664.0, 664.0, 664.0, 665.0, 665.0, 665.0, 665.0, 665.0, 666.0, 666.0, 666.0, 666.0, 667.0, 667.0, 667.0, 667.0, 668.0, 668.0, 668.0, 668.0, 669.0, 669.0, 669.0, 669.0, 669.0, 670.0, 670.0, 670.0, 670.0, 670.0, 671.0, 671.0, 671.0, 671.0, 671.0, 672.0, 672.0, 672.0, 672.0, 673.0, 673.0, 673.0, 673.0, 673.0, 674.0, 674.0, 674.0, 674.0, 675.0, 675.0, 675.0, 675.0, 675.0, 675.0, 675.0, 675.0, 676.0, 676.0, 676.0, 676.0, 676.0, 677.0, 677.0, 677.0, 677.0, 678.0, 678.0, 678.0, 678.0, 678.0, 679.0, 679.0, 679.0, 679.0, 679.0, 679.0, 680.0, 680.0, 680.0, 680.0, 680.0, 681.0, 681.0, 681.0, 681.0, 681.0, 681.0, 682.0, 682.0, 682.0, 682.0, 682.0, 682.0, 682.0, 683.0, 683.0, 683.0, 683.0, 683.0, 683.0, 683.0, 684.0, 684.0, 684.0, 684.0, 684.0, 684.0, 685.0, 685.0, 685.0, 685.0, 685.0, 685.0, 686.0, 686.0, 686.0, 686.0, 686.0, 686.0, 686.0, 686.0, 687.0, 687.0, 687.0, 687.0, 687.0, 687.0, 687.0, 687.0, 688.0, 688.0, 688.0, 688.0, 688.0, 688.0, 688.0, 689.0, 689.0, 689.0, 689.0, 689.0, 689.0, 689.0, 690.0, 690.0, 690.0, 690.0, 690.0, 690.0, 690.0, 691.0, 691.0, 691.0, 691.0, 691.0, 691.0, 691.0, 692.0, 692.0, 692.0, 692.0, 692.0, 692.0, 692.0, 693.0, 693.0, 693.0, 693.0, 693.0, 693.0, 694.0, 694.0, 694.0, 694.0, 694.0, 694.0, 694.0, 695.0, 695.0, 695.0, 695.0, 695.0, 696.0, 696.0, 696.0, 696.0, 696.0, 696.0, 697.0, 697.0, 697.0, 697.0, 697.0, 698.0, 698.0, 698.0, 698.0, 698.0, 699.0, 699.0, 699.0, 699.0, 700.0, 700.0, 700.0, 700.0, 700.0, 701.0, 701.0, 701.0, 701.0, 701.0, 702.0, 702.0, 702.0, 702.0, 702.0, 702.0, 703.0, 703.0, 703.0, 703.0, 703.0, 703.0, 704.0, 704.0, 704.0, 704.0, 704.0, 705.0, 705.0, 705.0, 705.0, 705.0, 705.0, 706.0, 706.0, 706.0, 706.0, 706.0, 707.0, 707.0, 707.0, 707.0, 707.0, 708.0, 708.0, 708.0, 708.0, 708.0, 709.0, 709.0, 709.0, 709.0, 709.0, 709.0, 710.0, 710.0, 710.0, 710.0, 710.0, 710.0, 711.0, 711.0, 711.0, 711.0, 711.0, 711.0, 711.0, 712.0, 712.0, 712.0, 712.0, 712.0, 712.0, 713.0, 713.0, 713.0, 713.0, 713.0, 713.0, 714.0, 714.0, 714.0, 714.0, 714.0, 714.0, 715.0, 715.0, 715.0, 715.0, 715.0, 715.0, 715.0, 715.0, 716.0, 716.0, 716.0, 716.0, 716.0, 717.0, 717.0, 717.0, 717.0, 717.0, 717.0, 717.0, 718.0, 718.0, 718.0, 718.0, 718.0, 718.0, 718.0, 719.0, 719.0, 719.0, 719.0, 719.0, 719.0, 720.0, 720.0, 720.0, 720.0, 720.0, 720.0, 720.0, 721.0, 721.0, 721.0, 721.0, 721.0, 721.0, 721.0, 722.0, 722.0, 722.0, 722.0, 722.0, 722.0, 723.0, 723.0, 723.0, 723.0, 724.0, 724.0, 724.0, 724.0, 725.0, 725.0, 725.0, 725.0, 725.0, 725.0, 726.0, 726.0, 726.0, 726.0, 727.0, 727.0, 727.0, 727.0, 727.0, 727.0, 728.0, 728.0, 728.0, 728.0, 729.0, 729.0, 729.0, 729.0, 729.0, 730.0, 730.0, 730.0, 730.0, 730.0, 731.0, 731.0, 731.0, 731.0, 731.0, 731.0, 732.0, 732.0, 732.0, 732.0, 733.0, 733.0, 733.0, 733.0, 733.0, 733.0, 734.0, 734.0, 734.0, 734.0, 734.0, 735.0, 735.0, 735.0, 735.0, 736.0, 736.0, 736.0, 736.0 ] }, { "hovertext": [ "Energy 0.52 MeV", "Energy 0.61 MeV", "Energy 0.28 MeV", "Energy 0.27 MeV", "Energy 0.12 MeV", "Energy 0.68 MeV", "Energy 0.21 MeV", "Energy 0.43 MeV", "Energy 0.34 MeV", "Energy 0.19 MeV", "Energy 0.51 MeV", "Energy 0.55 MeV", "Energy 0.75 MeV", "Energy 0.57 MeV", "Energy 0.50 MeV", "Energy 0.05 MeV", "Energy 0.42 MeV", "Energy 0.21 MeV", "Energy 0.52 MeV", "Energy 0.18 MeV", "Energy 0.34 MeV", "Energy 0.56 MeV", "Energy 0.15 MeV", "Energy 0.49 MeV", "Energy 0.55 MeV", "Energy 0.59 MeV", "Energy 0.86 MeV", "Energy 0.05 MeV", "Energy 0.21 MeV", "Energy 0.67 MeV", "Energy 0.24 MeV", "Energy 0.42 MeV", "Energy 0.74 MeV", "Energy 0.23 MeV", "Energy 0.53 MeV", "Energy 0.47 MeV", "Energy 0.49 MeV", "Energy 0.10 MeV", "Energy 0.32 MeV", "Energy 0.22 MeV", "Energy 0.06 MeV", "Energy 0.49 MeV", "Energy 0.12 MeV", "Energy 0.53 MeV", "Energy 0.54 MeV", "Energy 0.18 MeV", "Energy 0.34 MeV", "Energy 0.44 MeV", "Energy 0.09 MeV", "Energy 0.69 MeV", "Energy 0.28 MeV", "Energy 0.19 MeV", "Energy 0.60 MeV", "Energy 0.22 MeV", "Energy 0.71 MeV", "Energy 0.52 MeV", "Energy 0.57 MeV", "Energy 0.17 MeV", "Energy 0.38 MeV", "Energy 0.69 MeV", "Energy 0.38 MeV", "Energy 0.54 MeV", "Energy 0.33 MeV", "Energy 0.21 MeV", "Energy 0.82 MeV", "Energy 0.05 MeV", "Energy 0.08 MeV", "Energy 0.53 MeV", "Energy 0.37 MeV", "Energy 0.18 MeV", "Energy 0.54 MeV", "Energy 0.33 MeV", "Energy 0.19 MeV", "Energy 0.67 MeV", "Energy 0.06 MeV", "Energy 0.21 MeV", "Energy 0.26 MeV", "Energy 0.53 MeV", "Energy 0.31 MeV", "Energy 0.25 MeV", "Energy 0.46 MeV", "Energy 0.18 MeV", "Energy 0.47 MeV", "Energy 0.30 MeV", "Energy 0.17 MeV", "Energy 0.42 MeV", "Energy 0.23 MeV", "Energy 0.51 MeV", "Energy 0.64 MeV", "Energy 0.30 MeV", "Energy 0.23 MeV", "Energy 0.59 MeV", "Energy 1.32 MeV", "Energy 0.23 MeV", "Energy 0.31 MeV", "Energy 0.56 MeV", "Energy 0.34 MeV", "Energy 0.23 MeV", "Energy 0.81 MeV", "Energy 0.05 MeV", "Energy 0.44 MeV", "Energy 0.26 MeV", "Energy 0.43 MeV", "Energy 0.49 MeV", "Energy 0.68 MeV", "Energy 0.09 MeV", "Energy 0.05 MeV", "Energy 1.31 MeV", "Energy 0.61 MeV", "Energy 0.10 MeV", "Energy 0.49 MeV", "Energy 0.44 MeV", "Energy 0.21 MeV", "Energy 0.18 MeV", "Energy 0.41 MeV", "Energy 0.18 MeV", "Energy 0.41 MeV", "Energy 0.23 MeV", "Energy 0.32 MeV", "Energy 0.95 MeV", "Energy 0.32 MeV", "Energy 0.21 MeV", "Energy 0.75 MeV", "Energy 0.43 MeV", "Energy 0.05 MeV", "Energy 0.11 MeV", "Energy 0.82 MeV", "Energy 0.37 MeV", "Energy 0.29 MeV", "Energy 0.21 MeV", "Energy 0.55 MeV", "Energy 0.08 MeV", "Energy 0.49 MeV", "Energy 0.20 MeV", "Energy 0.36 MeV", "Energy 0.51 MeV", "Energy 0.31 MeV", "Energy 0.26 MeV", "Energy 0.63 MeV", "Energy 0.40 MeV", "Energy 0.34 MeV", "Energy 0.56 MeV", "Energy 0.14 MeV", "Energy 0.23 MeV", "Energy 0.19 MeV", "Energy 1.33 MeV", "Energy 0.27 MeV", "Energy 0.46 MeV", "Energy 0.29 MeV", "Energy 0.55 MeV", "Energy 0.67 MeV", "Energy 0.53 MeV", "Energy 0.14 MeV", "Energy 0.46 MeV", "Energy 0.20 MeV", "Energy 0.50 MeV", "Energy 0.16 MeV", "Energy 0.45 MeV", "Energy 0.97 MeV", "Energy 0.05 MeV", "Energy 0.56 MeV", "Energy 1.03 MeV", "Energy 0.16 MeV", "Energy 0.48 MeV", "Energy 0.44 MeV", "Energy 0.30 MeV", "Energy 0.24 MeV", "Energy 0.33 MeV", "Energy 0.19 MeV", "Energy 0.30 MeV", "Energy 0.34 MeV", "Energy 0.32 MeV", "Energy 1.44 MeV", "Energy 0.41 MeV", "Energy 0.18 MeV", "Energy 0.73 MeV", "Energy 0.49 MeV", "Energy 0.07 MeV", "Energy 0.08 MeV", "Energy 0.58 MeV", "Energy 0.38 MeV", "Energy 0.24 MeV", "Energy 0.14 MeV", "Energy 0.44 MeV", "Energy 0.68 MeV", "Energy 0.13 MeV", "Energy 0.12 MeV", "Energy 0.43 MeV", "Energy 0.31 MeV", "Energy 1.98 MeV", "Energy 0.67 MeV", "Energy 0.36 MeV", "Energy 0.44 MeV", "Energy 0.55 MeV", "Energy 0.42 MeV", "Energy 0.11 MeV", "Energy 0.14 MeV", "Energy 0.56 MeV", "Energy 0.22 MeV", "Energy 0.10 MeV", "Energy 0.22 MeV", "Energy 0.62 MeV", "Energy 0.18 MeV", "Energy 0.57 MeV", "Energy 0.12 MeV", "Energy 0.53 MeV", "Energy 0.46 MeV", "Energy 0.14 MeV", "Energy 0.73 MeV", "Energy 0.83 MeV", "Energy 0.61 MeV", "Energy 0.07 MeV", "Energy 0.40 MeV", "Energy 0.28 MeV", "Energy 0.59 MeV", "Energy 0.08 MeV", "Energy 0.16 MeV", "Energy 0.45 MeV", "Energy 0.66 MeV", "Energy 0.52 MeV", "Energy 0.76 MeV", "Energy 0.15 MeV", "Energy 0.49 MeV", "Energy 0.54 MeV", "Energy 0.16 MeV", "Energy 0.12 MeV", "Energy 0.54 MeV", "Energy 0.20 MeV", "Energy 0.37 MeV", "Energy 0.63 MeV", "Energy 0.39 MeV", "Energy 0.09 MeV", "Energy 0.74 MeV", "Energy 0.25 MeV", "Energy 0.38 MeV", "Energy 0.48 MeV", "Energy 0.32 MeV", "Energy 0.23 MeV", "Energy 0.11 MeV", "Energy 0.63 MeV", "Energy 0.47 MeV", "Energy 0.16 MeV", "Energy 0.38 MeV", "Energy 0.68 MeV", "Energy 0.73 MeV", "Energy 0.20 MeV", "Energy 0.15 MeV", "Energy 0.27 MeV", "Energy 0.69 MeV", "Energy 0.87 MeV", "Energy 0.73 MeV", "Energy 0.23 MeV", "Energy 0.76 MeV", "Energy 0.32 MeV", "Energy 0.22 MeV", "Energy 0.43 MeV", "Energy 0.21 MeV", "Energy 0.45 MeV", "Energy 0.28 MeV", "Energy 0.17 MeV", "Energy 0.39 MeV", "Energy 0.36 MeV", "Energy 0.39 MeV", "Energy 0.61 MeV", "Energy 0.31 MeV", "Energy 0.47 MeV", "Energy 0.94 MeV", "Energy 0.26 MeV", "Energy 0.09 MeV", "Energy 0.19 MeV", "Energy 0.88 MeV", "Energy 0.12 MeV", "Energy 0.54 MeV", "Energy 1.20 MeV", "Energy 0.12 MeV", "Energy 0.47 MeV", "Energy 0.53 MeV", "Energy 0.52 MeV", "Energy 0.42 MeV", "Energy 0.40 MeV", "Energy 0.79 MeV", "Energy 0.09 MeV", "Energy 0.74 MeV", "Energy 0.58 MeV", "Energy 0.12 MeV", "Energy 0.47 MeV", "Energy 0.06 MeV", "Energy 0.46 MeV", "Energy 0.08 MeV", "Energy 0.42 MeV", "Energy 0.14 MeV", "Energy 0.35 MeV", "Energy 0.60 MeV", "Energy 0.52 MeV", "Energy 0.20 MeV", "Energy 0.23 MeV", "Energy 0.49 MeV", "Energy 0.37 MeV", "Energy 0.23 MeV", "Energy 0.57 MeV", "Energy 0.66 MeV", "Energy 0.21 MeV", "Energy 0.97 MeV", "Energy 0.55 MeV", "Energy 1.00 MeV", "Energy 0.05 MeV", "Energy 1.20 MeV", "Energy 1.71 MeV", "Energy 0.19 MeV", "Energy 0.36 MeV", "Energy 0.20 MeV", "Energy 0.16 MeV", "Energy 0.27 MeV", "Energy 0.81 MeV", "Energy 0.18 MeV", "Energy 0.05 MeV", "Energy 0.61 MeV", "Energy 0.87 MeV", "Energy 0.07 MeV", "Energy 0.49 MeV", "Energy 0.65 MeV", "Energy 0.70 MeV", "Energy 0.49 MeV", "Energy 0.06 MeV", "Energy 0.62 MeV", "Energy 0.32 MeV", "Energy 0.15 MeV", "Energy 0.59 MeV", "Energy 0.38 MeV", "Energy 0.44 MeV", "Energy 0.79 MeV", "Energy 0.15 MeV", "Energy 0.37 MeV", "Energy 0.08 MeV", "Energy 0.54 MeV", "Energy 0.58 MeV", "Energy 0.09 MeV", "Energy 0.88 MeV", "Energy 0.11 MeV", "Energy 0.45 MeV", "Energy 0.18 MeV", "Energy 0.31 MeV", "Energy 0.23 MeV", "Energy 0.31 MeV", "Energy 0.30 MeV", "Energy 0.29 MeV", "Energy 0.30 MeV", "Energy 0.25 MeV", "Energy 0.24 MeV", "Energy 0.12 MeV", "Energy 0.62 MeV", "Energy 0.20 MeV", "Energy 0.43 MeV", "Energy 1.01 MeV", "Energy 0.32 MeV", "Energy 0.23 MeV", "Energy 0.41 MeV", "Energy 0.51 MeV", "Energy 0.57 MeV", "Energy 0.11 MeV", "Energy 0.30 MeV", "Energy 0.14 MeV", "Energy 0.76 MeV", "Energy 0.06 MeV", "Energy 0.35 MeV", "Energy 0.18 MeV", "Energy 0.73 MeV", "Energy 0.12 MeV", "Energy 1.39 MeV", "Energy 1.53 MeV", "Energy 0.56 MeV", "Energy 0.10 MeV", "Energy 0.26 MeV", "Energy 0.36 MeV", "Energy 0.49 MeV", "Energy 0.13 MeV", "Energy 0.20 MeV", "Energy 0.42 MeV", "Energy 0.65 MeV", "Energy 0.41 MeV", "Energy 0.14 MeV", "Energy 0.42 MeV", "Energy 0.41 MeV", "Energy 0.30 MeV", "Energy 0.09 MeV", "Energy 0.47 MeV", "Energy 0.32 MeV", "Energy 0.25 MeV", "Energy 0.91 MeV", "Energy 0.51 MeV", "Energy 0.41 MeV", "Energy 0.58 MeV", "Energy 0.26 MeV", "Energy 0.33 MeV", "Energy 0.83 MeV", "Energy 0.14 MeV", "Energy 0.18 MeV", "Energy 0.43 MeV", "Energy 0.05 MeV", "Energy 0.59 MeV", "Energy 0.12 MeV", "Energy 0.54 MeV", "Energy 0.61 MeV", "Energy 0.38 MeV", "Energy 0.15 MeV", "Energy 0.07 MeV", "Energy 0.61 MeV", "Energy 0.45 MeV", "Energy 0.25 MeV", "Energy 0.56 MeV", "Energy 0.38 MeV", "Energy 0.18 MeV", "Energy 0.56 MeV", "Energy 0.10 MeV", "Energy 0.70 MeV", "Energy 0.21 MeV", "Energy 0.60 MeV", "Energy 0.33 MeV", "Energy 0.37 MeV", "Energy 0.22 MeV", "Energy 0.35 MeV", "Energy 0.30 MeV", "Energy 0.42 MeV", "Energy 0.21 MeV", "Energy 0.16 MeV", "Energy 0.76 MeV", "Energy 0.57 MeV", "Energy 0.16 MeV", "Energy 0.12 MeV", "Energy 0.41 MeV", "Energy 0.43 MeV", "Energy 0.14 MeV", "Energy 0.72 MeV", "Energy 0.46 MeV", "Energy 0.07 MeV", "Energy 0.62 MeV", "Energy 0.69 MeV", "Energy 0.11 MeV", "Energy 0.06 MeV", "Energy 0.83 MeV", "Energy 0.28 MeV", "Energy 0.32 MeV", "Energy 0.65 MeV", "Energy 0.21 MeV", "Energy 0.44 MeV", "Energy 0.65 MeV", "Energy 1.00 MeV", "Energy 0.05 MeV", "Energy 0.59 MeV", "Energy 0.76 MeV", "Energy 0.06 MeV", "Energy 0.52 MeV", "Energy 0.95 MeV", "Energy 0.09 MeV", "Energy 0.52 MeV", "Energy 0.13 MeV", "Energy 1.02 MeV", "Energy 0.11 MeV", "Energy 0.33 MeV", "Energy 0.19 MeV", "Energy 0.12 MeV", "Energy 0.78 MeV", "Energy 0.29 MeV", "Energy 0.24 MeV", "Energy 0.19 MeV", "Energy 0.62 MeV", "Energy 0.17 MeV", "Energy 0.16 MeV", "Energy 0.23 MeV", "Energy 0.90 MeV", "Energy 0.26 MeV", "Energy 0.05 MeV", "Energy 0.33 MeV", "Energy 0.27 MeV", "Energy 1.45 MeV", "Energy 0.21 MeV", "Energy 0.05 MeV", "Energy 0.32 MeV", "Energy 0.92 MeV", "Energy 0.25 MeV", "Energy 0.16 MeV", "Energy 0.35 MeV", "Energy 0.53 MeV", "Energy 0.68 MeV", "Energy 0.17 MeV", "Energy 0.47 MeV", "Energy 0.61 MeV", "Energy 0.13 MeV", "Energy 0.24 MeV", "Energy 0.60 MeV", "Energy 0.76 MeV", "Energy 0.15 MeV", "Energy 0.11 MeV", "Energy 0.34 MeV", "Energy 0.62 MeV", "Energy 0.13 MeV", "Energy 0.18 MeV", "Energy 0.47 MeV", "Energy 0.72 MeV", "Energy 0.20 MeV", "Energy 0.09 MeV", "Energy 0.34 MeV", "Energy 0.63 MeV", "Energy 0.28 MeV", "Energy 0.09 MeV", "Energy 0.27 MeV", "Energy 0.58 MeV", "Energy 0.26 MeV", "Energy 0.23 MeV", "Energy 0.60 MeV", "Energy 0.38 MeV", "Energy 0.28 MeV", "Energy 0.82 MeV", "Energy 0.38 MeV", "Energy 0.06 MeV", "Energy 0.19 MeV", "Energy 0.57 MeV", "Energy 0.75 MeV", "Energy 0.06 MeV", "Energy 0.08 MeV", "Energy 0.24 MeV", "Energy 1.13 MeV", "Energy 0.53 MeV", "Energy 0.24 MeV", "Energy 0.21 MeV", "Energy 1.15 MeV", "Energy 0.74 MeV", "Energy 0.07 MeV", "Energy 0.93 MeV", "Energy 0.54 MeV", "Energy 0.52 MeV", "Energy 0.63 MeV", "Energy 0.17 MeV", "Energy 0.50 MeV", "Energy 0.59 MeV", "Energy 0.26 MeV", "Energy 0.41 MeV", "Energy 0.66 MeV", "Energy 0.35 MeV", "Energy 0.34 MeV", "Energy 0.66 MeV", "Energy 0.07 MeV", "Energy 0.38 MeV", "Energy 0.23 MeV", "Energy 0.59 MeV", "Energy 0.07 MeV", "Energy 0.34 MeV", "Energy 0.24 MeV", "Energy 0.81 MeV", "Energy 0.07 MeV", "Energy 0.51 MeV", "Energy 0.09 MeV", "Energy 0.06 MeV", "Energy 0.53 MeV", "Energy 0.06 MeV", "Energy 0.68 MeV", "Energy 0.12 MeV", "Energy 0.55 MeV", "Energy 0.57 MeV", "Energy 0.25 MeV", "Energy 0.38 MeV", "Energy 0.54 MeV", "Energy 0.42 MeV", "Energy 0.31 MeV", "Energy 0.52 MeV", "Energy 0.84 MeV", "Energy 0.14 MeV", "Energy 0.79 MeV", "Energy 0.63 MeV", "Energy 0.05 MeV", "Energy 0.08 MeV", "Energy 0.54 MeV", "Energy 1.00 MeV", "Energy 0.09 MeV", "Energy 0.21 MeV", "Energy 0.62 MeV", "Energy 0.70 MeV", "Energy 0.16 MeV", "Energy 0.06 MeV", "Energy 0.50 MeV", "Energy 0.60 MeV", "Energy 0.14 MeV", "Energy 0.45 MeV", "Energy 0.61 MeV", "Energy 0.60 MeV", "Energy 1.06 MeV", "Energy 0.19 MeV", "Energy 0.51 MeV", "Energy 0.27 MeV", "Energy 0.77 MeV", "Energy 0.27 MeV", "Energy 0.13 MeV", "Energy 0.23 MeV", "Energy 0.83 MeV", "Energy 0.40 MeV", "Energy 0.16 MeV", "Energy 0.13 MeV", "Energy 0.30 MeV", "Energy 0.60 MeV", "Energy 0.61 MeV", "Energy 0.11 MeV", "Energy 0.06 MeV", "Energy 0.10 MeV", "Energy 0.57 MeV", "Energy 0.59 MeV", "Energy 0.19 MeV", "Energy 0.23 MeV", "Energy 0.30 MeV", "Energy 0.61 MeV", "Energy 0.24 MeV", "Energy 0.17 MeV", "Energy 0.10 MeV", "Energy 0.65 MeV", "Energy 0.44 MeV", "Energy 0.29 MeV", "Energy 0.19 MeV", "Energy 0.52 MeV", "Energy 0.57 MeV", "Energy 0.06 MeV", "Energy 0.20 MeV", "Energy 0.46 MeV", "Energy 0.59 MeV", "Energy 0.16 MeV", "Energy 0.27 MeV", "Energy 0.19 MeV", "Energy 0.61 MeV", "Energy 0.56 MeV", "Energy 0.19 MeV", "Energy 0.08 MeV", "Energy 0.68 MeV", "Energy 0.56 MeV", "Energy 0.49 MeV", "Energy 0.99 MeV", "Energy 0.14 MeV", "Energy 0.17 MeV", "Energy 0.11 MeV", "Energy 0.48 MeV", "Energy 1.32 MeV", "Energy 0.18 MeV", "Energy 0.28 MeV", "Energy 0.32 MeV", "Energy 0.57 MeV", "Energy 0.27 MeV", "Energy 0.19 MeV", "Energy 0.13 MeV", "Energy 0.70 MeV", "Energy 0.83 MeV", "Energy 0.35 MeV", "Energy 0.13 MeV", "Energy 0.44 MeV", "Energy 0.83 MeV", "Energy 0.12 MeV", "Energy 0.47 MeV", "Energy 0.30 MeV", "Energy 0.60 MeV", "Energy 0.35 MeV", "Energy 0.17 MeV", "Energy 0.19 MeV", "Energy 0.22 MeV", "Energy 0.69 MeV", "Energy 0.50 MeV", "Energy 0.27 MeV", "Energy 0.16 MeV", "Energy 0.43 MeV", "Energy 0.52 MeV", "Energy 0.06 MeV", "Energy 0.10 MeV", "Energy 0.19 MeV", "Energy 0.44 MeV", "Energy 0.79 MeV", "Energy 0.32 MeV", "Energy 0.26 MeV", "Energy 0.15 MeV", "Energy 0.50 MeV", "Energy 0.52 MeV", "Energy 0.66 MeV", "Energy 0.12 MeV", "Energy 0.77 MeV", "Energy 0.48 MeV", "Energy 0.19 MeV", "Energy 0.25 MeV", "Energy 0.43 MeV", "Energy 0.62 MeV", "Energy 0.09 MeV", "Energy 0.22 MeV", "Energy 0.33 MeV", "Energy 0.19 MeV", "Energy 0.59 MeV", "Energy 0.51 MeV", "Energy 0.10 MeV", "Energy 0.11 MeV", "Energy 0.06 MeV", "Energy 0.53 MeV", "Energy 0.63 MeV", "Energy 0.44 MeV", "Energy 0.32 MeV", "Energy 0.59 MeV", "Energy 0.92 MeV", "Energy 0.16 MeV", "Energy 0.06 MeV", "Energy 0.14 MeV", "Energy 0.73 MeV", "Energy 0.94 MeV", "Energy 0.18 MeV", "Energy 0.20 MeV", "Energy 0.23 MeV", "Energy 0.68 MeV", "Energy 0.36 MeV", "Energy 0.25 MeV", "Energy 0.09 MeV", "Energy 0.21 MeV", "Energy 0.46 MeV", "Energy 0.73 MeV", "Energy 0.07 MeV", "Energy 0.16 MeV", "Energy 0.58 MeV", "Energy 0.26 MeV", "Energy 0.09 MeV", "Energy 0.68 MeV", "Energy 0.45 MeV", "Energy 0.20 MeV", "Energy 0.18 MeV", "Energy 0.50 MeV", "Energy 1.34 MeV", "Energy 0.30 MeV", "Energy 0.15 MeV", "Energy 0.21 MeV", "Energy 0.67 MeV", "Energy 0.53 MeV", "Energy 0.16 MeV", "Energy 0.20 MeV", "Energy 0.43 MeV", "Energy 0.74 MeV", "Energy 0.26 MeV", "Energy 0.29 MeV", "Energy 0.16 MeV", "Energy 0.08 MeV", "Energy 0.57 MeV", "Energy 1.09 MeV", "Energy 0.23 MeV", "Energy 0.34 MeV", "Energy 0.36 MeV", "Energy 0.67 MeV", "Energy 0.17 MeV", "Energy 0.44 MeV", "Energy 0.20 MeV", "Energy 0.48 MeV", "Energy 0.33 MeV", "Energy 0.34 MeV", "Energy 0.51 MeV", "Energy 0.21 MeV", "Energy 0.55 MeV", "Energy 0.61 MeV", "Energy 1.09 MeV", "Energy 0.36 MeV", "Energy 0.51 MeV", "Energy 0.20 MeV", "Energy 0.69 MeV", "Energy 0.66 MeV", "Energy 0.09 MeV", "Energy 0.11 MeV", "Energy 0.35 MeV", "Energy 0.25 MeV", "Energy 0.91 MeV", "Energy 0.38 MeV", "Energy 0.15 MeV", "Energy 0.05 MeV", "Energy 0.59 MeV", "Energy 0.59 MeV", "Energy 0.15 MeV", "Energy 0.44 MeV", "Energy 0.81 MeV", "Energy 0.24 MeV", "Energy 0.15 MeV", "Energy 0.26 MeV", "Energy 0.61 MeV", "Energy 0.81 MeV", "Energy 0.47 MeV", "Energy 0.20 MeV", "Energy 0.61 MeV", "Energy 0.56 MeV", "Energy 0.10 MeV", "Energy 0.43 MeV", "Energy 0.22 MeV", "Energy 0.05 MeV", "Energy 0.58 MeV", "Energy 0.24 MeV", "Energy 0.50 MeV", "Energy 0.25 MeV", "Energy 0.37 MeV", "Energy 0.35 MeV", "Energy 0.31 MeV", "Energy 1.17 MeV", "Energy 0.61 MeV", "Energy 0.25 MeV", "Energy 0.65 MeV", "Energy 0.28 MeV", "Energy 0.22 MeV", "Energy 0.16 MeV", "Energy 1.30 MeV", "Energy 0.49 MeV", "Energy 0.51 MeV", "Energy 0.19 MeV", "Energy 0.65 MeV", "Energy 0.74 MeV", "Energy 0.21 MeV", "Energy 0.53 MeV", "Energy 0.64 MeV", "Energy 0.19 MeV", "Energy 0.25 MeV", "Energy 0.43 MeV", "Energy 0.59 MeV", "Energy 0.31 MeV", "Energy 0.34 MeV", "Energy 0.31 MeV", "Energy 0.29 MeV", "Energy 0.49 MeV", "Energy 0.39 MeV", "Energy 0.52 MeV", "Energy 0.11 MeV", "Energy 0.18 MeV", "Energy 0.24 MeV", "Energy 0.21 MeV", "Energy 0.61 MeV", "Energy 0.41 MeV", "Energy 0.13 MeV", "Energy 0.08 MeV", "Energy 0.57 MeV", "Energy 0.64 MeV", "Energy 0.10 MeV", "Energy 0.18 MeV", "Energy 0.54 MeV", "Energy 0.68 MeV", "Energy 0.24 MeV", "Energy 0.32 MeV", "Energy 0.28 MeV", "Energy 0.08 MeV", "Energy 0.58 MeV", "Energy 0.31 MeV", "Energy 0.75 MeV", "Energy 0.23 MeV", "Energy 0.32 MeV", "Energy 0.40 MeV", "Energy 0.43 MeV", "Energy 0.26 MeV", "Energy 0.70 MeV", "Energy 0.10 MeV", "Energy 0.34 MeV", "Energy 0.38 MeV", "Energy 0.11 MeV", "Energy 0.68 MeV", "Energy 0.41 MeV", "Energy 0.21 MeV", "Energy 0.07 MeV", "Energy 0.83 MeV", "Energy 0.81 MeV", "Energy 0.18 MeV", "Energy 0.52 MeV", "Energy 0.66 MeV", "Energy 0.32 MeV", "Energy 0.19 MeV", "Energy 0.66 MeV", "Energy 0.63 MeV", "Energy 0.20 MeV", "Energy 0.47 MeV", "Energy 0.12 MeV", "Energy 0.55 MeV", "Energy 0.45 MeV", "Energy 0.16 MeV", "Energy 0.10 MeV", "Energy 0.46 MeV", "Energy 0.67 MeV", "Energy 0.27 MeV", "Energy 0.44 MeV", "Energy 0.27 MeV", "Energy 1.23 MeV", "Energy 0.20 MeV", "Energy 0.46 MeV", "Energy 0.17 MeV", "Energy 0.41 MeV", "Energy 0.19 MeV", "Energy 0.16 MeV", "Energy 0.54 MeV", "Energy 0.51 MeV", "Energy 0.69 MeV", "Energy 0.58 MeV", "Energy 0.39 MeV", "Energy 0.07 MeV", "Energy 0.20 MeV", "Energy 0.41 MeV", "Energy 0.55 MeV", "Energy 0.63 MeV", "Energy 0.44 MeV", "Energy 0.77 MeV", "Energy 0.41 MeV", "Energy 0.18 MeV", "Energy 0.15 MeV", "Energy 0.43 MeV", "Energy 0.61 MeV", "Energy 0.22 MeV", "Energy 0.54 MeV", "Energy 0.43 MeV", "Energy 0.10 MeV", "Energy 0.44 MeV", "Energy 0.12 MeV", "Energy 0.91 MeV", "Energy 0.35 MeV", "Energy 0.24 MeV", "Energy 0.11 MeV", "Energy 0.14 MeV", "Energy 0.57 MeV", "Energy 0.74 MeV", "Energy 0.23 MeV", "Energy 0.30 MeV", "Energy 0.68 MeV", "Energy 0.16 MeV", "Energy 0.56 MeV", "Energy 0.10 MeV", "Energy 0.15 MeV", "Energy 0.47 MeV", "Energy 0.17 MeV", "Energy 0.99 MeV", "Energy 0.84 MeV", "Energy 0.18 MeV", "Energy 0.10 MeV", "Energy 0.11 MeV", "Energy 0.39 MeV", "Energy 0.57 MeV", "Energy 0.29 MeV" ], "marker": { "color": [ 0.5208098888397217, 0.613192617893219, 0.28335413336753845, 0.266183078289032, 0.11815053969621658, 0.6752012968063354, 0.2106647491455078, 0.43270984292030334, 0.33963459730148315, 0.1894870102405548, 0.5132931470870972, 0.5531483888626099, 0.7465121746063232, 0.5688356757164001, 0.5002456307411194, 0.0523533932864666, 0.4204566776752472, 0.2136266529560089, 0.520470917224884, 0.17520031332969666, 0.3422548770904541, 0.5630124807357788, 0.15498051047325134, 0.48809322714805603, 0.5473475456237793, 0.5900022983551025, 0.8619787693023682, 0.0543755367398262, 0.21481847763061523, 0.6653177738189697, 0.23742234706878662, 0.4235534965991974, 0.7426059246063232, 0.23067837953567505, 0.5325023531913757, 0.4730502963066101, 0.4923158884048462, 0.096368208527565, 0.32439127564430237, 0.22499240934848785, 0.061797983944416046, 0.4851270020008087, 0.11513042449951172, 0.5314436554908752, 0.5420105457305908, 0.17543508112430573, 0.34345483779907227, 0.43637391924858093, 0.09301945567131042, 0.6868531703948975, 0.2825501263141632, 0.1891898661851883, 0.6034298539161682, 0.21767207980155945, 0.7135306596755981, 0.5210490226745605, 0.5748500823974609, 0.17076751589775085, 0.375436931848526, 0.6891536116600037, 0.38011276721954346, 0.5398492217063904, 0.32832011580467224, 0.20810122787952423, 0.8205138444900513, 0.054959677159786224, 0.07664147764444351, 0.5283912420272827, 0.37376806139945984, 0.1804719716310501, 0.5418257713317871, 0.3341791033744812, 0.1889933943748474, 0.6650495529174805, 0.06193745508790016, 0.21184545755386353, 0.257743775844574, 0.5282277464866638, 0.30686619877815247, 0.25051456689834595, 0.46114370226860046, 0.1758250594139099, 0.46669673919677734, 0.29645588994026184, 0.16506904363632202, 0.4207410514354706, 0.2276826947927475, 0.5091952085494995, 0.641535758972168, 0.29656970500946045, 0.22980622947216034, 0.5886460542678833, 1.3240160942077637, 0.22945678234100342, 0.31159231066703796, 0.5560821890830994, 0.34195882081985474, 0.22914595901966095, 0.8063016533851624, 0.05430587753653526, 0.43904292583465576, 0.2644188106060028, 0.4340835213661194, 0.491833359003067, 0.6820939183235168, 0.09353484213352203, 0.05349215492606163, 1.3106818199157715, 0.6126288771629333, 0.09662234783172607, 0.4892241954803467, 0.44239526987075806, 0.20750953257083893, 0.17896918952465057, 0.414154052734375, 0.183238223195076, 0.4069058895111084, 0.2322826385498047, 0.3150779604911804, 0.9453545808792114, 0.320452481508255, 0.21426916122436523, 0.747327446937561, 0.4254467189311981, 0.05367302894592285, 0.11326435208320618, 0.8236066699028015, 0.36544856429100037, 0.2887851893901825, 0.20833438634872437, 0.5529475808143616, 0.07633846253156662, 0.48888400197029114, 0.19731248915195465, 0.35633715987205505, 0.5078077912330627, 0.30549898743629456, 0.2558438181877136, 0.627444863319397, 0.39728739857673645, 0.3437235355377197, 0.5586087703704834, 0.13506782054901123, 0.23391717672348022, 0.18698649108409882, 1.3274879455566406, 0.26739928126335144, 0.46239522099494934, 0.293506383895874, 0.5524044036865234, 0.6705049872398376, 0.530103862285614, 0.14360661804676056, 0.4593418836593628, 0.20120298862457275, 0.5018322467803955, 0.16371305286884308, 0.44583573937416077, 0.9699921607971191, 0.05431542545557022, 0.5581089854240417, 1.0293042659759521, 0.15691298246383667, 0.48372921347618103, 0.43917301297187805, 0.29898545145988464, 0.2415544092655182, 0.3283451795578003, 0.18672147393226624, 0.3017210364341736, 0.3369125425815582, 0.3155425488948822, 1.439460039138794, 0.40971073508262634, 0.1752510666847229, 0.7282137870788574, 0.49100273847579956, 0.07103662937879562, 0.07753944396972656, 0.5764436721801758, 0.3782721757888794, 0.23767201602458954, 0.14186589419841766, 0.441862016916275, 0.6843432784080505, 0.12625789642333984, 0.12057291716337204, 0.42843863368034363, 0.3068990409374237, 1.9773237705230713, 0.668680727481842, 0.35792845487594604, 0.436528742313385, 0.5494487881660461, 0.4168647825717926, 0.10641680657863617, 0.13891270756721497, 0.5638376474380493, 0.22288259863853455, 0.09902235865592957, 0.22280637919902802, 0.6159634590148926, 0.17562665045261383, 0.5710923671722412, 0.11824396252632141, 0.5322502255439758, 0.4550749659538269, 0.13731080293655396, 0.732485294342041, 0.8270334005355835, 0.6147559881210327, 0.06695184111595154, 0.39824962615966797, 0.2829274535179138, 0.587617039680481, 0.07664305716753006, 0.16329655051231384, 0.44874653220176697, 0.662689208984375, 0.5185133218765259, 0.7645131349563599, 0.1518600881099701, 0.49285680055618286, 0.5428181290626526, 0.16267848014831543, 0.1170862466096878, 0.5428740382194519, 0.19675567746162415, 0.3747800886631012, 0.6309745907783508, 0.3870044946670532, 0.09423668682575226, 0.7445826530456543, 0.2513059675693512, 0.3754199743270874, 0.4823059141635895, 0.32032543420791626, 0.23283244669437408, 0.11489062011241913, 0.6293956637382507, 0.4708291292190552, 0.16112729907035828, 0.37881362438201904, 0.6768458485603333, 0.727796196937561, 0.20481251180171967, 0.14816367626190186, 0.27108073234558105, 0.6883367300033569, 0.8739964962005615, 0.7251623272895813, 0.23273679614067078, 0.755270779132843, 0.324377179145813, 0.21846604347229004, 0.4282516837120056, 0.21283553540706635, 0.4507003724575043, 0.2755456864833832, 0.17235422134399414, 0.38650813698768616, 0.36411044001579285, 0.38931804895401, 0.613065242767334, 0.3126935064792633, 0.4660533368587494, 0.9398921728134155, 0.25896474719047546, 0.09441487491130829, 0.18965646624565125, 0.8772144317626953, 0.11939870566129684, 0.5372898578643799, 1.2043607234954834, 0.1214437261223793, 0.4694644808769226, 0.5336668491363525, 0.5180924534797668, 0.4241161346435547, 0.3954745829105377, 0.7887337803840637, 0.08515016734600067, 0.7411720156669617, 0.5834289193153381, 0.12072578072547913, 0.46668508648872375, 0.06206479296088219, 0.4596543312072754, 0.08039073646068573, 0.421713650226593, 0.14140787720680237, 0.3492666482925415, 0.6007298231124878, 0.517750084400177, 0.198313906788826, 0.23036034405231476, 0.493024080991745, 0.3705540895462036, 0.22792880237102509, 0.5695399045944214, 0.6590510606765747, 0.20990529656410217, 0.9738941192626953, 0.5493048429489136, 0.9983922243118286, 0.05009419098496437, 1.1971999406814575, 1.710192084312439, 0.19050121307373047, 0.3621678054332733, 0.20023927092552185, 0.16340096294879913, 0.26932409405708313, 0.8058193922042847, 0.17668303847312927, 0.05256081745028496, 0.6091194748878479, 0.8688359260559082, 0.07324642688035965, 0.48687440156936646, 0.6531015634536743, 0.7037429213523865, 0.48832544684410095, 0.05853400006890297, 0.6155351400375366, 0.32087621092796326, 0.14553917944431305, 0.5914140939712524, 0.38467660546302795, 0.4385029077529907, 0.7941811084747314, 0.15053218603134155, 0.37164485454559326, 0.07636048644781113, 0.5397950410842896, 0.5788596272468567, 0.09168712049722672, 0.8841387629508972, 0.10515548288822174, 0.44997328519821167, 0.1784091293811798, 0.3056676685810089, 0.2298276573419571, 0.31378886103630066, 0.301395058631897, 0.2887558341026306, 0.29820939898490906, 0.25110912322998047, 0.23566418886184692, 0.11851049214601517, 0.623773992061615, 0.20499080419540405, 0.426395058631897, 1.013672113418579, 0.3183489143848419, 0.22605927288532257, 0.41372963786125183, 0.5108902454376221, 0.566652774810791, 0.10521812736988068, 0.2971940040588379, 0.14068323373794556, 0.7573185563087463, 0.061749644577503204, 0.34685683250427246, 0.177261084318161, 0.7310364246368408, 0.11866981536149979, 1.393300175666809, 1.5303148031234741, 0.556114912033081, 0.10340918600559235, 0.26149386167526245, 0.3628346025943756, 0.4852723777294159, 0.13432350754737854, 0.20390065014362335, 0.4247390329837799, 0.6540574431419373, 0.41133543848991394, 0.1394462287425995, 0.42474761605262756, 0.40513181686401367, 0.3012656569480896, 0.08831067383289337, 0.474323570728302, 0.323169082403183, 0.25312191247940063, 0.9108330607414246, 0.5051413774490356, 0.41320595145225525, 0.5824519395828247, 0.26462024450302124, 0.32787632942199707, 0.8269066214561462, 0.1410267949104309, 0.1838046759366989, 0.42510852217674255, 0.05272079259157181, 0.5944973826408386, 0.12374618649482727, 0.5358052253723145, 0.6077933311462402, 0.37805089354515076, 0.1499965339899063, 0.07380339503288269, 0.6081568002700806, 0.44950389862060547, 0.25250184535980225, 0.5604566335678101, 0.3848264515399933, 0.18263952434062958, 0.5569177865982056, 0.0987197682261467, 0.6966303586959839, 0.20613545179367065, 0.5989994406700134, 0.32791852951049805, 0.371751606464386, 0.21527472138404846, 0.3462164103984833, 0.3034447431564331, 0.4192773401737213, 0.20641449093818665, 0.16312219202518463, 0.7602292895317078, 0.5691683292388916, 0.16097557544708252, 0.11574742197990417, 0.4135819375514984, 0.4345676600933075, 0.1400584876537323, 0.7245174050331116, 0.45994091033935547, 0.07178282737731934, 0.6234337091445923, 0.6896761655807495, 0.11228843033313751, 0.06000816076993942, 0.8333731889724731, 0.27829575538635254, 0.3196530342102051, 0.6526327133178711, 0.21423688530921936, 0.4387319087982178, 0.6493548154830933, 0.9993643164634705, 0.05375067517161369, 0.5872460007667542, 0.7572377324104309, 0.062174241989851, 0.5169347524642944, 0.9461842775344849, 0.09471619874238968, 0.5238262414932251, 0.13222390413284302, 1.0231605768203735, 0.11198262125253677, 0.3250482678413391, 0.1863221824169159, 0.12312682718038559, 0.7799175977706909, 0.29493021965026855, 0.24061009287834167, 0.18815644085407257, 0.6175416111946106, 0.16647544503211975, 0.15991327166557312, 0.2271224409341812, 0.900013267993927, 0.2632780373096466, 0.052191924303770065, 0.3278249502182007, 0.2707512378692627, 1.4543766975402832, 0.2093956023454666, 0.05106326937675476, 0.3178454637527466, 0.9244530200958252, 0.24511952698230743, 0.15800711512565613, 0.3457549214363098, 0.5263115167617798, 0.6808933019638062, 0.16884717345237732, 0.46881818771362305, 0.6088579893112183, 0.1280142366886139, 0.23577731847763062, 0.5992817878723145, 0.7562933564186096, 0.15015949308872223, 0.11355641484260559, 0.3358731269836426, 0.6223036050796509, 0.1275332123041153, 0.18400147557258606, 0.46669167280197144, 0.7235948443412781, 0.1956503838300705, 0.08942121267318726, 0.33600327372550964, 0.6310547590255737, 0.2768738269805908, 0.0914306491613388, 0.2734670639038086, 0.579410970211029, 0.26350557804107666, 0.22797250747680664, 0.5974425673484802, 0.3816116154193878, 0.276185005903244, 0.8211334943771362, 0.37545880675315857, 0.06165974587202072, 0.192346453666687, 0.5689141154289246, 0.7464308738708496, 0.0588199682533741, 0.07559932768344879, 0.2439444214105606, 1.1344621181488037, 0.5277611017227173, 0.24165546894073486, 0.20735734701156616, 1.1484026908874512, 0.7372314929962158, 0.0715462863445282, 0.931794285774231, 0.542137861251831, 0.5239839553833008, 0.6335183382034302, 0.17375445365905762, 0.5012646317481995, 0.5872286558151245, 0.2601746916770935, 0.41082823276519775, 0.6564179062843323, 0.3525334298610687, 0.33609744906425476, 0.6611897945404053, 0.06863274425268173, 0.3820410370826721, 0.2326289266347885, 0.593985915184021, 0.07413697242736816, 0.3429832458496094, 0.23641301691532135, 0.814180850982666, 0.06706050783395767, 0.5124866366386414, 0.08716707676649094, 0.061094969511032104, 0.5317387580871582, 0.05971955507993698, 0.6763975620269775, 0.12159073352813721, 0.5532869100570679, 0.5687074065208435, 0.24828045070171356, 0.381390780210495, 0.5392153263092041, 0.41952216625213623, 0.3097003400325775, 0.5175373554229736, 0.8391345143318176, 0.14299249649047852, 0.7946872115135193, 0.6294387578964233, 0.050251856446266174, 0.08048652857542038, 0.5410249829292297, 1.0012081861495972, 0.08974253386259079, 0.21075186133384705, 0.624415934085846, 0.6962226629257202, 0.16078469157218933, 0.06348098814487457, 0.5013099908828735, 0.5969145894050598, 0.14123402535915375, 0.45126861333847046, 0.6055802702903748, 0.5988591313362122, 1.0579572916030884, 0.18754485249519348, 0.5117279887199402, 0.26550179719924927, 0.7684051990509033, 0.27145177125930786, 0.12877969443798065, 0.23318630456924438, 0.8306514024734497, 0.40230903029441833, 0.1558225452899933, 0.12735691666603088, 0.29781094193458557, 0.5981658101081848, 0.6080596446990967, 0.10895209014415741, 0.0566612146794796, 0.0988272875547409, 0.5684807300567627, 0.5857269763946533, 0.1884012520313263, 0.2262091487646103, 0.29638248682022095, 0.6060009598731995, 0.24404382705688477, 0.17236599326133728, 0.09596619755029678, 0.6490636467933655, 0.4364534914493561, 0.28503087162971497, 0.18512265384197235, 0.5195600390434265, 0.5677013993263245, 0.05731744319200516, 0.19778284430503845, 0.4557870924472809, 0.5863598585128784, 0.16339902579784393, 0.27203112840652466, 0.18903937935829163, 0.6102713346481323, 0.558009147644043, 0.18974505364894867, 0.08196726441383362, 0.6772763133049011, 0.5616990327835083, 0.48865923285484314, 0.9895544648170471, 0.13691756129264832, 0.16981124877929688, 0.10660788416862488, 0.48392191529273987, 1.3239960670471191, 0.18154291808605194, 0.27744540572166443, 0.31875959038734436, 0.5717718005180359, 0.26765570044517517, 0.1929810494184494, 0.1308055818080902, 0.6995898485183716, 0.8325635194778442, 0.35083168745040894, 0.13089638948440552, 0.43532833456993103, 0.825843870639801, 0.12334634363651276, 0.4681682288646698, 0.29822471737861633, 0.599051833152771, 0.3508089780807495, 0.16607989370822906, 0.18757234513759613, 0.2202409952878952, 0.6851291060447693, 0.503265917301178, 0.2672199308872223, 0.16352349519729614, 0.43392956256866455, 0.5174829959869385, 0.06224285811185837, 0.10006830096244812, 0.18903447687625885, 0.44374722242355347, 0.7897776961326599, 0.318897545337677, 0.2565857768058777, 0.14927487075328827, 0.4976968467235565, 0.5218581557273865, 0.6607955694198608, 0.1193084716796875, 0.7722557187080383, 0.47804969549179077, 0.1907615065574646, 0.25482413172721863, 0.42889565229415894, 0.6207419037818909, 0.08679129183292389, 0.22001254558563232, 0.33134642243385315, 0.19169791042804718, 0.5938462018966675, 0.5067324042320251, 0.10362344235181808, 0.10899722576141357, 0.06448861956596375, 0.5267127156257629, 0.6262101531028748, 0.44219401478767395, 0.31661540269851685, 0.5911912322044373, 0.9155114889144897, 0.15977685153484344, 0.06045258790254593, 0.14344409108161926, 0.732771098613739, 0.9430411458015442, 0.1773262470960617, 0.2031136453151703, 0.2269953340291977, 0.6848890781402588, 0.35747507214546204, 0.2549137473106384, 0.09431707113981247, 0.2110845148563385, 0.4633706212043762, 0.7260816097259521, 0.07222960144281387, 0.16407279670238495, 0.5823586583137512, 0.2587447762489319, 0.08889308571815491, 0.681281566619873, 0.45113375782966614, 0.20086942613124847, 0.18484313786029816, 0.5034828186035156, 1.3385202884674072, 0.3012101650238037, 0.1505870372056961, 0.21341535449028015, 0.6740183234214783, 0.5291616916656494, 0.16316765546798706, 0.19995787739753723, 0.4313039183616638, 0.7413642406463623, 0.26342785358428955, 0.2894372344017029, 0.15663062036037445, 0.08027919381856918, 0.5737323760986328, 1.0914926528930664, 0.23457404971122742, 0.34467005729675293, 0.36019375920295715, 0.6719234585762024, 0.17045703530311584, 0.4441632926464081, 0.19796766340732574, 0.4775036573410034, 0.33423250913619995, 0.33692488074302673, 0.5129706859588623, 0.21013927459716797, 0.545635461807251, 0.6111656427383423, 1.0850460529327393, 0.3555876612663269, 0.5139047503471375, 0.19872120022773743, 0.6947322487831116, 0.6569883823394775, 0.09492109715938568, 0.10511864721775055, 0.3472413718700409, 0.24720877408981323, 0.9119435548782349, 0.3810870349407196, 0.14918707311153412, 0.05108359828591347, 0.586495578289032, 0.5913270115852356, 0.14782610535621643, 0.44082435965538025, 0.8081764578819275, 0.24473169445991516, 0.14904066920280457, 0.2572115957736969, 0.6071767807006836, 0.8115395307540894, 0.470697283744812, 0.20339727401733398, 0.613315224647522, 0.5621391534805298, 0.09581708908081055, 0.43406563997268677, 0.22072510421276093, 0.05275173857808113, 0.581670343875885, 0.2439810335636139, 0.49990758299827576, 0.25491276383399963, 0.37290075421333313, 0.3512519896030426, 0.3117966651916504, 1.1663318872451782, 0.6142665147781372, 0.24661792814731598, 0.6460009813308716, 0.278607040643692, 0.21549585461616516, 0.15773309767246246, 1.2983026504516602, 0.49493592977523804, 0.51133131980896, 0.1851484775543213, 0.6512018442153931, 0.7429707646369934, 0.20604117214679718, 0.5317589044570923, 0.6437184810638428, 0.18927136063575745, 0.24884405732154846, 0.4296146035194397, 0.5893819332122803, 0.314461350440979, 0.34480971097946167, 0.3112355172634125, 0.2920700013637543, 0.48667117953300476, 0.3879890739917755, 0.5217977166175842, 0.1083277016878128, 0.18204908072948456, 0.24124325811862946, 0.2078888714313507, 0.6142075061798096, 0.41030463576316833, 0.1262180507183075, 0.07888701558113098, 0.568530261516571, 0.6417638063430786, 0.10450733453035355, 0.17832010984420776, 0.5446140170097351, 0.6758596301078796, 0.24234938621520996, 0.3194872736930847, 0.2801584005355835, 0.08371498435735703, 0.579995334148407, 0.31288835406303406, 0.7522842884063721, 0.22952231764793396, 0.32212916016578674, 0.3962390124797821, 0.4345358908176422, 0.25964561104774475, 0.7003555297851562, 0.09696167707443237, 0.33984023332595825, 0.3817678987979889, 0.11162252724170685, 0.6753639578819275, 0.4069095849990845, 0.20748412609100342, 0.07334020733833313, 0.8337294459342957, 0.811827540397644, 0.18082644045352936, 0.519903838634491, 0.6641520261764526, 0.32095688581466675, 0.1932101845741272, 0.6597821712493896, 0.6346982717514038, 0.19848084449768066, 0.4734398126602173, 0.12091211974620819, 0.5533877015113831, 0.4544813632965088, 0.1628306806087494, 0.09734433889389038, 0.4603702127933502, 0.6740790009498596, 0.27017712593078613, 0.43525856733322144, 0.2743377983570099, 1.2349709272384644, 0.20396769046783447, 0.4631076455116272, 0.16517239809036255, 0.40592315793037415, 0.19033098220825195, 0.1634465456008911, 0.5422157645225525, 0.5149798393249512, 0.6942121982574463, 0.5818730592727661, 0.3897875249385834, 0.07495453953742981, 0.20278742909431458, 0.40517958998680115, 0.5532932281494141, 0.6329101324081421, 0.4420887529850006, 0.7704232335090637, 0.41250109672546387, 0.17659132182598114, 0.15274086594581604, 0.43378746509552, 0.6108177304267883, 0.22463862597942352, 0.5367398858070374, 0.43336451053619385, 0.09748619794845581, 0.4365655779838562, 0.1232486441731453, 0.9098401069641113, 0.34719499945640564, 0.24022090435028076, 0.114854596555233, 0.1360025256872177, 0.5675452351570129, 0.7438949346542358, 0.22519990801811218, 0.29737237095832825, 0.6773641109466553, 0.1585444062948227, 0.5626038312911987, 0.09603525698184967, 0.15274448692798615, 0.46864432096481323, 0.16956593096256256, 0.9924424290657043, 0.8448575735092163, 0.1758986860513687, 0.09806178510189056, 0.1112341582775116, 0.3909802734851837, 0.5720567107200623, 0.2949557900428772 ], "colorscale": [ [ 0.0, "#000004" ], [ 0.1111111111111111, "#1b0c41" ], [ 0.2222222222222222, "#4a0c6b" ], [ 0.3333333333333333, "#781c6d" ], [ 0.4444444444444444, "#a52c60" ], [ 0.5555555555555556, "#cf4446" ], [ 0.6666666666666666, "#ed6925" ], [ 0.7777777777777778, "#fb9b06" ], [ 0.8888888888888888, "#f7d13d" ], [ 1.0, "#fcffa4" ] ], "size": 1.5 }, "mode": "markers", "name": "Trajectory 6", "type": "scatter3d", "x": [ 423.0, 423.0, 422.0, 422.0, 423.0, 422.0, 421.0, 422.0, 421.0, 421.0, 420.0, 420.0, 421.0, 420.0, 420.0, 420.0, 419.0, 420.0, 419.0, 418.0, 419.0, 418.0, 418.0, 418.0, 417.0, 417.0, 416.0, 416.0, 417.0, 416.0, 415.0, 416.0, 415.0, 415.0, 415.0, 414.0, 414.0, 414.0, 413.0, 414.0, 413.0, 413.0, 412.0, 413.0, 412.0, 412.0, 412.0, 411.0, 412.0, 411.0, 410.0, 411.0, 410.0, 409.0, 410.0, 409.0, 409.0, 408.0, 408.0, 408.0, 408.0, 407.0, 407.0, 407.0, 406.0, 407.0, 406.0, 406.0, 405.0, 406.0, 405.0, 404.0, 405.0, 404.0, 403.0, 403.0, 404.0, 403.0, 402.0, 403.0, 402.0, 402.0, 401.0, 402.0, 401.0, 401.0, 400.0, 401.0, 400.0, 399.0, 400.0, 400.0, 399.0, 398.0, 399.0, 398.0, 397.0, 398.0, 397.0, 397.0, 396.0, 397.0, 396.0, 396.0, 395.0, 396.0, 395.0, 395.0, 394.0, 393.0, 394.0, 393.0, 393.0, 392.0, 393.0, 392.0, 392.0, 391.0, 392.0, 391.0, 390.0, 391.0, 390.0, 389.0, 389.0, 390.0, 389.0, 388.0, 388.0, 387.0, 388.0, 387.0, 387.0, 386.0, 387.0, 386.0, 385.0, 386.0, 385.0, 384.0, 385.0, 384.0, 383.0, 383.0, 384.0, 383.0, 383.0, 382.0, 383.0, 383.0, 382.0, 381.0, 382.0, 381.0, 381.0, 380.0, 380.0, 380.0, 379.0, 378.0, 379.0, 378.0, 377.0, 378.0, 377.0, 377.0, 376.0, 377.0, 376.0, 376.0, 375.0, 376.0, 375.0, 374.0, 375.0, 374.0, 373.0, 373.0, 374.0, 373.0, 372.0, 372.0, 371.0, 372.0, 370.0, 371.0, 370.0, 371.0, 370.0, 371.0, 370.0, 369.0, 370.0, 369.0, 368.0, 369.0, 369.0, 368.0, 367.0, 367.0, 368.0, 367.0, 366.0, 366.0, 367.0, 366.0, 365.0, 366.0, 365.0, 365.0, 364.0, 365.0, 364.0, 364.0, 363.0, 364.0, 363.0, 363.0, 362.0, 362.0, 361.0, 360.0, 361.0, 360.0, 360.0, 359.0, 360.0, 359.0, 359.0, 358.0, 359.0, 358.0, 358.0, 357.0, 358.0, 357.0, 356.0, 357.0, 357.0, 356.0, 355.0, 355.0, 356.0, 355.0, 356.0, 354.0, 354.0, 355.0, 356.0, 354.0, 353.0, 354.0, 353.0, 352.0, 353.0, 352.0, 352.0, 351.0, 352.0, 351.0, 351.0, 350.0, 351.0, 350.0, 349.0, 350.0, 349.0, 348.0, 349.0, 349.0, 348.0, 347.0, 348.0, 347.0, 346.0, 347.0, 346.0, 346.0, 345.0, 345.0, 345.0, 344.0, 344.0, 344.0, 344.0, 343.0, 344.0, 343.0, 343.0, 342.0, 343.0, 342.0, 342.0, 341.0, 342.0, 341.0, 341.0, 340.0, 341.0, 340.0, 339.0, 340.0, 339.0, 340.0, 339.0, 340.0, 338.0, 339.0, 339.0, 338.0, 338.0, 339.0, 339.0, 338.0, 337.0, 338.0, 338.0, 337.0, 336.0, 337.0, 336.0, 336.0, 335.0, 335.0, 335.0, 334.0, 334.0, 334.0, 333.0, 333.0, 333.0, 332.0, 332.0, 333.0, 332.0, 331.0, 332.0, 331.0, 331.0, 330.0, 331.0, 330.0, 330.0, 329.0, 330.0, 329.0, 329.0, 328.0, 329.0, 328.0, 328.0, 327.0, 328.0, 327.0, 328.0, 326.0, 327.0, 328.0, 326.0, 325.0, 326.0, 326.0, 325.0, 324.0, 325.0, 325.0, 324.0, 325.0, 324.0, 324.0, 323.0, 324.0, 323.0, 323.0, 322.0, 323.0, 322.0, 322.0, 321.0, 322.0, 321.0, 321.0, 320.0, 321.0, 320.0, 320.0, 319.0, 320.0, 319.0, 318.0, 319.0, 318.0, 317.0, 318.0, 317.0, 297.0, 316.0, 317.0, 317.0, 316.0, 315.0, 316.0, 315.0, 315.0, 315.0, 289.0, 314.0, 314.0, 314.0, 313.0, 313.0, 313.0, 312.0, 313.0, 312.0, 312.0, 311.0, 312.0, 311.0, 311.0, 310.0, 311.0, 310.0, 310.0, 309.0, 310.0, 309.0, 309.0, 308.0, 309.0, 308.0, 308.0, 308.0, 307.0, 307.0, 307.0, 306.0, 307.0, 307.0, 306.0, 305.0, 306.0, 305.0, 304.0, 305.0, 304.0, 304.0, 303.0, 303.0, 303.0, 302.0, 302.0, 302.0, 301.0, 301.0, 302.0, 301.0, 300.0, 300.0, 301.0, 308.0, 300.0, 299.0, 299.0, 300.0, 299.0, 298.0, 298.0, 299.0, 298.0, 297.0, 297.0, 298.0, 297.0, 297.0, 296.0, 296.0, 297.0, 296.0, 295.0, 296.0, 295.0, 296.0, 295.0, 294.0, 295.0, 294.0, 293.0, 294.0, 294.0, 293.0, 292.0, 293.0, 293.0, 292.0, 291.0, 292.0, 292.0, 291.0, 290.0, 291.0, 291.0, 290.0, 289.0, 290.0, 290.0, 289.0, 288.0, 289.0, 288.0, 287.0, 288.0, 287.0, 286.0, 287.0, 287.0, 286.0, 285.0, 286.0, 285.0, 286.0, 285.0, 284.0, 284.0, 285.0, 284.0, 283.0, 284.0, 283.0, 282.0, 282.0, 281.0, 280.0, 281.0, 280.0, 279.0, 280.0, 279.0, 278.0, 279.0, 278.0, 277.0, 277.0, 278.0, 277.0, 276.0, 276.0, 277.0, 276.0, 275.0, 275.0, 276.0, 274.0, 275.0, 274.0, 274.0, 273.0, 274.0, 273.0, 272.0, 273.0, 272.0, 271.0, 272.0, 271.0, 270.0, 271.0, 270.0, 269.0, 270.0, 269.0, 269.0, 268.0, 267.0, 267.0, 268.0, 267.0, 266.0, 266.0, 267.0, 266.0, 265.0, 265.0, 266.0, 264.0, 265.0, 264.0, 264.0, 265.0, 264.0, 263.0, 263.0, 264.0, 263.0, 262.0, 262.0, 263.0, 261.0, 262.0, 261.0, 261.0, 260.0, 260.0, 261.0, 260.0, 259.0, 259.0, 260.0, 259.0, 258.0, 258.0, 259.0, 258.0, 257.0, 257.0, 256.0, 257.0, 256.0, 256.0, 255.0, 256.0, 255.0, 254.0, 254.0, 255.0, 254.0, 253.0, 253.0, 254.0, 252.0, 253.0, 253.0, 252.0, 252.0, 251.0, 251.0, 252.0, 251.0, 250.0, 250.0, 251.0, 250.0, 249.0, 249.0, 250.0, 249.0, 248.0, 248.0, 247.0, 248.0, 247.0, 246.0, 246.0, 247.0, 246.0, 245.0, 245.0, 246.0, 244.0, 245.0, 244.0, 244.0, 243.0, 244.0, 243.0, 243.0, 242.0, 242.0, 243.0, 242.0, 241.0, 241.0, 242.0, 240.0, 240.0, 241.0, 240.0, 241.0, 240.0, 240.0, 239.0, 240.0, 239.0, 239.0, 238.0, 238.0, 239.0, 238.0, 237.0, 237.0, 238.0, 236.0, 237.0, 236.0, 235.0, 236.0, 235.0, 234.0, 235.0, 233.0, 234.0, 234.0, 233.0, 232.0, 233.0, 233.0, 232.0, 231.0, 232.0, 232.0, 231.0, 231.0, 230.0, 231.0, 229.0, 230.0, 230.0, 229.0, 229.0, 228.0, 229.0, 228.0, 228.0, 227.0, 226.0, 227.0, 227.0, 226.0, 225.0, 226.0, 225.0, 225.0, 224.0, 223.0, 224.0, 224.0, 223.0, 223.0, 222.0, 223.0, 222.0, 222.0, 221.0, 220.0, 221.0, 220.0, 220.0, 219.0, 220.0, 219.0, 219.0, 218.0, 219.0, 218.0, 217.0, 217.0, 216.0, 217.0, 216.0, 216.0, 215.0, 215.0, 216.0, 215.0, 214.0, 214.0, 215.0, 214.0, 213.0, 212.0, 213.0, 212.0, 211.0, 212.0, 212.0, 211.0, 210.0, 211.0, 210.0, 210.0, 209.0, 210.0, 209.0, 209.0, 208.0, 208.0, 207.0, 208.0, 207.0, 207.0, 206.0, 207.0, 205.0, 206.0, 206.0, 205.0, 205.0, 206.0, 204.0, 205.0, 204.0, 204.0, 205.0, 204.0, 203.0, 203.0, 203.0, 202.0, 201.0, 202.0, 202.0, 201.0, 200.0, 201.0, 200.0, 200.0, 199.0, 200.0, 199.0, 199.0, 198.0, 198.0, 199.0, 198.0, 197.0, 197.0, 198.0, 197.0, 196.0, 195.0, 196.0, 196.0, 195.0, 194.0, 195.0, 195.0, 194.0, 194.0, 193.0, 194.0, 194.0, 193.0, 193.0, 192.0, 193.0, 192.0, 192.0, 191.0, 191.0, 192.0, 191.0, 190.0, 190.0, 191.0, 190.0, 189.0, 189.0, 189.0, 188.0, 188.0, 188.0, 187.0, 187.0, 186.0, 186.0, 185.0, 186.0, 185.0, 185.0, 184.0, 185.0, 184.0, 183.0, 184.0, 184.0, 183.0, 182.0, 183.0, 182.0, 182.0, 182.0, 181.0, 182.0, 181.0, 182.0, 181.0, 182.0, 180.0, 180.0, 181.0, 180.0, 179.0, 180.0, 179.0, 178.0, 179.0, 178.0, 178.0, 177.0, 178.0, 177.0, 177.0, 176.0, 176.0, 177.0, 176.0, 175.0, 175.0, 176.0, 175.0, 175.0, 174.0, 174.0, 174.0, 173.0, 172.0, 173.0, 173.0, 172.0, 172.0, 171.0, 172.0, 171.0, 171.0, 170.0, 170.0, 171.0, 170.0, 170.0 ], "y": [ 247.0, 247.0, 246.0, 247.0, 247.0, 246.0, 246.0, 246.0, 245.0, 246.0, 244.0, 245.0, 245.0, 245.0, 244.0, 245.0, 244.0, 244.0, 244.0, 243.0, 243.0, 243.0, 242.0, 243.0, 242.0, 242.0, 241.0, 242.0, 242.0, 241.0, 241.0, 241.0, 240.0, 241.0, 240.0, 240.0, 239.0, 240.0, 239.0, 239.0, 238.0, 239.0, 238.0, 238.0, 238.0, 237.0, 238.0, 237.0, 237.0, 237.0, 236.0, 237.0, 236.0, 236.0, 236.0, 235.0, 235.0, 234.0, 235.0, 234.0, 235.0, 234.0, 233.0, 234.0, 233.0, 233.0, 232.0, 233.0, 232.0, 232.0, 232.0, 231.0, 232.0, 231.0, 230.0, 231.0, 231.0, 230.0, 230.0, 230.0, 229.0, 230.0, 229.0, 229.0, 228.0, 229.0, 228.0, 228.0, 228.0, 227.0, 227.0, 228.0, 227.0, 226.0, 227.0, 226.0, 226.0, 226.0, 225.0, 226.0, 225.0, 225.0, 224.0, 225.0, 224.0, 224.0, 223.0, 224.0, 223.0, 223.0, 223.0, 222.0, 223.0, 222.0, 222.0, 221.0, 222.0, 221.0, 221.0, 221.0, 220.0, 220.0, 220.0, 219.0, 220.0, 220.0, 219.0, 218.0, 219.0, 218.0, 218.0, 217.0, 218.0, 217.0, 217.0, 217.0, 216.0, 216.0, 216.0, 215.0, 216.0, 215.0, 214.0, 215.0, 215.0, 214.0, 215.0, 214.0, 214.0, 215.0, 213.0, 213.0, 213.0, 212.0, 213.0, 212.0, 211.0, 212.0, 211.0, 211.0, 211.0, 210.0, 210.0, 210.0, 209.0, 210.0, 209.0, 209.0, 208.0, 209.0, 208.0, 208.0, 208.0, 207.0, 207.0, 207.0, 206.0, 207.0, 207.0, 206.0, 205.0, 206.0, 205.0, 205.0, 204.0, 204.0, 205.0, 205.0, 204.0, 204.0, 204.0, 203.0, 203.0, 203.0, 202.0, 202.0, 203.0, 202.0, 201.0, 202.0, 202.0, 201.0, 200.0, 201.0, 201.0, 200.0, 200.0, 200.0, 199.0, 200.0, 199.0, 199.0, 198.0, 199.0, 198.0, 198.0, 197.0, 198.0, 197.0, 197.0, 196.0, 196.0, 196.0, 195.0, 196.0, 195.0, 195.0, 194.0, 195.0, 194.0, 194.0, 193.0, 194.0, 193.0, 193.0, 193.0, 192.0, 192.0, 193.0, 192.0, 191.0, 192.0, 192.0, 191.0, 192.0, 190.0, 191.0, 191.0, 192.0, 190.0, 190.0, 190.0, 189.0, 189.0, 189.0, 188.0, 189.0, 188.0, 188.0, 187.0, 188.0, 187.0, 187.0, 187.0, 186.0, 186.0, 186.0, 185.0, 185.0, 186.0, 185.0, 184.0, 185.0, 184.0, 184.0, 184.0, 183.0, 183.0, 182.0, 183.0, 182.0, 181.0, 182.0, 181.0, 182.0, 181.0, 181.0, 180.0, 181.0, 180.0, 180.0, 179.0, 180.0, 179.0, 179.0, 178.0, 179.0, 178.0, 178.0, 178.0, 176.0, 176.0, 177.0, 177.0, 178.0, 178.0, 179.0, 177.0, 178.0, 179.0, 176.0, 176.0, 177.0, 176.0, 175.0, 175.0, 176.0, 175.0, 174.0, 175.0, 174.0, 174.0, 173.0, 174.0, 173.0, 172.0, 173.0, 172.0, 171.0, 172.0, 171.0, 170.0, 171.0, 171.0, 170.0, 170.0, 170.0, 169.0, 170.0, 169.0, 169.0, 168.0, 169.0, 168.0, 168.0, 167.0, 168.0, 167.0, 167.0, 166.0, 167.0, 166.0, 166.0, 166.0, 166.0, 165.0, 165.0, 166.0, 165.0, 164.0, 164.0, 165.0, 164.0, 163.0, 163.0, 164.0, 163.0, 163.0, 162.0, 163.0, 162.0, 162.0, 161.0, 162.0, 161.0, 161.0, 160.0, 161.0, 160.0, 160.0, 159.0, 160.0, 159.0, 159.0, 158.0, 159.0, 158.0, 158.0, 158.0, 157.0, 157.0, 157.0, 156.0, 156.0, 156.0, 178.0, 155.0, 155.0, 156.0, 155.0, 154.0, 154.0, 154.0, 153.0, 154.0, 176.0, 153.0, 152.0, 153.0, 152.0, 151.0, 152.0, 151.0, 151.0, 150.0, 151.0, 150.0, 150.0, 149.0, 150.0, 149.0, 149.0, 148.0, 149.0, 148.0, 148.0, 147.0, 148.0, 147.0, 147.0, 146.0, 147.0, 146.0, 145.0, 146.0, 145.0, 144.0, 144.0, 145.0, 144.0, 143.0, 143.0, 143.0, 142.0, 142.0, 142.0, 141.0, 140.0, 141.0, 140.0, 139.0, 140.0, 139.0, 138.0, 139.0, 139.0, 138.0, 137.0, 138.0, 138.0, 141.0, 137.0, 136.0, 137.0, 137.0, 136.0, 135.0, 136.0, 136.0, 135.0, 134.0, 135.0, 135.0, 133.0, 134.0, 133.0, 134.0, 134.0, 133.0, 132.0, 132.0, 133.0, 133.0, 132.0, 131.0, 132.0, 131.0, 130.0, 130.0, 131.0, 130.0, 129.0, 129.0, 130.0, 129.0, 128.0, 128.0, 129.0, 128.0, 127.0, 127.0, 128.0, 127.0, 126.0, 126.0, 127.0, 126.0, 125.0, 126.0, 125.0, 124.0, 125.0, 124.0, 123.0, 123.0, 124.0, 123.0, 122.0, 122.0, 123.0, 123.0, 122.0, 121.0, 122.0, 122.0, 121.0, 120.0, 121.0, 120.0, 119.0, 119.0, 118.0, 118.0, 118.0, 117.0, 117.0, 117.0, 116.0, 116.0, 116.0, 115.0, 114.0, 115.0, 115.0, 114.0, 113.0, 114.0, 114.0, 113.0, 112.0, 113.0, 113.0, 112.0, 112.0, 111.0, 112.0, 111.0, 111.0, 111.0, 110.0, 110.0, 110.0, 109.0, 109.0, 109.0, 108.0, 108.0, 108.0, 107.0, 107.0, 106.0, 107.0, 106.0, 105.0, 106.0, 106.0, 105.0, 104.0, 105.0, 105.0, 104.0, 103.0, 104.0, 104.0, 103.0, 103.0, 102.0, 103.0, 103.0, 102.0, 101.0, 102.0, 102.0, 101.0, 100.0, 101.0, 101.0, 100.0, 100.0, 99.0, 100.0, 98.0, 99.0, 99.0, 98.0, 97.0, 98.0, 98.0, 97.0, 96.0, 97.0, 97.0, 96.0, 95.0, 96.0, 95.0, 95.0, 94.0, 95.0, 94.0, 94.0, 93.0, 92.0, 93.0, 93.0, 92.0, 91.0, 92.0, 92.0, 90.0, 90.0, 91.0, 90.0, 91.0, 89.0, 90.0, 90.0, 89.0, 88.0, 89.0, 89.0, 88.0, 87.0, 88.0, 88.0, 87.0, 86.0, 87.0, 86.0, 86.0, 85.0, 84.0, 85.0, 85.0, 84.0, 83.0, 84.0, 84.0, 83.0, 83.0, 82.0, 83.0, 82.0, 82.0, 81.0, 82.0, 80.0, 81.0, 81.0, 80.0, 79.0, 80.0, 80.0, 77.0, 78.0, 78.0, 79.0, 79.0, 78.0, 79.0, 78.0, 78.0, 77.0, 78.0, 76.0, 77.0, 77.0, 76.0, 75.0, 76.0, 76.0, 74.0, 75.0, 74.0, 73.0, 74.0, 73.0, 72.0, 73.0, 71.0, 71.0, 72.0, 71.0, 70.0, 70.0, 71.0, 70.0, 69.0, 69.0, 70.0, 68.0, 69.0, 68.0, 68.0, 67.0, 67.0, 68.0, 66.0, 67.0, 66.0, 66.0, 65.0, 66.0, 65.0, 64.0, 64.0, 65.0, 64.0, 63.0, 63.0, 62.0, 63.0, 62.0, 61.0, 61.0, 62.0, 60.0, 61.0, 60.0, 60.0, 59.0, 60.0, 59.0, 58.0, 58.0, 57.0, 58.0, 57.0, 57.0, 56.0, 57.0, 56.0, 56.0, 55.0, 54.0, 55.0, 54.0, 54.0, 53.0, 54.0, 52.0, 53.0, 53.0, 52.0, 51.0, 52.0, 52.0, 51.0, 50.0, 49.0, 50.0, 49.0, 48.0, 48.0, 49.0, 48.0, 47.0, 47.0, 46.0, 47.0, 46.0, 46.0, 45.0, 46.0, 44.0, 45.0, 44.0, 44.0, 43.0, 44.0, 43.0, 43.0, 41.0, 42.0, 43.0, 41.0, 42.0, 42.0, 41.0, 41.0, 40.0, 41.0, 41.0, 40.0, 39.0, 38.0, 39.0, 38.0, 37.0, 37.0, 38.0, 37.0, 36.0, 36.0, 35.0, 36.0, 35.0, 35.0, 34.0, 35.0, 33.0, 34.0, 34.0, 33.0, 32.0, 33.0, 33.0, 32.0, 31.0, 30.0, 30.0, 31.0, 30.0, 29.0, 29.0, 30.0, 28.0, 29.0, 28.0, 28.0, 29.0, 27.0, 28.0, 27.0, 27.0, 26.0, 27.0, 25.0, 26.0, 26.0, 25.0, 24.0, 25.0, 25.0, 24.0, 23.0, 22.0, 23.0, 22.0, 21.0, 22.0, 21.0, 20.0, 19.0, 20.0, 19.0, 19.0, 18.0, 19.0, 17.0, 18.0, 17.0, 16.0, 16.0, 17.0, 16.0, 15.0, 15.0, 14.0, 15.0, 13.0, 14.0, 14.0, 13.0, 13.0, 14.0, 14.0, 12.0, 13.0, 13.0, 12.0, 11.0, 12.0, 11.0, 10.0, 10.0, 9.0, 10.0, 9.0, 9.0, 8.0, 9.0, 7.0, 8.0, 8.0, 7.0, 6.0, 7.0, 7.0, 5.0, 6.0, 5.0, 4.0, 5.0, 4.0, 3.0, 3.0, 4.0, 2.0, 3.0, 2.0, 2.0, 1.0, 2.0, 0.0, 1.0, 1.0, 0.0, 0.0 ], "z": [ 0.0, 1.0, 2.0, 2.0, 2.0, 3.0, 4.0, 4.0, 5.0, 5.0, 6.0, 6.0, 6.0, 7.0, 8.0, 8.0, 9.0, 9.0, 10.0, 11.0, 11.0, 12.0, 13.0, 13.0, 14.0, 15.0, 16.0, 16.0, 16.0, 17.0, 18.0, 18.0, 19.0, 19.0, 20.0, 21.0, 22.0, 22.0, 23.0, 23.0, 24.0, 24.0, 25.0, 25.0, 26.0, 27.0, 27.0, 28.0, 28.0, 29.0, 30.0, 30.0, 31.0, 32.0, 32.0, 33.0, 34.0, 35.0, 35.0, 36.0, 36.0, 37.0, 38.0, 38.0, 39.0, 39.0, 40.0, 40.0, 41.0, 41.0, 42.0, 43.0, 43.0, 44.0, 45.0, 45.0, 45.0, 46.0, 47.0, 47.0, 48.0, 48.0, 49.0, 49.0, 50.0, 50.0, 51.0, 51.0, 52.0, 53.0, 53.0, 53.0, 54.0, 55.0, 55.0, 56.0, 57.0, 57.0, 58.0, 58.0, 59.0, 59.0, 60.0, 60.0, 61.0, 61.0, 62.0, 62.0, 63.0, 64.0, 64.0, 65.0, 65.0, 66.0, 66.0, 67.0, 67.0, 68.0, 68.0, 69.0, 70.0, 70.0, 71.0, 72.0, 72.0, 72.0, 73.0, 74.0, 74.0, 75.0, 75.0, 76.0, 76.0, 77.0, 77.0, 78.0, 79.0, 79.0, 80.0, 81.0, 81.0, 82.0, 83.0, 83.0, 83.0, 84.0, 84.0, 85.0, 85.0, 85.0, 86.0, 87.0, 87.0, 88.0, 88.0, 89.0, 90.0, 90.0, 91.0, 92.0, 92.0, 93.0, 94.0, 94.0, 95.0, 95.0, 96.0, 96.0, 97.0, 97.0, 98.0, 98.0, 99.0, 100.0, 100.0, 101.0, 102.0, 102.0, 102.0, 103.0, 104.0, 104.0, 105.0, 105.0, 106.0, 106.0, 106.0, 106.0, 107.0, 107.0, 108.0, 109.0, 109.0, 110.0, 111.0, 111.0, 111.0, 112.0, 113.0, 113.0, 113.0, 114.0, 115.0, 115.0, 115.0, 116.0, 117.0, 117.0, 118.0, 118.0, 119.0, 119.0, 120.0, 120.0, 121.0, 121.0, 122.0, 122.0, 123.0, 124.0, 125.0, 126.0, 126.0, 127.0, 127.0, 128.0, 128.0, 129.0, 129.0, 130.0, 130.0, 131.0, 131.0, 132.0, 132.0, 133.0, 134.0, 134.0, 134.0, 135.0, 136.0, 136.0, 136.0, 137.0, 137.0, 138.0, 138.0, 138.0, 138.0, 139.0, 140.0, 140.0, 141.0, 142.0, 142.0, 143.0, 143.0, 144.0, 144.0, 145.0, 145.0, 146.0, 146.0, 147.0, 148.0, 148.0, 149.0, 150.0, 150.0, 150.0, 151.0, 152.0, 152.0, 153.0, 154.0, 154.0, 155.0, 156.0, 157.0, 157.0, 158.0, 159.0, 159.0, 160.0, 160.0, 161.0, 161.0, 162.0, 162.0, 163.0, 163.0, 164.0, 164.0, 165.0, 165.0, 166.0, 166.0, 167.0, 167.0, 168.0, 169.0, 169.0, 169.0, 169.0, 169.0, 169.0, 169.0, 170.0, 170.0, 170.0, 171.0, 171.0, 171.0, 172.0, 173.0, 173.0, 173.0, 174.0, 175.0, 175.0, 176.0, 177.0, 178.0, 178.0, 179.0, 180.0, 180.0, 181.0, 182.0, 182.0, 183.0, 184.0, 184.0, 184.0, 185.0, 186.0, 186.0, 187.0, 187.0, 188.0, 188.0, 189.0, 189.0, 190.0, 190.0, 191.0, 191.0, 192.0, 192.0, 193.0, 193.0, 194.0, 194.0, 195.0, 195.0, 196.0, 196.0, 196.0, 197.0, 198.0, 198.0, 198.0, 199.0, 200.0, 200.0, 200.0, 201.0, 201.0, 202.0, 202.0, 203.0, 203.0, 204.0, 204.0, 205.0, 205.0, 206.0, 206.0, 207.0, 207.0, 208.0, 208.0, 209.0, 209.0, 210.0, 210.0, 211.0, 211.0, 212.0, 213.0, 213.0, 214.0, 215.0, 215.0, 216.0, 216.0, 217.0, 217.0, 217.0, 218.0, 219.0, 219.0, 220.0, 221.0, 221.0, 221.0, 222.0, 223.0, 223.0, 224.0, 225.0, 225.0, 226.0, 226.0, 227.0, 227.0, 228.0, 228.0, 229.0, 229.0, 230.0, 230.0, 231.0, 231.0, 232.0, 232.0, 233.0, 233.0, 234.0, 234.0, 235.0, 235.0, 236.0, 237.0, 237.0, 238.0, 239.0, 239.0, 239.0, 240.0, 241.0, 241.0, 242.0, 243.0, 243.0, 244.0, 245.0, 246.0, 246.0, 247.0, 248.0, 248.0, 249.0, 250.0, 250.0, 250.0, 251.0, 252.0, 252.0, 252.0, 252.0, 253.0, 254.0, 254.0, 254.0, 255.0, 256.0, 256.0, 256.0, 257.0, 258.0, 258.0, 258.0, 259.0, 259.0, 260.0, 260.0, 260.0, 261.0, 262.0, 262.0, 262.0, 262.0, 263.0, 264.0, 264.0, 265.0, 266.0, 266.0, 266.0, 267.0, 268.0, 268.0, 268.0, 269.0, 270.0, 270.0, 270.0, 271.0, 272.0, 272.0, 272.0, 273.0, 274.0, 274.0, 274.0, 275.0, 276.0, 276.0, 277.0, 278.0, 278.0, 279.0, 280.0, 280.0, 280.0, 281.0, 282.0, 282.0, 282.0, 282.0, 283.0, 284.0, 284.0, 284.0, 285.0, 286.0, 286.0, 287.0, 288.0, 289.0, 290.0, 291.0, 291.0, 292.0, 293.0, 293.0, 294.0, 295.0, 295.0, 296.0, 297.0, 297.0, 297.0, 298.0, 299.0, 299.0, 299.0, 300.0, 301.0, 301.0, 301.0, 302.0, 302.0, 303.0, 303.0, 304.0, 304.0, 305.0, 306.0, 306.0, 307.0, 308.0, 308.0, 309.0, 310.0, 310.0, 311.0, 312.0, 312.0, 313.0, 313.0, 314.0, 315.0, 315.0, 315.0, 316.0, 317.0, 317.0, 317.0, 318.0, 319.0, 319.0, 319.0, 320.0, 320.0, 321.0, 321.0, 321.0, 322.0, 323.0, 323.0, 323.0, 324.0, 325.0, 325.0, 325.0, 326.0, 326.0, 327.0, 327.0, 328.0, 328.0, 328.0, 329.0, 330.0, 330.0, 330.0, 331.0, 332.0, 332.0, 332.0, 333.0, 334.0, 334.0, 335.0, 335.0, 336.0, 336.0, 337.0, 337.0, 338.0, 339.0, 339.0, 339.0, 340.0, 341.0, 341.0, 341.0, 342.0, 342.0, 342.0, 343.0, 343.0, 344.0, 344.0, 344.0, 345.0, 346.0, 346.0, 346.0, 347.0, 348.0, 348.0, 348.0, 349.0, 350.0, 350.0, 351.0, 351.0, 352.0, 353.0, 353.0, 353.0, 354.0, 355.0, 355.0, 355.0, 356.0, 356.0, 357.0, 357.0, 358.0, 358.0, 359.0, 359.0, 360.0, 360.0, 360.0, 361.0, 362.0, 362.0, 362.0, 363.0, 363.0, 363.0, 363.0, 363.0, 364.0, 364.0, 365.0, 365.0, 366.0, 366.0, 367.0, 367.0, 367.0, 368.0, 369.0, 369.0, 369.0, 370.0, 370.0, 371.0, 372.0, 372.0, 373.0, 374.0, 374.0, 375.0, 375.0, 375.0, 376.0, 377.0, 377.0, 377.0, 378.0, 379.0, 379.0, 379.0, 380.0, 380.0, 381.0, 381.0, 382.0, 382.0, 382.0, 383.0, 383.0, 384.0, 384.0, 385.0, 385.0, 386.0, 387.0, 387.0, 387.0, 388.0, 389.0, 389.0, 390.0, 390.0, 391.0, 392.0, 392.0, 392.0, 393.0, 393.0, 394.0, 394.0, 395.0, 395.0, 396.0, 397.0, 397.0, 398.0, 398.0, 399.0, 399.0, 400.0, 400.0, 401.0, 401.0, 402.0, 403.0, 403.0, 404.0, 404.0, 405.0, 405.0, 406.0, 406.0, 406.0, 407.0, 408.0, 408.0, 408.0, 409.0, 410.0, 411.0, 411.0, 412.0, 413.0, 413.0, 413.0, 414.0, 415.0, 415.0, 416.0, 416.0, 417.0, 417.0, 418.0, 418.0, 419.0, 419.0, 420.0, 420.0, 421.0, 421.0, 422.0, 422.0, 423.0, 423.0, 423.0, 424.0, 424.0, 424.0, 425.0, 425.0, 426.0, 426.0, 426.0, 427.0, 428.0, 429.0, 429.0, 430.0, 431.0, 431.0, 431.0, 432.0, 433.0, 433.0, 434.0, 434.0, 435.0, 435.0, 436.0, 436.0, 437.0, 437.0, 437.0, 438.0, 439.0, 439.0, 439.0, 440.0, 441.0, 442.0, 442.0, 442.0, 443.0, 444.0, 444.0, 444.0, 445.0, 445.0, 446.0, 446.0, 446.0, 447.0, 447.0, 448.0, 448.0, 449.0, 449.0, 450.0, 450.0, 450.0, 451.0, 452.0, 452.0, 452.0, 453.0, 454.0, 455.0, 455.0, 456.0, 457.0, 457.0, 458.0, 459.0, 460.0, 460.0, 461.0, 461.0, 462.0, 462.0, 463.0, 463.0, 464.0, 465.0, 465.0, 465.0, 466.0, 467.0, 467.0, 468.0, 468.0, 469.0, 469.0, 469.0, 470.0, 470.0, 470.0, 470.0, 471.0, 471.0, 471.0, 472.0, 473.0, 473.0, 474.0, 475.0, 475.0, 476.0, 476.0, 477.0, 477.0, 478.0, 478.0, 479.0, 479.0, 479.0, 480.0, 481.0, 481.0, 481.0, 482.0, 482.0, 483.0, 484.0, 484.0, 485.0, 486.0, 486.0, 486.0, 487.0, 487.0, 488.0, 488.0, 489.0, 489.0, 490.0, 490.0, 490.0, 491.0, 492.0 ] }, { "hovertext": [ "Energy 0.38 MeV", "Energy 0.16 MeV", "Energy 1.14 MeV", "Energy 0.98 MeV", "Energy 1.28 MeV", "Energy 1.54 MeV", "Energy 0.06 MeV", "Energy 0.91 MeV", "Energy 0.12 MeV", "Energy 0.58 MeV", "Energy 0.89 MeV", "Energy 0.22 MeV", "Energy 0.86 MeV", "Energy 1.07 MeV", "Energy 2.03 MeV", "Energy 0.56 MeV", "Energy 0.57 MeV", "Energy 0.60 MeV", "Energy 0.24 MeV", "Energy 0.34 MeV", "Energy 0.34 MeV", "Energy 0.47 MeV", "Energy 0.64 MeV", "Energy 0.66 MeV", "Energy 0.20 MeV", "Energy 0.36 MeV", "Energy 0.57 MeV", "Energy 0.98 MeV", "Energy 0.71 MeV", "Energy 0.69 MeV", "Energy 0.62 MeV", "Energy 0.84 MeV", "Energy 0.82 MeV", "Energy 0.16 MeV", "Energy 0.57 MeV", "Energy 0.18 MeV", "Energy 0.31 MeV", "Energy 0.16 MeV", "Energy 0.38 MeV", "Energy 0.65 MeV", "Energy 0.53 MeV", "Energy 0.60 MeV", "Energy 0.55 MeV", "Energy 0.58 MeV", "Energy 0.37 MeV", "Energy 0.27 MeV", "Energy 0.33 MeV", "Energy 0.49 MeV", "Energy 1.15 MeV", "Energy 0.26 MeV", "Energy 0.40 MeV", "Energy 0.06 MeV", "Energy 0.73 MeV", "Energy 0.96 MeV", "Energy 0.11 MeV", "Energy 1.14 MeV", "Energy 0.40 MeV", "Energy 0.08 MeV", "Energy 0.20 MeV", "Energy 0.06 MeV", "Energy 0.09 MeV", "Energy 0.31 MeV", "Energy 0.39 MeV", "Energy 0.61 MeV", "Energy 0.18 MeV", "Energy 0.66 MeV", "Energy 0.12 MeV", "Energy 0.77 MeV", "Energy 0.72 MeV", "Energy 0.15 MeV", "Energy 0.52 MeV", "Energy 0.68 MeV", "Energy 0.58 MeV", "Energy 0.59 MeV", "Energy 0.75 MeV", "Energy 0.07 MeV", "Energy 0.84 MeV", "Energy 0.60 MeV", "Energy 0.66 MeV", "Energy 0.07 MeV", "Energy 0.67 MeV", "Energy 0.27 MeV", "Energy 0.29 MeV", "Energy 0.49 MeV", "Energy 0.49 MeV", "Energy 0.81 MeV", "Energy 0.25 MeV", "Energy 0.62 MeV", "Energy 0.78 MeV", "Energy 0.19 MeV", "Energy 0.05 MeV", "Energy 0.20 MeV", "Energy 0.07 MeV", "Energy 0.69 MeV", "Energy 0.68 MeV", "Energy 0.65 MeV", "Energy 0.23 MeV", "Energy 0.14 MeV", "Energy 0.45 MeV", "Energy 0.30 MeV", "Energy 0.23 MeV", "Energy 0.32 MeV", "Energy 0.61 MeV", "Energy 0.20 MeV", "Energy 0.54 MeV", "Energy 0.55 MeV", "Energy 0.41 MeV", "Energy 0.55 MeV", "Energy 0.24 MeV", "Energy 0.81 MeV", "Energy 0.68 MeV", "Energy 0.05 MeV", "Energy 0.11 MeV", "Energy 0.09 MeV", "Energy 0.27 MeV", "Energy 0.54 MeV", "Energy 0.42 MeV", "Energy 0.08 MeV", "Energy 0.46 MeV", "Energy 0.68 MeV", "Energy 0.36 MeV", "Energy 0.28 MeV", "Energy 0.33 MeV", "Energy 0.63 MeV", "Energy 0.42 MeV", "Energy 0.29 MeV", "Energy 0.10 MeV", "Energy 0.53 MeV", "Energy 0.22 MeV", "Energy 0.25 MeV", "Energy 0.33 MeV", "Energy 0.38 MeV", "Energy 0.77 MeV", "Energy 0.12 MeV", "Energy 0.13 MeV", "Energy 1.01 MeV", "Energy 0.06 MeV", "Energy 0.38 MeV", "Energy 0.66 MeV", "Energy 0.12 MeV", "Energy 1.09 MeV", "Energy 0.10 MeV", "Energy 0.08 MeV", "Energy 0.11 MeV", "Energy 0.53 MeV", "Energy 0.54 MeV", "Energy 0.22 MeV", "Energy 0.17 MeV", "Energy 0.24 MeV", "Energy 0.40 MeV", "Energy 0.39 MeV", "Energy 0.08 MeV", "Energy 0.74 MeV", "Energy 0.73 MeV", "Energy 0.12 MeV", "Energy 0.06 MeV", "Energy 0.08 MeV", "Energy 0.62 MeV", "Energy 0.09 MeV", "Energy 0.11 MeV", "Energy 0.22 MeV", "Energy 0.46 MeV", "Energy 0.32 MeV", "Energy 0.44 MeV", "Energy 0.06 MeV", "Energy 0.13 MeV", "Energy 0.50 MeV", "Energy 0.14 MeV", "Energy 0.68 MeV", "Energy 0.16 MeV", "Energy 0.48 MeV", "Energy 0.49 MeV", "Energy 0.22 MeV", "Energy 0.64 MeV", "Energy 0.09 MeV", "Energy 0.15 MeV", "Energy 0.97 MeV", "Energy 1.40 MeV", "Energy 0.88 MeV", "Energy 0.55 MeV", "Energy 0.30 MeV", "Energy 0.08 MeV", "Energy 0.35 MeV", "Energy 0.07 MeV", "Energy 0.06 MeV", "Energy 0.55 MeV", "Energy 1.39 MeV", "Energy 0.40 MeV", "Energy 0.67 MeV", "Energy 0.09 MeV", "Energy 0.10 MeV", "Energy 0.08 MeV", "Energy 0.13 MeV", "Energy 0.05 MeV", "Energy 0.34 MeV", "Energy 0.19 MeV", "Energy 0.05 MeV", "Energy 0.78 MeV", "Energy 0.06 MeV", "Energy 0.56 MeV", "Energy 0.11 MeV", "Energy 0.17 MeV", "Energy 0.11 MeV", "Energy 0.15 MeV", "Energy 0.06 MeV", "Energy 0.35 MeV", "Energy 0.11 MeV", "Energy 0.15 MeV", "Energy 0.05 MeV", "Energy 0.10 MeV", "Energy 0.05 MeV", "Energy 0.08 MeV", "Energy 0.14 MeV", "Energy 0.05 MeV", "Energy 0.09 MeV", "Energy 0.12 MeV", "Energy 0.20 MeV", "Energy 0.13 MeV", "Energy 0.58 MeV", "Energy 0.12 MeV", "Energy 0.11 MeV", "Energy 0.29 MeV", "Energy 0.35 MeV", "Energy 0.13 MeV", "Energy 0.18 MeV", "Energy 0.05 MeV", "Energy 0.22 MeV", "Energy 0.14 MeV", "Energy 0.06 MeV", "Energy 0.07 MeV", "Energy 0.05 MeV", "Energy 0.12 MeV", "Energy 0.40 MeV", "Energy 0.21 MeV", "Energy 0.13 MeV", "Energy 0.09 MeV", "Energy 0.15 MeV", "Energy 0.08 MeV", "Energy 0.07 MeV", "Energy 0.16 MeV", "Energy 0.08 MeV", "Energy 0.24 MeV", "Energy 0.08 MeV", "Energy 0.05 MeV", "Energy 0.45 MeV", "Energy 0.11 MeV", "Energy 0.33 MeV", "Energy 0.25 MeV", "Energy 0.07 MeV", "Energy 0.06 MeV", "Energy 0.20 MeV", "Energy 0.08 MeV", "Energy 0.38 MeV", "Energy 0.35 MeV", "Energy 0.81 MeV", "Energy 0.24 MeV", "Energy 1.37 MeV", "Energy 0.52 MeV", "Energy 0.57 MeV", "Energy 0.69 MeV", "Energy 0.48 MeV", "Energy 0.17 MeV", "Energy 0.51 MeV", "Energy 0.50 MeV", "Energy 0.61 MeV", "Energy 0.50 MeV", "Energy 0.20 MeV", "Energy 0.55 MeV", "Energy 0.71 MeV", "Energy 0.67 MeV", "Energy 0.55 MeV", "Energy 0.44 MeV", "Energy 0.21 MeV", "Energy 0.94 MeV", "Energy 0.22 MeV", "Energy 0.43 MeV", "Energy 0.81 MeV", "Energy 0.90 MeV", "Energy 0.20 MeV", "Energy 0.09 MeV", "Energy 0.29 MeV", "Energy 0.28 MeV", "Energy 0.15 MeV", "Energy 0.55 MeV", "Energy 0.19 MeV", "Energy 0.42 MeV", "Energy 0.27 MeV", "Energy 0.64 MeV", "Energy 0.23 MeV", "Energy 0.45 MeV", "Energy 0.41 MeV", "Energy 0.61 MeV", "Energy 0.31 MeV", "Energy 0.60 MeV", "Energy 0.72 MeV", "Energy 0.15 MeV", "Energy 0.65 MeV", "Energy 0.30 MeV", "Energy 0.41 MeV", "Energy 0.29 MeV", "Energy 0.65 MeV", "Energy 0.74 MeV", "Energy 0.36 MeV", "Energy 0.24 MeV", "Energy 0.94 MeV", "Energy 0.29 MeV", "Energy 0.18 MeV", "Energy 0.54 MeV", "Energy 0.06 MeV", "Energy 0.40 MeV", "Energy 1.31 MeV", "Energy 0.35 MeV", "Energy 0.08 MeV", "Energy 0.72 MeV", "Energy 0.66 MeV", "Energy 0.17 MeV", "Energy 0.99 MeV", "Energy 0.77 MeV", "Energy 0.49 MeV" ], "marker": { "color": [ 0.38479477167129517, 0.15585215389728546, 1.1430130004882812, 0.9849904775619507, 1.2797672748565674, 1.5413987636566162, 0.06335128843784332, 0.9072619676589966, 0.11848926544189453, 0.5830230116844177, 0.8900685906410217, 0.2220679223537445, 0.8570504188537598, 1.0689436197280884, 2.028665542602539, 0.5555547475814819, 0.5719291567802429, 0.6026535630226135, 0.23516027629375458, 0.33726686239242554, 0.34363386034965515, 0.4660390615463257, 0.6377804279327393, 0.6613205671310425, 0.1977531611919403, 0.36178913712501526, 0.5739272832870483, 0.9790832996368408, 0.7117651700973511, 0.6885611414909363, 0.6217877268791199, 0.8443440198898315, 0.8172581195831299, 0.16089776158332825, 0.5714834928512573, 0.18381020426750183, 0.310865581035614, 0.16047286987304688, 0.3778276741504669, 0.6518474221229553, 0.5250281095504761, 0.604758083820343, 0.5518297553062439, 0.5790524482727051, 0.3650745749473572, 0.2730461359024048, 0.3266027569770813, 0.4853314757347107, 1.1453697681427002, 0.2599138021469116, 0.3960232734680176, 0.05811287462711334, 0.7346665859222412, 0.9611761569976807, 0.10562118142843246, 1.135512113571167, 0.40038400888442993, 0.0818752720952034, 0.20099279284477234, 0.061598505824804306, 0.0918629914522171, 0.3108391761779785, 0.3894016444683075, 0.6096327304840088, 0.18171603977680206, 0.6581130623817444, 0.11797075718641281, 0.7691804766654968, 0.7229925394058228, 0.14952155947685242, 0.5187495946884155, 0.681863009929657, 0.5794656276702881, 0.5899462699890137, 0.7497313618659973, 0.07096985727548599, 0.8401979804039001, 0.6002148389816284, 0.6649360656738281, 0.0662393569946289, 0.6680984497070312, 0.26852479577064514, 0.29067811369895935, 0.491674542427063, 0.4921402633190155, 0.8067136406898499, 0.2526227831840515, 0.6232492923736572, 0.7793540358543396, 0.19055162370204926, 0.05094509944319725, 0.19668789207935333, 0.07458678632974625, 0.6872307062149048, 0.6771207451820374, 0.65104079246521, 0.23437531292438507, 0.13563436269760132, 0.44894492626190186, 0.296211302280426, 0.22528734803199768, 0.32151398062705994, 0.6136010885238647, 0.19539688527584076, 0.5350141525268555, 0.5490626692771912, 0.4064798355102539, 0.5470736026763916, 0.24073751270771027, 0.8091102838516235, 0.6826974153518677, 0.0548110157251358, 0.10945397615432739, 0.09183304011821747, 0.27465811371803284, 0.5414702296257019, 0.4181911051273346, 0.07549860328435898, 0.4584027826786041, 0.6812775135040283, 0.36475178599357605, 0.27736684679985046, 0.32788315415382385, 0.6337597370147705, 0.4205779433250427, 0.28650057315826416, 0.10008512437343597, 0.5308696031570435, 0.2165060043334961, 0.24560986459255219, 0.32646965980529785, 0.37501639127731323, 0.7702939510345459, 0.12130670249462128, 0.12804463505744934, 1.008310079574585, 0.05799819529056549, 0.3810563385486603, 0.6637389063835144, 0.11902959644794464, 1.0940303802490234, 0.1036110520362854, 0.08483466506004333, 0.10554181039333344, 0.5323805809020996, 0.5384904742240906, 0.2202763855457306, 0.1660739779472351, 0.23985549807548523, 0.39731913805007935, 0.3944958448410034, 0.07604122906923294, 0.7410016059875488, 0.7284653782844543, 0.12321905791759491, 0.06175503134727478, 0.07922367006540298, 0.6162960529327393, 0.09477925300598145, 0.11172813922166824, 0.2213032990694046, 0.4631849527359009, 0.32444387674331665, 0.4374595880508423, 0.05899568274617195, 0.12547636032104492, 0.502576470375061, 0.13569998741149902, 0.6764792799949646, 0.15821830928325653, 0.4794924855232239, 0.4922032058238983, 0.2168748676776886, 0.642749011516571, 0.08999842405319214, 0.14587539434432983, 0.967596709728241, 1.3991625308990479, 0.8849061727523804, 0.5492161512374878, 0.2967485785484314, 0.08285510540008545, 0.3450663089752197, 0.06797253340482712, 0.05735890939831734, 0.548382580280304, 1.3935250043869019, 0.4008655250072479, 0.6728204488754272, 0.08947282284498215, 0.10433538258075714, 0.07750450074672699, 0.12838968634605408, 0.051426686346530914, 0.33718112111091614, 0.19252783060073853, 0.052930161356925964, 0.7847325205802917, 0.06148483604192734, 0.5602414608001709, 0.11033351719379425, 0.1676473319530487, 0.106022909283638, 0.14693321287631989, 0.057188279926776886, 0.3466746211051941, 0.11201635003089905, 0.15196458995342255, 0.054753538221120834, 0.10444504767656326, 0.05414636805653572, 0.084822878241539, 0.13703501224517822, 0.0501236766576767, 0.08991831541061401, 0.11758962273597717, 0.19528745114803314, 0.13387936353683472, 0.5809662938117981, 0.12443524599075317, 0.11012056469917297, 0.29319852590560913, 0.3452850580215454, 0.13096174597740173, 0.17808784544467926, 0.05431114137172699, 0.22009333968162537, 0.14163851737976074, 0.059665679931640625, 0.06938620656728745, 0.05280361697077751, 0.11610803008079529, 0.4022228419780731, 0.20657804608345032, 0.12609896063804626, 0.08931726962327957, 0.14681057631969452, 0.07709819823503494, 0.0733887255191803, 0.16116315126419067, 0.08232833445072174, 0.2399115264415741, 0.08370448648929596, 0.05095778405666351, 0.4461623430252075, 0.10585981607437134, 0.32653263211250305, 0.24658100306987762, 0.0653918907046318, 0.06311464309692383, 0.19554516673088074, 0.07558216154575348, 0.3846166431903839, 0.35244497656822205, 0.8059381246566772, 0.23892000317573547, 1.371846318244934, 0.5155004262924194, 0.5747222900390625, 0.6887920498847961, 0.47731813788414, 0.1658516228199005, 0.508938729763031, 0.5038343667984009, 0.614702045917511, 0.4997916519641876, 0.2028154730796814, 0.5466800928115845, 0.7138753533363342, 0.6737157106399536, 0.5458783507347107, 0.4437333643436432, 0.20704960823059082, 0.9404319524765015, 0.22204992175102234, 0.4289173483848572, 0.8066369295120239, 0.8953965902328491, 0.19810663163661957, 0.08560765534639359, 0.2852015197277069, 0.28291893005371094, 0.1535547971725464, 0.545889139175415, 0.19451822340488434, 0.41870152950286865, 0.26973289251327515, 0.6440820693969727, 0.22885315120220184, 0.4516119062900543, 0.40883803367614746, 0.6094699501991272, 0.305193692445755, 0.6049930453300476, 0.7173046469688416, 0.15381979942321777, 0.6539978384971619, 0.29796335101127625, 0.4100460708141327, 0.294420063495636, 0.6452264189720154, 0.7395012378692627, 0.3575972020626068, 0.2358512133359909, 0.9362708330154419, 0.29139694571495056, 0.18406738340854645, 0.5409644246101379, 0.06464450061321259, 0.3980567753314972, 1.3107860088348389, 0.35271427035331726, 0.08187940716743469, 0.7178701162338257, 0.6574254631996155, 0.17182375490665436, 0.9859228730201721, 0.7684438824653625, 0.4907810091972351 ], "colorscale": [ [ 0.0, "#000004" ], [ 0.1111111111111111, "#1b0c41" ], [ 0.2222222222222222, "#4a0c6b" ], [ 0.3333333333333333, "#781c6d" ], [ 0.4444444444444444, "#a52c60" ], [ 0.5555555555555556, "#cf4446" ], [ 0.6666666666666666, "#ed6925" ], [ 0.7777777777777778, "#fb9b06" ], [ 0.8888888888888888, "#f7d13d" ], [ 1.0, "#fcffa4" ] ], "size": 1.5 }, "mode": "markers", "name": "Trajectory 7", "type": "scatter3d", "x": [ 151.0, 244.0, 231.0, 231.0, 231.0, 231.0, 243.0, 231.0, 232.0, 231.0, 232.0, 231.0, 232.0, 232.0, 232.0, 232.0, 232.0, 232.0, 232.0, 233.0, 232.0, 233.0, 233.0, 233.0, 233.0, 233.0, 233.0, 233.0, 233.0, 233.0, 233.0, 233.0, 233.0, 182.0, 182.0, 233.0, 234.0, 233.0, 233.0, 234.0, 234.0, 234.0, 234.0, 234.0, 234.0, 235.0, 234.0, 235.0, 235.0, 236.0, 236.0, 250.0, 235.0, 235.0, 253.0, 235.0, 235.0, 236.0, 236.0, 279.0, 234.0, 235.0, 236.0, 235.0, 235.0, 236.0, 236.0, 234.0, 236.0, 234.0, 235.0, 236.0, 237.0, 242.0, 243.0, 244.0, 244.0, 245.0, 246.0, 247.0, 247.0, 247.0, 248.0, 248.0, 236.0, 235.0, 240.0, 241.0, 237.0, 241.0, 242.0, 248.0, 248.0, 249.0, 236.0, 239.0, 240.0, 235.0, 236.0, 240.0, 237.0, 238.0, 249.0, 250.0, 250.0, 236.0, 238.0, 238.0, 239.0, 236.0, 238.0, 239.0, 238.0, 250.0, 250.0, 251.0, 251.0, 231.0, 236.0, 237.0, 237.0, 238.0, 236.0, 239.0, 251.0, 252.0, 245.0, 236.0, 237.0, 239.0, 239.0, 240.0, 252.0, 252.0, 253.0, 240.0, 241.0, 253.0, 252.0, 253.0, 252.0, 252.0, 234.0, 241.0, 241.0, 252.0, 242.0, 241.0, 242.0, 242.0, 243.0, 254.0, 243.0, 244.0, 244.0, 252.0, 244.0, 245.0, 242.0, 252.0, 245.0, 246.0, 246.0, 247.0, 254.0, 236.0, 247.0, 248.0, 248.0, 249.0, 249.0, 249.0, 249.0, 250.0, 283.0, 250.0, 251.0, 251.0, 252.0, 252.0, 236.0, 249.0, 249.0, 247.0, 251.0, 238.0, 237.0, 238.0, 238.0, 237.0, 238.0, 172.0, 268.0, 231.0, 238.0, 239.0, 236.0, 239.0, 261.0, 239.0, 236.0, 160.0, 142.0, 157.0, 156.0, 226.0, 205.0, 154.0, 219.0, 164.0, 165.0, 163.0, 254.0, 255.0, 258.0, 253.0, 239.0, 258.0, 206.0, 218.0, 209.0, 205.0, 206.0, 256.0, 255.0, 252.0, 254.0, 165.0, 257.0, 230.0, 236.0, 167.0, 253.0, 176.0, 301.0, 301.0, 301.0, 302.0, 143.0, 179.0, 318.0, 318.0, 225.0, 225.0, 223.0, 270.0, 278.0, 279.0, 285.0, 207.0, 284.0, 284.0, 255.0, 255.0, 255.0, 256.0, 255.0, 255.0, 256.0, 255.0, 256.0, 255.0, 256.0, 255.0, 256.0, 255.0, 256.0, 255.0, 256.0, 255.0, 255.0, 256.0, 256.0, 255.0, 256.0, 255.0, 256.0, 255.0, 256.0, 255.0, 255.0, 256.0, 255.0, 255.0, 254.0, 255.0, 253.0, 254.0, 253.0, 253.0, 253.0, 253.0, 254.0, 254.0, 254.0, 254.0, 254.0, 255.0, 254.0, 255.0, 255.0, 254.0, 255.0, 254.0, 254.0, 254.0, 255.0, 255.0, 254.0, 255.0, 255.0, 255.0, 251.0, 252.0, 252.0, 253.0, 253.0, 254.0, 254.0 ], "y": [ 637.0, 572.0, 551.0, 551.0, 551.0, 551.0, 572.0, 551.0, 551.0, 551.0, 551.0, 551.0, 551.0, 551.0, 551.0, 551.0, 552.0, 551.0, 552.0, 552.0, 551.0, 551.0, 552.0, 551.0, 552.0, 553.0, 551.0, 553.0, 551.0, 553.0, 551.0, 553.0, 554.0, 634.0, 635.0, 551.0, 551.0, 553.0, 554.0, 551.0, 554.0, 551.0, 554.0, 551.0, 554.0, 554.0, 551.0, 551.0, 554.0, 554.0, 555.0, 613.0, 551.0, 554.0, 579.0, 551.0, 554.0, 554.0, 555.0, 539.0, 551.0, 551.0, 551.0, 552.0, 553.0, 555.0, 550.0, 551.0, 551.0, 553.0, 553.0, 555.0, 555.0, 555.0, 555.0, 555.0, 556.0, 556.0, 557.0, 557.0, 558.0, 559.0, 559.0, 560.0, 550.0, 554.0, 554.0, 554.0, 555.0, 555.0, 555.0, 560.0, 561.0, 561.0, 550.0, 553.0, 553.0, 554.0, 554.0, 554.0, 555.0, 555.0, 562.0, 562.0, 563.0, 550.0, 551.0, 552.0, 552.0, 554.0, 555.0, 555.0, 556.0, 563.0, 564.0, 564.0, 565.0, 547.0, 550.0, 550.0, 551.0, 551.0, 554.0, 555.0, 565.0, 565.0, 579.0, 550.0, 550.0, 551.0, 555.0, 555.0, 566.0, 567.0, 567.0, 555.0, 555.0, 567.0, 568.0, 568.0, 569.0, 572.0, 549.0, 555.0, 556.0, 569.0, 555.0, 556.0, 556.0, 555.0, 555.0, 563.0, 555.0, 555.0, 556.0, 542.0, 555.0, 555.0, 583.0, 542.0, 555.0, 555.0, 555.0, 555.0, 541.0, 553.0, 555.0, 555.0, 555.0, 555.0, 556.0, 556.0, 556.0, 556.0, 544.0, 557.0, 557.0, 557.0, 557.0, 558.0, 548.0, 564.0, 565.0, 558.0, 548.0, 540.0, 540.0, 536.0, 537.0, 540.0, 537.0, 539.0, 572.0, 560.0, 546.0, 546.0, 567.0, 546.0, 576.0, 546.0, 567.0, 645.0, 659.0, 672.0, 535.0, 539.0, 589.0, 540.0, 536.0, 664.0, 664.0, 543.0, 546.0, 553.0, 589.0, 544.0, 576.0, 512.0, 531.0, 549.0, 599.0, 532.0, 532.0, 562.0, 557.0, 561.0, 568.0, 535.0, 570.0, 615.0, 566.0, 530.0, 574.0, 525.0, 577.0, 578.0, 579.0, 579.0, 507.0, 617.0, 555.0, 556.0, 595.0, 596.0, 601.0, 568.0, 576.0, 576.0, 586.0, 570.0, 575.0, 559.0, 555.0, 556.0, 556.0, 556.0, 556.0, 556.0, 556.0, 556.0, 556.0, 556.0, 556.0, 557.0, 556.0, 557.0, 557.0, 557.0, 557.0, 556.0, 557.0, 557.0, 558.0, 556.0, 556.0, 557.0, 558.0, 556.0, 556.0, 557.0, 558.0, 558.0, 558.0, 559.0, 559.0, 559.0, 560.0, 560.0, 560.0, 561.0, 561.0, 562.0, 562.0, 563.0, 564.0, 564.0, 565.0, 566.0, 568.0, 566.0, 567.0, 568.0, 568.0, 554.0, 554.0, 554.0, 554.0, 554.0, 552.0, 552.0, 553.0, 554.0, 547.0, 547.0, 548.0, 548.0, 549.0, 550.0, 551.0 ], "z": [ 469.0, 489.0, 495.0, 496.0, 497.0, 498.0, 498.0, 499.0, 499.0, 500.0, 500.0, 501.0, 501.0, 502.0, 503.0, 504.0, 504.0, 505.0, 505.0, 505.0, 506.0, 506.0, 506.0, 507.0, 507.0, 507.0, 508.0, 508.0, 509.0, 509.0, 510.0, 510.0, 510.0, 510.0, 510.0, 511.0, 511.0, 511.0, 511.0, 512.0, 512.0, 513.0, 513.0, 514.0, 514.0, 514.0, 515.0, 515.0, 515.0, 515.0, 515.0, 515.0, 516.0, 516.0, 516.0, 517.0, 517.0, 517.0, 517.0, 518.0, 518.0, 518.0, 518.0, 518.0, 518.0, 518.0, 519.0, 519.0, 519.0, 519.0, 519.0, 519.0, 519.0, 519.0, 519.0, 519.0, 519.0, 519.0, 519.0, 519.0, 519.0, 519.0, 519.0, 519.0, 520.0, 520.0, 520.0, 520.0, 520.0, 520.0, 520.0, 520.0, 520.0, 520.0, 521.0, 521.0, 521.0, 521.0, 521.0, 521.0, 521.0, 521.0, 521.0, 521.0, 521.0, 522.0, 522.0, 522.0, 522.0, 522.0, 522.0, 522.0, 522.0, 522.0, 522.0, 522.0, 522.0, 523.0, 523.0, 523.0, 523.0, 523.0, 523.0, 523.0, 523.0, 523.0, 523.0, 524.0, 524.0, 524.0, 524.0, 524.0, 524.0, 524.0, 524.0, 525.0, 525.0, 525.0, 525.0, 525.0, 525.0, 525.0, 526.0, 526.0, 526.0, 526.0, 527.0, 527.0, 527.0, 528.0, 528.0, 528.0, 529.0, 530.0, 530.0, 531.0, 531.0, 531.0, 531.0, 532.0, 532.0, 532.0, 533.0, 533.0, 534.0, 534.0, 534.0, 534.0, 535.0, 536.0, 536.0, 537.0, 538.0, 538.0, 539.0, 539.0, 539.0, 540.0, 540.0, 540.0, 542.0, 547.0, 547.0, 550.0, 564.0, 574.0, 575.0, 576.0, 576.0, 576.0, 577.0, 586.0, 587.0, 589.0, 592.0, 592.0, 592.0, 593.0, 593.0, 594.0, 596.0, 604.0, 612.0, 613.0, 617.0, 621.0, 624.0, 627.0, 630.0, 630.0, 630.0, 631.0, 632.0, 633.0, 639.0, 641.0, 645.0, 648.0, 651.0, 652.0, 653.0, 658.0, 658.0, 658.0, 660.0, 660.0, 660.0, 661.0, 663.0, 663.0, 670.0, 672.0, 673.0, 674.0, 681.0, 681.0, 681.0, 681.0, 684.0, 688.0, 694.0, 694.0, 700.0, 700.0, 708.0, 711.0, 715.0, 715.0, 716.0, 720.0, 757.0, 767.0, 643.0, 643.0, 644.0, 644.0, 645.0, 646.0, 646.0, 647.0, 647.0, 648.0, 648.0, 648.0, 649.0, 649.0, 649.0, 650.0, 650.0, 651.0, 651.0, 651.0, 651.0, 652.0, 652.0, 652.0, 652.0, 653.0, 653.0, 653.0, 653.0, 653.0, 654.0, 654.0, 655.0, 655.0, 656.0, 656.0, 657.0, 657.0, 658.0, 658.0, 659.0, 659.0, 659.0, 660.0, 660.0, 660.0, 660.0, 661.0, 661.0, 661.0, 661.0, 626.0, 627.0, 628.0, 628.0, 629.0, 630.0, 630.0, 630.0, 630.0, 631.0, 631.0, 631.0, 631.0, 631.0, 631.0, 631.0 ] }, { "hovertext": [ "Energy 0.31 MeV", "Energy 0.06 MeV", "Energy 0.07 MeV", "Energy 0.05 MeV", "Energy 0.06 MeV", "Energy 0.08 MeV", "Energy 0.09 MeV", "Energy 0.07 MeV", "Energy 0.31 MeV", "Energy 1.30 MeV", "Energy 0.54 MeV", "Energy 0.30 MeV", "Energy 0.15 MeV", "Energy 0.50 MeV", "Energy 0.70 MeV", "Energy 0.65 MeV", "Energy 0.94 MeV", "Energy 0.13 MeV", "Energy 0.63 MeV", "Energy 0.17 MeV", "Energy 0.49 MeV", "Energy 0.22 MeV", "Energy 0.09 MeV", "Energy 0.06 MeV", "Energy 0.51 MeV", "Energy 0.42 MeV", "Energy 0.15 MeV", "Energy 0.09 MeV", "Energy 0.64 MeV", "Energy 0.20 MeV", "Energy 0.16 MeV", "Energy 0.12 MeV", "Energy 0.66 MeV", "Energy 0.08 MeV", "Energy 0.14 MeV", "Energy 0.72 MeV", "Energy 0.27 MeV", "Energy 0.59 MeV", "Energy 0.34 MeV", "Energy 0.31 MeV", "Energy 0.69 MeV", "Energy 0.83 MeV", "Energy 0.09 MeV", "Energy 0.11 MeV", "Energy 0.52 MeV", "Energy 0.66 MeV", "Energy 0.06 MeV", "Energy 0.25 MeV", "Energy 0.99 MeV", "Energy 0.07 MeV", "Energy 0.08 MeV", "Energy 0.54 MeV", "Energy 0.54 MeV", "Energy 0.34 MeV", "Energy 0.06 MeV", "Energy 0.56 MeV", "Energy 0.14 MeV", "Energy 0.13 MeV", "Energy 0.64 MeV", "Energy 0.61 MeV", "Energy 0.36 MeV", "Energy 1.17 MeV", "Energy 0.16 MeV", "Energy 0.63 MeV", "Energy 1.08 MeV", "Energy 0.32 MeV", "Energy 0.18 MeV", "Energy 0.66 MeV", "Energy 0.22 MeV", "Energy 0.16 MeV", "Energy 1.48 MeV", "Energy 0.89 MeV", "Energy 0.31 MeV", "Energy 0.67 MeV", "Energy 0.05 MeV", "Energy 0.10 MeV", "Energy 0.65 MeV", "Energy 0.66 MeV", "Energy 0.37 MeV", "Energy 0.20 MeV", "Energy 1.06 MeV", "Energy 0.49 MeV", "Energy 0.31 MeV", "Energy 0.90 MeV", "Energy 0.26 MeV", "Energy 0.65 MeV", "Energy 0.47 MeV", "Energy 0.73 MeV", "Energy 0.20 MeV", "Energy 0.20 MeV", "Energy 1.21 MeV", "Energy 0.90 MeV", "Energy 0.35 MeV", "Energy 0.30 MeV", "Energy 0.06 MeV", "Energy 0.14 MeV", "Energy 0.36 MeV", "Energy 0.18 MeV", "Energy 0.49 MeV", "Energy 0.50 MeV", "Energy 0.35 MeV", "Energy 0.24 MeV" ], "marker": { "color": [ 0.30945101380348206, 0.05698555335402489, 0.07103002816438675, 0.05295023322105408, 0.06455393880605698, 0.07791422307491302, 0.09388507902622223, 0.07077896595001221, 0.31074076890945435, 1.3044917583465576, 0.5385757684707642, 0.30222561955451965, 0.14854967594146729, 0.5004411935806274, 0.6993693709373474, 0.6532866358757019, 0.9387291073799133, 0.12626929581165314, 0.6336631178855896, 0.1688527911901474, 0.4859600067138672, 0.21996928751468658, 0.09396164864301682, 0.05794325843453407, 0.5082903504371643, 0.4242350161075592, 0.15099254250526428, 0.09243900328874588, 0.6383606791496277, 0.19929702579975128, 0.15624335408210754, 0.11750638484954834, 0.6620341539382935, 0.0756993293762207, 0.1425933837890625, 0.723733127117157, 0.27355512976646423, 0.5889166593551636, 0.34134775400161743, 0.31122052669525146, 0.688693106174469, 0.8286369442939758, 0.08831314742565155, 0.11192897707223892, 0.5154375433921814, 0.6595422625541687, 0.05918166786432266, 0.24775880575180054, 0.9909613728523254, 0.0726957768201828, 0.08235569298267365, 0.5432108640670776, 0.5355169177055359, 0.339117169380188, 0.05588686093688011, 0.5635456442832947, 0.1421409547328949, 0.1295776665210724, 0.6420436501502991, 0.6071141958236694, 0.36458316445350647, 1.1679034233093262, 0.1555427759885788, 0.6253745555877686, 1.0827804803848267, 0.31635749340057373, 0.18425068259239197, 0.6555728912353516, 0.22480402886867523, 0.16242146492004395, 1.4768471717834473, 0.8888930082321167, 0.30737513303756714, 0.6684055328369141, 0.05096477270126343, 0.09792463481426239, 0.6508358716964722, 0.6574240326881409, 0.37226930260658264, 0.1960521936416626, 1.0644853115081787, 0.4913366734981537, 0.3138146996498108, 0.9021300077438354, 0.2558254599571228, 0.6452768445014954, 0.47487586736679077, 0.7310189604759216, 0.19554249942302704, 0.20459705591201782, 1.2135486602783203, 0.9029673933982849, 0.34777575731277466, 0.29636821150779724, 0.055967334657907486, 0.13575038313865662, 0.3552040755748749, 0.17603528499603271, 0.4938189387321472, 0.5032115578651428, 0.352677583694458, 0.24295109510421753 ], "colorscale": [ [ 0.0, "#000004" ], [ 0.1111111111111111, "#1b0c41" ], [ 0.2222222222222222, "#4a0c6b" ], [ 0.3333333333333333, "#781c6d" ], [ 0.4444444444444444, "#a52c60" ], [ 0.5555555555555556, "#cf4446" ], [ 0.6666666666666666, "#ed6925" ], [ 0.7777777777777778, "#fb9b06" ], [ 0.8888888888888888, "#f7d13d" ], [ 1.0, "#fcffa4" ] ], "size": 1.5 }, "mode": "markers", "name": "Trajectory 8", "type": "scatter3d", "x": [ 604.0, 606.0, 607.0, 625.0, 580.0, 540.0, 616.0, 590.0, 582.0, 585.0, 585.0, 585.0, 586.0, 585.0, 585.0, 584.0, 584.0, 584.0, 585.0, 583.0, 584.0, 583.0, 565.0, 586.0, 582.0, 583.0, 582.0, 583.0, 581.0, 582.0, 581.0, 579.0, 580.0, 579.0, 561.0, 579.0, 578.0, 577.0, 578.0, 576.0, 575.0, 576.0, 574.0, 575.0, 573.0, 574.0, 573.0, 571.0, 572.0, 573.0, 571.0, 571.0, 570.0, 571.0, 572.0, 569.0, 568.0, 569.0, 567.0, 568.0, 565.0, 566.0, 567.0, 563.0, 564.0, 565.0, 561.0, 562.0, 563.0, 554.0, 560.0, 561.0, 558.0, 559.0, 560.0, 558.0, 559.0, 557.0, 558.0, 555.0, 556.0, 557.0, 558.0, 557.0, 558.0, 554.0, 555.0, 553.0, 554.0, 552.0, 553.0, 551.0, 552.0, 550.0, 550.0, 609.0, 626.0, 625.0, 626.0, 627.0, 628.0, 626.0 ], "y": [ 469.0, 465.0, 463.0, 466.0, 504.0, 508.0, 496.0, 384.0, 484.0, 483.0, 483.0, 484.0, 484.0, 485.0, 486.0, 487.0, 488.0, 489.0, 483.0, 489.0, 489.0, 490.0, 384.0, 489.0, 490.0, 490.0, 491.0, 490.0, 491.0, 491.0, 491.0, 492.0, 492.0, 494.0, 463.0, 492.0, 493.0, 493.0, 493.0, 494.0, 494.0, 494.0, 495.0, 495.0, 495.0, 495.0, 496.0, 496.0, 496.0, 496.0, 497.0, 496.0, 497.0, 497.0, 493.0, 497.0, 498.0, 498.0, 498.0, 498.0, 498.0, 498.0, 498.0, 499.0, 499.0, 499.0, 499.0, 499.0, 499.0, 498.0, 499.0, 499.0, 499.0, 499.0, 499.0, 500.0, 500.0, 500.0, 500.0, 500.0, 500.0, 500.0, 500.0, 501.0, 501.0, 500.0, 500.0, 501.0, 501.0, 501.0, 501.0, 501.0, 501.0, 501.0, 496.0, 520.0, 466.0, 465.0, 465.0, 465.0, 465.0, 466.0 ], "z": [ 521.0, 526.0, 528.0, 534.0, 551.0, 555.0, 562.0, 566.0, 567.0, 571.0, 572.0, 572.0, 572.0, 572.0, 572.0, 572.0, 572.0, 572.0, 573.0, 573.0, 573.0, 573.0, 574.0, 574.0, 574.0, 574.0, 574.0, 575.0, 575.0, 575.0, 576.0, 576.0, 576.0, 576.0, 577.0, 577.0, 577.0, 578.0, 578.0, 578.0, 579.0, 579.0, 579.0, 579.0, 580.0, 580.0, 580.0, 581.0, 581.0, 581.0, 581.0, 582.0, 582.0, 582.0, 583.0, 583.0, 583.0, 583.0, 584.0, 584.0, 585.0, 585.0, 585.0, 586.0, 586.0, 586.0, 587.0, 587.0, 587.0, 588.0, 588.0, 588.0, 589.0, 589.0, 589.0, 589.0, 589.0, 590.0, 590.0, 591.0, 591.0, 591.0, 591.0, 591.0, 591.0, 592.0, 592.0, 592.0, 592.0, 593.0, 593.0, 594.0, 594.0, 595.0, 602.0, 604.0, 534.0, 535.0, 535.0, 535.0, 535.0, 535.0 ] } ], "layout": { "height": 768, "legend": { "x": 1.1, "y": 0.9 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "width": 768 } }, "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import plotly.graph_objs as go\n", "\n", "# load data points\n", "tracks=np.load('data/tracks.npz')\n", "\n", "# Create \"traces\" = instances that can be plotted. \n", "# In our case, a trace is created per particle trajectory\n", "traces=[]\n", "for name,pts in tracks.items():\n", " traces.append(go.Scatter3d(x=pts[:,0],y=pts[:,1],z=pts[:,2],name=name,\n", " mode='markers',\n", " marker=dict(size=1.5,color=pts[:,4],colorscale='Inferno'),\n", " hovertext=['Energy %.2f MeV' % energy for energy in pts[:,4]]\n", " )\n", " )\n", "# Now plot!\n", "fig = go.Figure(data=traces)\n", "fig.update_layout(legend=dict(x=1.1, y=0.9), height=768, width=768)\n", "fig.show()" ] }, { "cell_type": "markdown", "id": "17ac3a70", "metadata": {}, "source": [ "\n", "## HDF5 for saving numpy array\n", "\n", "\n", "We would like to be able to \"save\" our data after some analysis, such as your awesomer Homer image. Here I introduce two options: numpy and HDF5 files. Let us generate a bit bigger data, 128 samples of Homer.png equivalent size data. Why 128? Nothing special about the number, but I made it large enough to see some use in compression options when saving in a file." ] }, { "cell_type": "code", "execution_count": 16, "id": "a3259527", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "data size: 307.2 [MB]\n" ] } ], "source": [ "data=plt.imread('data/Homer.png')\n", "\n", "batch_data = np.array([data for _ in range(128)])\n", "batch_index = np.array(range(128))\n", "print('data size:',batch_data.size*4/1.e6,'[MB]')" ] }, { "cell_type": "markdown", "id": "8c1117aa", "metadata": {}, "source": [ "### Numpy and HDF5 files\n", "We use [numpy.savez](https://docs.scipy.org/doc/numpy/reference/generated/numpy.savez.html#numpy.savez) and [h5py.create_dataset](http://docs.h5py.org/en/stable/high/dataset.html) to store multiple numpy arrays (`batch_data` and `batch_index`). Before we get into details, the bottom line is that I recommend HDF5 over simple numpy files in most usecases. Further, I personally recommend [pytable](https://www.pytables.org/) for organizing your data and storing/reading in/from HDF5 format. OK, sorry, enough advertisement here.\n", "\n", "Below, we execute code to store numpy arrays in 4 methods: numpy w/ and w/o compression as well as HDF5 w/ and w/o compression using `h5py`. We report time it takes and output filesize." ] }, { "cell_type": "code", "execution_count": 17, "id": "3c8dde35", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Numpy w/o comp.: 0.9195713996887207 [s] ... size 307.201528 MB\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Numpy w/ comp.: 4.361450433731079 [s] ... size 20.957949 MB\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "HDF5 w/o comp.: 0.4349055290222168 [s] ... size 307.203072 MB\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "HDF5 w/ comp.: 2.4589481353759766 [s] ... size 7.253288 MB\n" ] } ], "source": [ "import time, os\n", "# Numpy file w/o compression\n", "t0=time.time()\n", "np.savez('example.npz',data=batch_data,index=batch_index)\n", "print('Numpy w/o comp.:',time.time()-t0,'[s] ... size',os.path.getsize('example.npz')/1.e6,'MB')\n", "# Numpy file w/ compression\n", "t0=time.time()\n", "np.savez_compressed('example_compressed.npz',data=batch_data,index=batch_index)\n", "print('Numpy w/ comp.:',time.time()-t0,'[s] ... size',os.path.getsize('example_compressed.npz')/1.e6,'MB')\n", "# H5 file w/o compression\n", "import h5py as h5\n", "f=h5.File('example.h5','w')\n", "t0=time.time()\n", "f.create_dataset('data',data=batch_data)\n", "f.create_dataset('index',data=batch_index)\n", "f.close()\n", "print('HDF5 w/o comp.:',time.time()-t0,'[s] ... size',os.path.getsize('example.h5')/1.e6,'MB')\n", "# H5 file w/ compression\n", "f=h5.File('example_compressed.h5','w')\n", "t0=time.time()\n", "f.create_dataset('data',data=batch_data, chunks=True, compression='gzip')\n", "f.create_dataset('index',data=batch_index, chunks=batch_index.shape, compression='gzip')\n", "f.close()\n", "print('HDF5 w/ comp.:',time.time()-t0,'[s] ... size',os.path.getsize('example_compressed.h5')/1.e6,'MB')" ] }, { "cell_type": "markdown", "id": "a82131c9", "metadata": {}, "source": [ "It's good to observe something we expect: the file size should be roughly the data size (307 MB) without any compression. We can see HDF5 is about twice faster than numpy file option either with or without compression option. The compressed HDF5 file is about 3 times smaller than numpy compressed file, which is great. This comes at a cost of running a compression algorithm, hence longer time to finish writing. Note that data compression has some parameters to consider, such as algorithm itself (here we used `gzip`) and chunk size, which you can consider as a block size for IO operation optimization. We come back to this later.\n", "\n", "Now, often you perform more _read_ operation than _write_ operation to a file (i.e. you may write a file once, and you typically read the same file many times). So read performance is often more important than the write performance. Let's see how long it takes to \"read\" data from a file. First, we try just fetching the data shape information from the stored files." ] }, { "cell_type": "code", "execution_count": 18, "id": "07a2a58f", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Numpy w/o comp.: data shape = (128, 500, 300, 4) 1.6534554958343506 [s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Numpy w/ comp.: data shape = (128, 500, 300, 4) 0.7824294567108154 [s]\n", "HDF5 w/o comp.: data shape = (128, 500, 300, 4) 0.002744436264038086 [s]\n", "HDF5 w/ comp.: data shape = (128, 500, 300, 4) 0.0015420913696289062 [s]\n" ] } ], "source": [ "# Numpy file w/o compression\n", "t0=time.time()\n", "d=np.load('example.npz')\n", "print('Numpy w/o comp.: data shape =',d['data'].shape,time.time()-t0,'[s]')\n", "# Numpy file w/ compression\n", "t0=time.time()\n", "d=np.load('example_compressed.npz')\n", "print('Numpy w/ comp.: data shape =',d['data'].shape,time.time()-t0,'[s]')\n", "# H5 file w/o compression\n", "t0=time.time()\n", "f=h5.File('example.h5','r')\n", "print('HDF5 w/o comp.: data shape =',f['data'].shape,time.time()-t0,'[s]')\n", "f.close()\n", "# H5 file w/ compression\n", "t0=time.time()\n", "f=h5.File('example_compressed.h5','r')\n", "print('HDF5 w/ comp.: data shape =',f['data'].shape,time.time()-t0,'[s]')\n", "f.close()" ] }, { "cell_type": "markdown", "id": "ea900b75", "metadata": {}, "source": [ "First, we see read-speed difference between numpy files w/ vs. w/o compression. This is expected, like we saw while writing these files, because a compressed file needs to run an algorithm to expand the compressed infomration.\n", "\n", "Second, we see that HDF5 files are **much faster** than numpy files. This is because HDF5 files store \"data header information\" separately from the data itself while numpy files don't. The data shape information is actually in the header, much smaller than the whole data, and that is fetched for HDF5 files. Accordingly the difference in compressed or not does not apply here for HDF5 files. On the other hand, for numpy files, the whole data is read-in, hence slow + we see difference between w/ vs. w/o compression.\n", "\n", "Next, we force HDF5 file data to be read by computing the sum of matrix in the first entry." ] }, { "cell_type": "code", "execution_count": 19, "id": "191cb576", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Numpy w/o comp.: first entry sum = 445387.84 0.4172396659851074 [s]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Numpy w/ comp.: first entry sum = 445387.84 0.7242357730865479 [s]\n", "HDF5 w/o comp.: first entry sum = 445387.84 0.0044329166412353516 [s]\n", "HDF5 w/ comp.: first entry sum = 445387.84 0.07256197929382324 [s]\n" ] } ], "source": [ "# Numpy file w/o compression\n", "t0=time.time()\n", "d=np.load('example.npz')\n", "print('Numpy w/o comp.: first entry sum =',d['data'][0].sum(),time.time()-t0,'[s]')\n", "# Numpy file w/ compression\n", "t0=time.time()\n", "d=np.load('example_compressed.npz')\n", "print('Numpy w/ comp.: first entry sum =',d['data'][0].sum(),time.time()-t0,'[s]')\n", "# H5 file w/o compression\n", "t0=time.time()\n", "f=h5.File('example.h5','r')\n", "print('HDF5 w/o comp.: first entry sum =',f['data'][0].sum(),time.time()-t0,'[s]')\n", "f.close()\n", "# H5 file w/ compression\n", "t0=time.time()\n", "f=h5.File('example_compressed.h5','r')\n", "print('HDF5 w/ comp.: first entry sum =',f['data'][0].sum(),time.time()-t0,'[s]')\n", "f.close()" ] }, { "cell_type": "markdown", "id": "6a2462d9", "metadata": {}, "source": [ "You can see the time took for operating on numpy files did not change much. This is because the time spent is dominated by file-read operation. For HDF5 files, now we see clear difference between w/ vs. w/o compression, almost by a factor of 30! Nevertheless, the read speed is much faster than numpy files.\n", "\n", "## _Smart_ Compression\n", "Could we improve read-speed for the compressed HDF5 file? The answer is yes, and there are a few ways to pursue. One important thing to consider is what's called a _chunk size_. For image data, we are almost always certain that the smallest unit of file-read operation is one image. We usually don't read 0.3 or 0.5 image. So it is reasonable to set the base unitsize of file read (i.e. chunk size) to be the dimension of an image. Let's re-make the compressed file with this assumption for `batch_data`. For `batch_index`, because it's so small (only 128 integers), we set the chunk size to be the whole data as file-read should be fast." ] }, { "cell_type": "code", "execution_count": 20, "id": "f8c85eab", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "HDF5 w/ comp.: 2.6881022453308105 [s] ... size 22.430891 MB\n" ] } ], "source": [ "# H5 file w/ compression\n", "f=h5.File('example_smart_compressed.h5','w')\n", "t0=time.time()\n", "f.create_dataset('data',data=batch_data, chunks=tuple([1]+list(data.shape)), compression='gzip')\n", "f.create_dataset('index',data=batch_index, chunks=batch_index.shape, compression='gzip')\n", "f.close()\n", "print('HDF5 w/ comp.:',time.time()-t0,'[s] ... size',os.path.getsize('example_smart_compressed.h5')/1.e6,'MB')" ] }, { "cell_type": "markdown", "id": "561e7102", "metadata": {}, "source": [ "Now we see the compression factor (i.e. file size) is not as great as before. In fact, it is about same as numpy counterpart, although the file-write speed is still fast. Let's try reading the firsty entry in data and compute the matrix sum." ] }, { "cell_type": "code", "execution_count": 21, "id": "aed0d040", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "HDF5 w/ comp.: first entry sum = 445387.84 0.00727391242980957 [s]\n" ] } ], "source": [ "# H5 file w/ compression\n", "t0=time.time()\n", "f=h5.File('example_smart_compressed.h5','r')\n", "print('HDF5 w/ comp.: first entry sum =',f['data'][0].sum(),time.time()-t0,'[s]')\n", "f.close()" ] }, { "cell_type": "markdown", "id": "60ea6a2e", "metadata": {}, "source": [ "While this is still slower than uncompressed file, it has improved by several factors. Remember to choose a reasonable chunksize for your data! It can change your data-read speed by several factors. If you plan to do a neural network training with a batch that consists of random selection of images, having a fast, image-by-image random access is very important.\n", "\n", "... so what about an array of variable-length data? That's outside of this 5-minutes notebook :) But HDF5 supports this and you only need to learn a bit more beyond 5 minutes!" ] } ], "metadata": { "jupytext": { "cell_metadata_filter": "-all", "formats": "md:myst", "text_representation": { "extension": ".md", "format_name": "myst", "format_version": 0.13, "jupytext_version": "1.10.3" } }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" }, "source_map": [ 14, 33, 38, 48, 52, 55, 58, 61, 66, 69, 74, 77, 85, 88, 92, 95, 98, 111, 114, 117, 137, 140, 170, 173, 200, 203, 211, 214, 233, 246, 266, 275, 281, 288, 313, 318, 337, 344, 363, 369, 377, 380, 386 ] }, "nbformat": 4, "nbformat_minor": 5 }